WO2011091059A1 - Wellness analysis system - Google Patents

Wellness analysis system Download PDF

Info

Publication number
WO2011091059A1
WO2011091059A1 PCT/US2011/021745 US2011021745W WO2011091059A1 WO 2011091059 A1 WO2011091059 A1 WO 2011091059A1 US 2011021745 W US2011021745 W US 2011021745W WO 2011091059 A1 WO2011091059 A1 WO 2011091059A1
Authority
WO
WIPO (PCT)
Prior art keywords
wellness
diagnostic
output
monitor
generate
Prior art date
Application number
PCT/US2011/021745
Other languages
French (fr)
Inventor
Ammar Al-Ali
Original Assignee
Masimo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masimo Corporation filed Critical Masimo Corporation
Priority to DE112011100282T priority Critical patent/DE112011100282T5/en
Priority to GB1212698.3A priority patent/GB2490817A/en
Publication of WO2011091059A1 publication Critical patent/WO2011091059A1/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • pulse oximetry is a widely accepted noninvasive procedure for measuring blood oxygen saturation and pulse rate, which are significant indicators of circulatory system status.
  • Pulse oximeters capable of reading through motion induced noise are disclosed in at least U.S. Pat. Nos. 6,770,028, 6,658,276, 6,650,917, 6,157,850, 6,002,952, 5,769,785 and 5,758,644; low noise pulse oximetry sensors are disclosed in at least U.S. Patent 6,088,607 and 5,782,757; all of which are assigned to Masimo Corporation, Irvine, California (“Masimo”) and are incorporated by reference herein.
  • Physiological monitors and corresponding multiple wavelength optical sensors are described in at least U.S. Pat. App. No. 11/367,013, filed March 1 , 2006 and titled Multiple Wavelength Sensor Emitters and U.S. Pat. App. No. 1 1/366,208, filed March 1 , 2006 and titled Noninvasive Multi-Parameter Patient Monitor, both assigned to Masimo Laboratories, Irvine, CA (Masimo Labs) and both incorporated by reference herein.
  • physiological monitoring systems that include low noise optical sensors and pulse oximetry monitors, such as any of LNOP ® adhesive or reusable sensors, SofTouchTM sensors, Hi-Fi TraumaTM or BlueTM sensors; and any of Radical ® , SatShareTM, Rad-9TM, Rad-5TM, Rad-5vTM or PPO+TM Masimo SET ® pulse oximeters, are all available from Masimo.
  • Physiological monitoring systems including multiple wavelength sensors and corresponding noninvasive blood parameter monitors, such as RainbowTM adhesive and reusable sensors and RAD- 57TM and Radical-7TM monitors for measuring Sp0 2 , pulse rate (PR), perfusion index (PI), pleth variability index (PVI), signal quality, HbCO, HbMet and Hbt among other parameters are also available from Masimo.
  • PR pulse rate
  • PI perfusion index
  • PVI pleth variability index
  • signal quality HbCO
  • HbMet and Hbt among other parameters
  • U.S. Pat. App. Publication No. 2008/0108884 A1 filed 09/24/2007 and titled Modular Patient Monitor describes monitoring of blood constituent parameters and respiration rate as well as blood pressure, blood glucose, ECG, C0 2 and EEG to name a few and is also assigned to Masimo and incorporated by reference herein.
  • Physiological monitoring is advanced with any methodology that integrates the many otherwise disparate monitoring technologies and measured parameters. Further, physiological monitoring may be enhanced by taking into account other patient data including medical history, medications, lab work, diagnostic test results among other data outside of real-time patient monitoring. Also, volumes of medical research and vast databases of scientific knowledge can be accessed to further supplement and integrate the results of real-time monitoring.
  • a wellness analysis system advantageously integrates real-time sensor data regarding the status of any or all of a body's circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine and reproductive systems so as to generate a wellness output.
  • a wellness analysis system stores traces of measured parameters during real-time patient monitoring so as to characterize a patient's response over time, creating a "virtual patient" that can be tested with simulated data, resulting in a predictive wellness output.
  • An aspect of a wellness analyzer is sensors that generate real-time physiological data from patient sites. Further, databases provide non-real-time information relevant to a medical-related assessment of the patient.
  • a wellness monitor in a diagnostic mode, inputs the sensor data.
  • Adjunct layers input the database information.
  • Adjunct layer logic blocks process the database information so as to output supplemental information to the wellness monitor.
  • Wellness monitor logic blocks process the sensor data and supplemental information so as to generate a wellness output.
  • Another aspect of a wellness analyzer is physiological sensor data input to a monitor layer. Physiological parameters are derived based upon the sensor data. Physiological system statuses are generated based at least in part upon the parameters. A wellness output is based upon these physiological system statuses.
  • a further aspect of a wellness analyzer is a monitor layer means for generating a wellness index responsive to real-time sensor data.
  • An adjunct layer means is coupled to the monitor layer means for supplementing the monitor layer wellness index according to non-real-time data.
  • FIG. 1 is a general block diagram of a wellness analysis system
  • FIG. 2 is a general flow diagram of a wellness analyzer embodiment
  • FIG. 3 is a detailed flow diagram of a wellness analyzer embodiment
  • FIG. 4 is a detailed flow diagram of a wellness monitor embodiment
  • FIG. 5 is a block diagram of a parameter logic block
  • FIG. 6 is a block diagram of a system logic block
  • FIG. 7 is a block diagram of a diagnostic logic block
  • FIG. 8 is a general flow diagram of a predictive wellness monitor embodiment.
  • FIG. 1 illustrates a wellness analysis system 100 having a wellness analyzer 110 in communications with various forms of patient data.
  • sensors 112 provide real-time patient data responsive to one or more of a patient's circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine and reproductive systems.
  • various local, regional, nationwide or worldwide databases provide non-real-time patient-related data.
  • Local databases include hospital records 120 that communicate with the wellness analyzer 110 via a local area network (LAN) 130.
  • Hospital records 120 may include patient history 122, recent lab work and tests 124 and prescribed medications and therapies 128, to name a few.
  • Non-local databases 140 include patient-specific data 142 and non-specific data 144 that are communicated to the wellness analyzer 110 via a wide area network (WAN) 150.
  • Patient-specific data 142 may include family history, genealogy, genetic and environmental information, as a few examples.
  • Non-specific data 144 may include scientific research and other information that generally relates to known patient physiology and history, such as genetic, pharmacological, medical and environmental research, to name a few.
  • the wellness analyzer 110 in a diagnostic mode, utilizes the sensor data 112 in conjunction with historical data 120 and research 140 so as to derive a comprehensive wellness output 116 for a patient.
  • the wellness output 116 is a simple index useful for an initial screening of individuals.
  • the index may be a range of values, such as 1 through 10, with 10 indicating no significant health issues and 1 indicating the existence of one or more potentially life-threatening conditions.
  • the wellness output 116 is a comprehensive and detailed listing of specific health issues sorted according to priority or urgency for follow-up examination, observation and treatment.
  • the wellness analyzer 110 characterizes a patient as it determines the wellness output 116. In this manner, the wellness analyzer 110 creates an internal patient model or "virtual patient.” The virtual patient can then be tested, in a simulation mode, with statistical inputs in lieu of, or in addition to, sensor data 112 so as to determine a predictive wellness output 118.
  • predictive wellness 118 indicates how a patient is likely to respond to various physical, medical and environmental conditions so as to reveal physiological strengths and weaknesses.
  • predictive wellness 118 may reveal a risk of an immediate deterioration in health due to, for example, septic shock, infection, embolism, pneumonia and pharmaceutical side-effects, to name a few.
  • Predictive wellness 118 may also reveal longer-term susceptibility to particular diseases or disease states, such as thrombosis, certain cancers, diabetes and heart disease, as a few examples.
  • FIG. 2 illustrates a wellness analyzer embodiment 200 having a wellness monitor 210 and one or more adjunct layers 220-260 coupled to the wellness monitor.
  • the wellness monitor 210 processes real-time data 280, such as from sensors 112 (FIG. 1).
  • the adjunct layers 220-260 each process non-real-time data 290, such as from hospital records 120 (FIG. 1) and other databases 140 (FIG. 1).
  • the adjunct layers 220-260 are specialized according to the data source, such as a lab work layer 220, a pharmaceutical or medications layer 230, a patient history layer 240, a genetics layer 250 and an environmental layer 260, to name a few.
  • the wellness analyzer layers 210-260 extract features from the realtime data 280 and non-real-time data 290 so that the wellness monitor 210 may derive a wellness output 216, as described above.
  • the wellness analyzer layers 210-260 also store an internal analyzer state 272, including extracted features and traces of the feature extraction process.
  • the analyzer state 272 may include the "virtual patient" characterization described above.
  • a simulator 270 layer utilizes the analyzer state 272 and, perhaps, the input data 280, 290 to generate statistical data 274 to the wellness monitor 210, so as to generate a predictive wellness output 218, also described above.
  • the predictive wellness output 216 may also include the internal analyzer state 272 so as to determine what led to the prediction.
  • FIG. 3 illustrates a wellness analyzer 300 embodiment having a monitor layer 310, a labwork layer 330 and a pharmaceutical layer 350 among other layers not shown.
  • the monitor layer 310 has sensor 301 inputs, logic blocks 320 and a wellness indicator 309 output.
  • the logic blocks 320 are organized into three levels including parameter 322, system 324 and diagnostic 328 levels.
  • the parameter "P" logic blocks 322 process sensor data so as to derive parameters 312, which are numerical variables and, perhaps, waveforms indicative of the status of various physiological subsystems.
  • parameters 312 are numerical variables and, perhaps, waveforms indicative of the status of various physiological subsystems.
  • an optical sensor attached to a fleshy tissue site can generate numerical parameters such as oxygen saturation, pulse rate and total hemoglobin among others, as well as a plethysmograph waveform, which are related to arterial and/or venous blood flow at a particular body location. This information, in turn, provides some information regarding the body's circulatory system.
  • selected parameters can be displayed by the monitor, at this level most of the derived information is internal to the machine.
  • the system “S” logic blocks 324 are responsive to parameter levels, slopes, trends, variability, patterns and waveform morphology, instantaneously and over time, so as to provide system indicators 314, which describe some aspect of the physiological status of one or more of the biological systems enumerated above, including the circulatory, respiratory and neurological systems, to name a few.
  • physiological system indicators may vary from a specified number of measured events per unit time to a general measure of physiological system health.
  • These physiological system indicators are vaguely analogous to blood chemistry results from a lab, i.e. an indicator may be a measured number, such as "significant desaturations per minute" along with a specified acceptable or normal range.
  • a system indicator is typically available for a nurse or doctor's review, but does not provide an overall diagnosis of a patient condition.
  • the system indicators 314 are, in turn, input to one or more diagnostic logic blocks 328.
  • the diagnostic "D” logic blocks 328 generate a wellness output 309, i.e. one or more decisions regarding a person's health that are intended as an ultimate diagnosis for a caregiver's evaluation.
  • a wellness output 309 can range from a relatively mild diagnosis, such as "occasional atrial arrhythmias" to significant health concerns, such as "apnea” to immediate and life threatening concerns, such as “congestive heart failure.” Further examples are described below with respect to FIG. 4. In other embodiments, different types, numbers and organizations of logic blocks may be utilized in the monitor layer 310.
  • other wellness analyzer layers 330, 350 also have logic blocks that feed into the monitor layer 310 and/or other layers.
  • the labwork layer 330 may have system level logic blocks that determine where a measured value, such as a particular blood factor, falls relative to a normal range of values. That result would then input into a monitor layer 310 diagnostic block 328, which combined with sensor derived measurements would yield a particular diagnosis.
  • the pharmaceutical layer 350 may have diagnostic level logic blocks that compare known side-effects of currently prescribed drugs with one or more system-level logic block outputs 314 on the monitor layer 310 so as to generate an input to a diagnostic-level logic block 328 on the monitor layer 310.
  • the monitor 310 takes into account known drug side-effects in determining the wellness output 309.
  • FIG. 4 shows an illustrative wellness monitor embodiment 400 having sensor 401 inputs, logic blocks 403 and a wellness indicator 409 output.
  • the logic blocks 403 include parameter 404, system 406 and diagnostic 408 blocks.
  • an optical sensor 412 generates an absorption plethysmograph from which a first parameter block 420 generates blood oxygen saturation 422 and pulse rate 424.
  • An acoustic sensor 414 generates breathing sound waveforms from which a second parameter block 430 generates a respiration rate 432.
  • a temperature sensor generates a body temperature measurement 416.
  • a blood pressure cuff 418 generates a pressure plethysmograph from which a third parameter block 440 generates systolic and diastolic blood pressure measurements 442.
  • a first system block 450 inputs oxygen saturation 422 and pulse rate 424 and generates a circulatory system output 452.
  • the first system block 450 may indicate at a particular point in time that oxygen saturation 422 is falling in conjunction with a relatively steady pulse rate.
  • a diagnostic logic block 480 responds to the circulatory system output 452 to generate a wellness state output 409 comprising a "cardiac distress" message. Details of the message alert the caregiver that something is wrong with the patient's heart as it is unable to compensate a drop in oxygen saturation with an increase in circulatory system blood flow.
  • a second system block 460 inputs oxygen saturation 422 and respiration rate 432 and generates a respiratory system output 462.
  • the second system block 460 may indicate at a particular point in time that oxygen saturation 422 is falling in conjunction with a rising respiration rate.
  • a diagnostic logic block 480 responds to the respiratory system output 462 to generate a wellness state output 409 comprising a "respiratory pathway blockage" message. Details of the message alert the caregiver that a rising respiration rate is not resulting in increased oxygen delivery to the lungs.
  • a third system block 470 inputs body temperature 416 and blood pressure 442 and generates a circulatory system output 472 related to hemodynamic stability.
  • the third system block 470 may also input pulse rate 424 and respiration rate 432 to generate a multiple system output 472 responsive to these four significant vital signs.
  • the wellness analyzer 110 can range from a general purpose computer to a special-purpose signal processor or from a processor array to a distributed network of computers or other processing devices.
  • the wellness monitor 210 FIG. 2 and adjunct layers 220-260 (FIG. 2) can be implemented in hardware, software, firmware or a combination of these.
  • the wellness analyzer 110 FIG. 1 is a single instrument having plug-ins, one or more displays, keyboards, various standard communications interfaces, one or more signal processors and an instrument management processor.
  • the various processing layers 210-260 are implemented in software and/or firmware.
  • the various logic blocks 320 are subprograms or subroutines or otherwise identifiable portions within software and/or firmware.
  • FIG. 5 illustrates details of a parameter logic block 500.
  • a parameter logic block has a sensor input 501 and parameter 509 output.
  • the sensor input 501 can be any of a variety of sensor signals such as photodiode detector current generated by an optical sensor, piezoelectric current from an acoustic sensor or electrode voltage from an ECG sensor, to name just a few.
  • a hardware interface 510 apart from the parameter block 500 drives the sensor, if necessary, and conditions, samples and digitizes the sensor input 501 into sensor data 512.
  • a signal extraction process 520 extracts one or more physiological signals 525 from the sensor data 512.
  • signal extraction for a pulse oximetry sensor includes demodulating the red and IR signal components.
  • the sensor signal(s) 525 are then analyzed 530 so as to derive physiological parameters 509.
  • signal analysis 530 would include deriving a red over IR ratio and using that ratio with a lookup table to calculate an oxygen saturation parameter.
  • FIG. 6 illustrates details of a system logic block 600.
  • a system logic block 600 has parameter inputs 601 as well as, perhaps, sensor data inputs.
  • the system logic block 600 also has a system status 609 output.
  • a system logic block 600 has an input selector 610, a feature extractor 620, feature storage 630 and a feature analyzer 640.
  • a controller 390 (FIG. 3) provides control inputs (not shown) to each of the input selector 610, feature extractor 620, feature storage 630 and feature analyzer 640, as described in further detail below.
  • the feature extractor 620 has level 622, trend 624, pattern 625, statistics 627 and morphology 629 functions, as a few examples.
  • the input selector 610 determines which parameter blocks 322 (FIG. 3) feed its particular system block 324 (FIG. 3). Further, the input selector 610 routes the selected parameters to specific feature extractor functions.
  • the level function 622 is responsive to input parameters 603 rising above or falling below a predetermined threshold.
  • the trend function 624 is responsive to input parameters 603 having a positive or negative rate of change above a predetermined absolute value over a predetermined time interval.
  • the pattern function 625 is responsive to a predetermined parameter behavior over a predetermined time interval, such as threshold crossings per minute.
  • the statistics function 627 determines parameter behavior over a predetermined sample size, such as mean, variance and correlation (with other parameters) to name a few.
  • the morphology function 629 analyzes sensor waveform characteristics, such as plethysmograph dicrotic notch behavior, as one example.
  • Other feature extraction functions not shown may include an FFT function, to determine frequency characteristics such as detection of sensor waveform modulation, among others.
  • the input selector of the first system block 450 (FIG. 4) routes both the Sp0 2 parameter and the PR parameter to the trend 624 function, so that the system block output 452 (FIG. 4) is responsive to upward or downward trends of both Sp0 2 and pulse rate.
  • the feature analyzer 640 inputs the extracted features 607 so as to indicate the functioning of a physiological system, such as the circulatory, respiratory, neurological and other systems cited above.
  • the status output 609 is a list of status codes indicating a particular physiological system is okay or is in various degrees of distress.
  • the feature analyzer 640 accesses a look-up table 650 to generate the status codes according to extracted features.
  • the status codes are prioritized according to severity.
  • the look-up table 650 is uploaded from the controller 390 (FIG. 3) according to particular system logic block inputs and functions.
  • feature storage 630 stores traces of selected input parameters along with extracted parameter features.
  • each of the system blocks 600 builds a characterization of the patient with respect to the particular physiological system monitored. The sum of this patient characterization across all system blocks creates a "virtual patient" that can be tested by a simulator 870 (FIG. 8).
  • independent parameters 601 and, potentially, some sensor data are simulated and dependent parameters are "played-back" from feature storage 630 accordingly.
  • the input selector 610 combines the simulated parameters 601 and the playback parameters 632 as inputs to the feature extractor 620.
  • the feature analyzer 640 then responds to the simulated extracted features 607 so as to determine a corresponding system status 609 according to how the patient historically responds. Simulation is described in further detail with respect to FIG. 8, below.
  • FIG. 7 illustrates details of a diagnostic logic block 700 having system status 701 inputs and a wellness output 703.
  • the diagnostic block 700 comprises an expert system 710, a diagnostic knowledgebase 720 and an output generator 730.
  • the expert system 710 receives the system status 701 inputs, which are generated by the various system logic blocks 600 (FIG. 6).
  • system status 701 is input as status codes, as described above.
  • the expert system 710 compiles the status codes and interprets those codes according to the diagnostic knowledge base 720 so as to generate a diagnostic output 712.
  • the diagnostic output 712 is one or more diagnostic codes, which are a compiled diagnostic interpretation of the system status codes.
  • the output generator 730 determines the form and format of the wellness output 703 according to the diagnostic codes 712.
  • the wellness output 703 is any or all of a wellness index 732, diagnostic message(s) 734 and alarms and displays 738.
  • the predictive knowledge base 740 is used in lieu of the diagnostic knowledge base 720, as described with respect to FIG. 8, below.
  • a wellness index 732 is a numerical, alphanumeric, color or other scale or combination of scales that embodies the sum total of a diagnostic output 712.
  • a wellness index of 10 indicates no significant problems or issues reported by any system block;
  • a wellness index of 8 indicates a minor problem reported by at least one system block;
  • a wellness index of 6 indicates a significant problem reported by at least one system block or minor problems reported by multiple system blocks;
  • a wellness index of 4 indicates significant problems reported by multiple system blocks;
  • a wellness index of 2 indicates a major problem reported by at least one system block.
  • a diagnostic message 734 is natural language text indicating a clinical decision in response to system status codes 701. For instance, a diagnostic message might state a potential cause for specific symptoms such as "patient displaying symptoms of apnea.” In an embodiment, the diagnostic message 734 might also suggest a remedy for the symptoms or a possible course of treatment.
  • alarms and displays 738 are any audible or visual indicators that alone or combined with other wellness state outputs 732, 734 function to communicate specifics regarding patient health or illness to a caregiver.
  • Alarms include single frequency, mixed frequency and varying frequency sounds.
  • Displays include text; bar, Cartesian, polar or 3-D coordinate graphs; and icons to name a few.
  • FIG. 8 illustrates a predictive wellness analyzer 800 having a monitor 810, one or more adjunct layers 830, 850 and a simulator 870.
  • the monitor 810 has parameter logic blocks 804, system logic blocks 806, one or more diagnostic logic blocks 808, a controller 807 and a predictive wellness output 809.
  • the predictive wellness analyzer 800 utilizes the same hardware/software resources as the wellness analyzer 300 (FIG. 3). That is, in a predictive wellness mode, the controller 807 disables one or more of the sensor inputs 801 and/or parameter logic blocks 804 and enables the simulator 870.
  • the controller 807 also configures the system logic blocks 806 to access stored features 630 (FIG. 6) and configures the diagnostic block 700 (FIG.
  • the predictive wellness monitor 810 advantageously tests a virtual patient constructed from a history of patient monitoring and information provided by adjunct layers 830, 850 to assess patient near-term health risks and, perhaps, longer term susceptibility to disease and other health threats, as described above.
  • the simulator 870 synthesizes one or more sensor inputs 801 and/or one or more parameter 804 outputs. For example, the simulator 870 may generate a first parameter block 812 output according to a first probability distribution 813; disable a second parameter block 814; and generate an nth parameter block 818 output according to an nth probability distribution 819.
  • oxygen saturation 422 (FIG. 4) is varied, say, between 85-95% and pulse rate 424 (FIG. 4) is varied, say, between 100-150 bpm.
  • respiration rate 432 (FIG. 4), temperature 416 (FIG. 4) and blood pressure 442 (FIG. 4) are allowed to vary as dependent parameters based upon the simulated blood pressure and respiration rate. That is, the non-simulated parameters vary according to the historical (stored) patient responses to like variations in oxygen saturation and pulse rate. In this manner, the likely response of a patient's respiratory system and hemodynamics to normal variations in oxygen delivery are measured.
  • the simulated parameters 813, 819 feed the system logic blocks 806.
  • the controller 807 alters the system block 806 pathways so that the system status outputs 805 are responsive only to the simulated parameters 813, 819 and the stored features 632 (FIG. 6) recorded by the feature extractor 620 (FIG. 6) in the wellness mode.
  • the extracted features of simulated (independent) parameters trigger the recall of dependent parameter features based upon monitored history.
  • the system blocks 806 generate a system status 805 that reflects both the simulated parameter inputs 813, 819 and the historical patient response to those parameters.
  • the feature storage of the system blocks 806, in "playback" mode internally generates the corresponding "predicted” respiration rate, temperature and blood pressure parameters.
  • the corresponding system status 805 is input to the diagnostic block 808, which generates a predictive wellness 809 output, which differs from the wellness output 703 (FIG. 7).
  • predictive wellness instead of a clinical diagnosis of an existing condition based upon the diagnostic knowledge base 720 (FIG. 7), predictive wellness indicates the likelihood of a near-term deterioration of an existing condition, such as a risk of infection, septic shock or an adverse drug reaction, to name a few, according to the predictive knowledge base 740 (FIG. 7).

Abstract

A wellness analyzer is in communications with sensors that generate real time physiological data from a patient. The wellness analyzer is also in communications with databases that provide non-real-time information relevant to a medical-related assessment of the patient. In a diagnostic mode, a monitor layer inputs the sensor data and adjunct layers input the database information. Adjunct layer logic blocks process the database information so as to output supplemental information to the monitor. Monitor logic blocks process the sensor data and the supplemental information so as to generate a wellness output. In a simulation mode, a simulator generates at least one parameter and the monitor generates a predictive wellness output accordingly.

Description

WELLNESS ANALYSIS SYSTEM
BACKGROUND OF THE INVENTION
[0001] Various monitoring technologies are available for assessing one or more physiological systems. For example, pulse oximetry is a widely accepted noninvasive procedure for measuring blood oxygen saturation and pulse rate, which are significant indicators of circulatory system status. Pulse oximeters capable of reading through motion induced noise are disclosed in at least U.S. Pat. Nos. 6,770,028, 6,658,276, 6,650,917, 6,157,850, 6,002,952, 5,769,785 and 5,758,644; low noise pulse oximetry sensors are disclosed in at least U.S. Patent 6,088,607 and 5,782,757; all of which are assigned to Masimo Corporation, Irvine, California ("Masimo") and are incorporated by reference herein.
[0002] Physiological monitors and corresponding multiple wavelength optical sensors are described in at least U.S. Pat. App. No. 11/367,013, filed March 1 , 2006 and titled Multiple Wavelength Sensor Emitters and U.S. Pat. App. No. 1 1/366,208, filed March 1 , 2006 and titled Noninvasive Multi-Parameter Patient Monitor, both assigned to Masimo Laboratories, Irvine, CA (Masimo Labs) and both incorporated by reference herein.
[0003] Further, physiological monitoring systems that include low noise optical sensors and pulse oximetry monitors, such as any of LNOP® adhesive or reusable sensors, SofTouch™ sensors, Hi-Fi Trauma™ or Blue™ sensors; and any of Radical®, SatShare™, Rad-9™, Rad-5™, Rad-5v™ or PPO+™ Masimo SET® pulse oximeters, are all available from Masimo. Physiological monitoring systems including multiple wavelength sensors and corresponding noninvasive blood parameter monitors, such as Rainbow™ adhesive and reusable sensors and RAD- 57™ and Radical-7™ monitors for measuring Sp02, pulse rate (PR), perfusion index (PI), pleth variability index (PVI), signal quality, HbCO, HbMet and Hbt among other parameters are also available from Masimo. [0004] Various other monitoring technologies can assess the status of other physiological systems. U.S. Pat. App. Publication No. 2008/0108884 A1 filed 09/24/2007 and titled Modular Patient Monitor describes monitoring of blood constituent parameters and respiration rate as well as blood pressure, blood glucose, ECG, C02 and EEG to name a few and is also assigned to Masimo and incorporated by reference herein.
SUMMARY OF THE INVENTION
[0005] Physiological monitoring is advanced with any methodology that integrates the many otherwise disparate monitoring technologies and measured parameters. Further, physiological monitoring may be enhanced by taking into account other patient data including medical history, medications, lab work, diagnostic test results among other data outside of real-time patient monitoring. Also, volumes of medical research and vast databases of scientific knowledge can be accessed to further supplement and integrate the results of real-time monitoring.
[0006] A wellness analysis system advantageously integrates real-time sensor data regarding the status of any or all of a body's circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine and reproductive systems so as to generate a wellness output. In addition, a wellness analysis system stores traces of measured parameters during real-time patient monitoring so as to characterize a patient's response over time, creating a "virtual patient" that can be tested with simulated data, resulting in a predictive wellness output.
[0007] An aspect of a wellness analyzer is sensors that generate real-time physiological data from patient sites. Further, databases provide non-real-time information relevant to a medical-related assessment of the patient. A wellness monitor, in a diagnostic mode, inputs the sensor data. Adjunct layers input the database information. Adjunct layer logic blocks process the database information so as to output supplemental information to the wellness monitor. Wellness monitor logic blocks process the sensor data and supplemental information so as to generate a wellness output. [0008] Another aspect of a wellness analyzer is physiological sensor data input to a monitor layer. Physiological parameters are derived based upon the sensor data. Physiological system statuses are generated based at least in part upon the parameters. A wellness output is based upon these physiological system statuses.
[0009] A further aspect of a wellness analyzer is a monitor layer means for generating a wellness index responsive to real-time sensor data. An adjunct layer means is coupled to the monitor layer means for supplementing the monitor layer wellness index according to non-real-time data.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] FIG. 1 is a general block diagram of a wellness analysis system;
[0011] FIG. 2 is a general flow diagram of a wellness analyzer embodiment;
[0012] FIG. 3 is a detailed flow diagram of a wellness analyzer embodiment;
[0013] FIG. 4 is a detailed flow diagram of a wellness monitor embodiment;
[0014] FIG. 5 is a block diagram of a parameter logic block;
[0015] FIG. 6 is a block diagram of a system logic block;
[0016] FIG. 7 is a block diagram of a diagnostic logic block; and
[0017] FIG. 8 is a general flow diagram of a predictive wellness monitor embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0018] FIG. 1 illustrates a wellness analysis system 100 having a wellness analyzer 110 in communications with various forms of patient data. In particular, sensors 112 provide real-time patient data responsive to one or more of a patient's circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine and reproductive systems. Further, various local, regional, nationwide or worldwide databases provide non-real-time patient-related data. Local databases include hospital records 120 that communicate with the wellness analyzer 110 via a local area network (LAN) 130. Hospital records 120 may include patient history 122, recent lab work and tests 124 and prescribed medications and therapies 128, to name a few. Non-local databases 140 include patient-specific data 142 and non-specific data 144 that are communicated to the wellness analyzer 110 via a wide area network (WAN) 150. Patient-specific data 142 may include family history, genealogy, genetic and environmental information, as a few examples. Non-specific data 144 may include scientific research and other information that generally relates to known patient physiology and history, such as genetic, pharmacological, medical and environmental research, to name a few.
[0019] Advantageously, the wellness analyzer 110, in a diagnostic mode, utilizes the sensor data 112 in conjunction with historical data 120 and research 140 so as to derive a comprehensive wellness output 116 for a patient. In an embodiment, the wellness output 116 is a simple index useful for an initial screening of individuals. For example, the index may be a range of values, such as 1 through 10, with 10 indicating no significant health issues and 1 indicating the existence of one or more potentially life-threatening conditions. In another embodiment, the wellness output 116 is a comprehensive and detailed listing of specific health issues sorted according to priority or urgency for follow-up examination, observation and treatment.
[0020] Further, the wellness analyzer 110 characterizes a patient as it determines the wellness output 116. In this manner, the wellness analyzer 110 creates an internal patient model or "virtual patient." The virtual patient can then be tested, in a simulation mode, with statistical inputs in lieu of, or in addition to, sensor data 112 so as to determine a predictive wellness output 118. Advantageously, predictive wellness 118 indicates how a patient is likely to respond to various physical, medical and environmental conditions so as to reveal physiological strengths and weaknesses. For example, predictive wellness 118 may reveal a risk of an immediate deterioration in health due to, for example, septic shock, infection, embolism, pneumonia and pharmaceutical side-effects, to name a few. Predictive wellness 118 may also reveal longer-term susceptibility to particular diseases or disease states, such as thrombosis, certain cancers, diabetes and heart disease, as a few examples.
[0021] FIG. 2 illustrates a wellness analyzer embodiment 200 having a wellness monitor 210 and one or more adjunct layers 220-260 coupled to the wellness monitor. The wellness monitor 210 processes real-time data 280, such as from sensors 112 (FIG. 1). The adjunct layers 220-260 each process non-real-time data 290, such as from hospital records 120 (FIG. 1) and other databases 140 (FIG. 1). In an embodiment, the adjunct layers 220-260 are specialized according to the data source, such as a lab work layer 220, a pharmaceutical or medications layer 230, a patient history layer 240, a genetics layer 250 and an environmental layer 260, to name a few. The wellness analyzer layers 210-260 extract features from the realtime data 280 and non-real-time data 290 so that the wellness monitor 210 may derive a wellness output 216, as described above.
[0022] As shown in FIG. 2, the wellness analyzer layers 210-260 also store an internal analyzer state 272, including extracted features and traces of the feature extraction process. The analyzer state 272 may include the "virtual patient" characterization described above. A simulator 270 layer utilizes the analyzer state 272 and, perhaps, the input data 280, 290 to generate statistical data 274 to the wellness monitor 210, so as to generate a predictive wellness output 218, also described above. The predictive wellness output 216 may also include the internal analyzer state 272 so as to determine what led to the prediction. [0023] FIG. 3 illustrates a wellness analyzer 300 embodiment having a monitor layer 310, a labwork layer 330 and a pharmaceutical layer 350 among other layers not shown. The monitor layer 310 has sensor 301 inputs, logic blocks 320 and a wellness indicator 309 output. In this particular embodiment, the logic blocks 320 are organized into three levels including parameter 322, system 324 and diagnostic 328 levels. The parameter "P" logic blocks 322 process sensor data so as to derive parameters 312, which are numerical variables and, perhaps, waveforms indicative of the status of various physiological subsystems. For example, an optical sensor attached to a fleshy tissue site can generate numerical parameters such as oxygen saturation, pulse rate and total hemoglobin among others, as well as a plethysmograph waveform, which are related to arterial and/or venous blood flow at a particular body location. This information, in turn, provides some information regarding the body's circulatory system. Although selected parameters can be displayed by the monitor, at this level most of the derived information is internal to the machine.
[0024] The system "S" logic blocks 324 are responsive to parameter levels, slopes, trends, variability, patterns and waveform morphology, instantaneously and over time, so as to provide system indicators 314, which describe some aspect of the physiological status of one or more of the biological systems enumerated above, including the circulatory, respiratory and neurological systems, to name a few. For example, physiological system indicators may vary from a specified number of measured events per unit time to a general measure of physiological system health. These physiological system indicators are vaguely analogous to blood chemistry results from a lab, i.e. an indicator may be a measured number, such as "significant desaturations per minute" along with a specified acceptable or normal range. As such, a system indicator is typically available for a nurse or doctor's review, but does not provide an overall diagnosis of a patient condition. The system indicators 314 are, in turn, input to one or more diagnostic logic blocks 328.
[0025] The diagnostic "D" logic blocks 328 generate a wellness output 309, i.e. one or more decisions regarding a person's health that are intended as an ultimate diagnosis for a caregiver's evaluation. A wellness output 309 can range from a relatively mild diagnosis, such as "occasional atrial arrhythmias" to significant health concerns, such as "apnea" to immediate and life threatening concerns, such as "congestive heart failure." Further examples are described below with respect to FIG. 4. In other embodiments, different types, numbers and organizations of logic blocks may be utilized in the monitor layer 310.
[0026] Also shown in FIG. 3, other wellness analyzer layers 330, 350 also have logic blocks that feed into the monitor layer 310 and/or other layers. For example, the labwork layer 330 may have system level logic blocks that determine where a measured value, such as a particular blood factor, falls relative to a normal range of values. That result would then input into a monitor layer 310 diagnostic block 328, which combined with sensor derived measurements would yield a particular diagnosis. As another example, the pharmaceutical layer 350 may have diagnostic level logic blocks that compare known side-effects of currently prescribed drugs with one or more system-level logic block outputs 314 on the monitor layer 310 so as to generate an input to a diagnostic-level logic block 328 on the monitor layer 310. In this manner, the monitor 310 takes into account known drug side-effects in determining the wellness output 309. In various embodiments, there may be a back and forth flow of information 360 between adjunct layers 330, 350 and between the monitor layer 310 and the adjunct layers 330, 350 involving one or more levels of logic blocks in each layer.
[0027] FIG. 4 shows an illustrative wellness monitor embodiment 400 having sensor 401 inputs, logic blocks 403 and a wellness indicator 409 output. The logic blocks 403 include parameter 404, system 406 and diagnostic 408 blocks. For example, at the parameter level 404, an optical sensor 412 generates an absorption plethysmograph from which a first parameter block 420 generates blood oxygen saturation 422 and pulse rate 424. An acoustic sensor 414 generates breathing sound waveforms from which a second parameter block 430 generates a respiration rate 432. A temperature sensor generates a body temperature measurement 416. A blood pressure cuff 418 generates a pressure plethysmograph from which a third parameter block 440 generates systolic and diastolic blood pressure measurements 442. [0028] At the (physiological) system level 406, a first system block 450 inputs oxygen saturation 422 and pulse rate 424 and generates a circulatory system output 452. For example, the first system block 450 may indicate at a particular point in time that oxygen saturation 422 is falling in conjunction with a relatively steady pulse rate. A diagnostic logic block 480 responds to the circulatory system output 452 to generate a wellness state output 409 comprising a "cardiac distress" message. Details of the message alert the caregiver that something is wrong with the patient's heart as it is unable to compensate a drop in oxygen saturation with an increase in circulatory system blood flow.
[0029] Also at the system level 406, a second system block 460 inputs oxygen saturation 422 and respiration rate 432 and generates a respiratory system output 462. For example, the second system block 460 may indicate at a particular point in time that oxygen saturation 422 is falling in conjunction with a rising respiration rate. A diagnostic logic block 480 responds to the respiratory system output 462 to generate a wellness state output 409 comprising a "respiratory pathway blockage" message. Details of the message alert the caregiver that a rising respiration rate is not resulting in increased oxygen delivery to the lungs.
[0030] Further at the system level 406, a third system block 470 inputs body temperature 416 and blood pressure 442 and generates a circulatory system output 472 related to hemodynamic stability. The third system block 470 may also input pulse rate 424 and respiration rate 432 to generate a multiple system output 472 responsive to these four significant vital signs.
[0031] As described with respect to FIGS. 1 -4, above, the wellness analyzer 110 (FIG. 1) can range from a general purpose computer to a special-purpose signal processor or from a processor array to a distributed network of computers or other processing devices. Also as described above, the wellness monitor 210 (FIG. 2) and adjunct layers 220-260 (FIG. 2) can be implemented in hardware, software, firmware or a combination of these. In an embodiment, the wellness analyzer 110 (FIG. 1) is a single instrument having plug-ins, one or more displays, keyboards, various standard communications interfaces, one or more signal processors and an instrument management processor. In an embodiment, the various processing layers 210-260 (FIG. 2) are implemented in software and/or firmware. In an embodiment, the various logic blocks 320 (FIG. 3) are subprograms or subroutines or otherwise identifiable portions within software and/or firmware.
[0032] FIG. 5 illustrates details of a parameter logic block 500. As described with respect to FIG. 3 (322) above, a parameter logic block has a sensor input 501 and parameter 509 output. The sensor input 501 can be any of a variety of sensor signals such as photodiode detector current generated by an optical sensor, piezoelectric current from an acoustic sensor or electrode voltage from an ECG sensor, to name just a few. A hardware interface 510 apart from the parameter block 500 drives the sensor, if necessary, and conditions, samples and digitizes the sensor input 501 into sensor data 512. A signal extraction process 520 extracts one or more physiological signals 525 from the sensor data 512. For example, signal extraction for a pulse oximetry sensor includes demodulating the red and IR signal components. The sensor signal(s) 525 are then analyzed 530 so as to derive physiological parameters 509. For pulse oximetry, signal analysis 530 would include deriving a red over IR ratio and using that ratio with a lookup table to calculate an oxygen saturation parameter.
[0033] FIG. 6 illustrates details of a system logic block 600. As described with respect to FIG. 3 (324) above, a system logic block 600 has parameter inputs 601 as well as, perhaps, sensor data inputs. The system logic block 600 also has a system status 609 output. In an embodiment, a system logic block 600 has an input selector 610, a feature extractor 620, feature storage 630 and a feature analyzer 640. A controller 390 (FIG. 3) provides control inputs (not shown) to each of the input selector 610, feature extractor 620, feature storage 630 and feature analyzer 640, as described in further detail below. In an embodiment, the feature extractor 620 has level 622, trend 624, pattern 625, statistics 627 and morphology 629 functions, as a few examples.
[0034] As shown in FIG. 6, the input selector 610 determines which parameter blocks 322 (FIG. 3) feed its particular system block 324 (FIG. 3). Further, the input selector 610 routes the selected parameters to specific feature extractor functions. The level function 622 is responsive to input parameters 603 rising above or falling below a predetermined threshold. The trend function 624 is responsive to input parameters 603 having a positive or negative rate of change above a predetermined absolute value over a predetermined time interval. The pattern function 625 is responsive to a predetermined parameter behavior over a predetermined time interval, such as threshold crossings per minute. The statistics function 627 determines parameter behavior over a predetermined sample size, such as mean, variance and correlation (with other parameters) to name a few. The morphology function 629 analyzes sensor waveform characteristics, such as plethysmograph dicrotic notch behavior, as one example. Other feature extraction functions not shown may include an FFT function, to determine frequency characteristics such as detection of sensor waveform modulation, among others. Using FIG. 4, described above, as a system logic block example, the input selector of the first system block 450 (FIG. 4) routes both the Sp02 parameter and the PR parameter to the trend 624 function, so that the system block output 452 (FIG. 4) is responsive to upward or downward trends of both Sp02 and pulse rate.
[0035] Further shown in FIG. 6, the feature analyzer 640 inputs the extracted features 607 so as to indicate the functioning of a physiological system, such as the circulatory, respiratory, neurological and other systems cited above. In an embodiment, the status output 609 is a list of status codes indicating a particular physiological system is okay or is in various degrees of distress. In an embodiment, the feature analyzer 640 accesses a look-up table 650 to generate the status codes according to extracted features. In an embodiment, the status codes are prioritized according to severity. In an embodiment, the look-up table 650 is uploaded from the controller 390 (FIG. 3) according to particular system logic block inputs and functions.
[0036] Also shown in FIG. 6, feature storage 630 stores traces of selected input parameters along with extracted parameter features. In this manner, each of the system blocks 600 builds a characterization of the patient with respect to the particular physiological system monitored. The sum of this patient characterization across all system blocks creates a "virtual patient" that can be tested by a simulator 870 (FIG. 8). [0037] During simulation, independent parameters 601 and, potentially, some sensor data are simulated and dependent parameters are "played-back" from feature storage 630 accordingly. The input selector 610 combines the simulated parameters 601 and the playback parameters 632 as inputs to the feature extractor 620. The feature analyzer 640 then responds to the simulated extracted features 607 so as to determine a corresponding system status 609 according to how the patient historically responds. Simulation is described in further detail with respect to FIG. 8, below.
[0038] FIG. 7 illustrates details of a diagnostic logic block 700 having system status 701 inputs and a wellness output 703. The diagnostic block 700 comprises an expert system 710, a diagnostic knowledgebase 720 and an output generator 730. The expert system 710 receives the system status 701 inputs, which are generated by the various system logic blocks 600 (FIG. 6). In an embodiment, system status 701 is input as status codes, as described above. The expert system 710 compiles the status codes and interprets those codes according to the diagnostic knowledge base 720 so as to generate a diagnostic output 712. In an embodiment, the diagnostic output 712 is one or more diagnostic codes, which are a compiled diagnostic interpretation of the system status codes. The output generator 730 determines the form and format of the wellness output 703 according to the diagnostic codes 712. In an embodiment, the wellness output 703 is any or all of a wellness index 732, diagnostic message(s) 734 and alarms and displays 738. In a predictive wellness mode, the predictive knowledge base 740 is used in lieu of the diagnostic knowledge base 720, as described with respect to FIG. 8, below.
[0039] In an embodiment, a wellness index 732 is a numerical, alphanumeric, color or other scale or combination of scales that embodies the sum total of a diagnostic output 712. For example, a wellness index of 10 indicates no significant problems or issues reported by any system block; a wellness index of 8 indicates a minor problem reported by at least one system block; a wellness index of 6 indicates a significant problem reported by at least one system block or minor problems reported by multiple system blocks; a wellness index of 4 indicates significant problems reported by multiple system blocks; and a wellness index of 2 indicates a major problem reported by at least one system block.
[0040] In an embodiment, a diagnostic message 734 is natural language text indicating a clinical decision in response to system status codes 701. For instance, a diagnostic message might state a potential cause for specific symptoms such as "patient displaying symptoms of apnea." In an embodiment, the diagnostic message 734 might also suggest a remedy for the symptoms or a possible course of treatment.
[0041] In an embodiment, alarms and displays 738 are any audible or visual indicators that alone or combined with other wellness state outputs 732, 734 function to communicate specifics regarding patient health or illness to a caregiver. Alarms include single frequency, mixed frequency and varying frequency sounds. Displays include text; bar, Cartesian, polar or 3-D coordinate graphs; and icons to name a few.
[0042] FIG. 8 illustrates a predictive wellness analyzer 800 having a monitor 810, one or more adjunct layers 830, 850 and a simulator 870. The monitor 810 has parameter logic blocks 804, system logic blocks 806, one or more diagnostic logic blocks 808, a controller 807 and a predictive wellness output 809. In an embodiment, the predictive wellness analyzer 800 utilizes the same hardware/software resources as the wellness analyzer 300 (FIG. 3). That is, in a predictive wellness mode, the controller 807 disables one or more of the sensor inputs 801 and/or parameter logic blocks 804 and enables the simulator 870. The controller 807 also configures the system logic blocks 806 to access stored features 630 (FIG. 6) and configures the diagnostic block 700 (FIG. 7) to utilize the predictive knowledgebase 740 (FIG. 7) in lieu of the diagnostic knowledgebase 720 (FIG. 7). So configured, the predictive wellness monitor 810 advantageously tests a virtual patient constructed from a history of patient monitoring and information provided by adjunct layers 830, 850 to assess patient near-term health risks and, perhaps, longer term susceptibility to disease and other health threats, as described above. [0043] As shown in FIG. 8, the simulator 870 synthesizes one or more sensor inputs 801 and/or one or more parameter 804 outputs. For example, the simulator 870 may generate a first parameter block 812 output according to a first probability distribution 813; disable a second parameter block 814; and generate an nth parameter block 818 output according to an nth probability distribution 819. In an example based upon FIG. 4, oxygen saturation 422 (FIG. 4) is varied, say, between 85-95% and pulse rate 424 (FIG. 4) is varied, say, between 100-150 bpm. Accordingly, respiration rate 432 (FIG. 4), temperature 416 (FIG. 4) and blood pressure 442 (FIG. 4) are allowed to vary as dependent parameters based upon the simulated blood pressure and respiration rate. That is, the non-simulated parameters vary according to the historical (stored) patient responses to like variations in oxygen saturation and pulse rate. In this manner, the likely response of a patient's respiratory system and hemodynamics to normal variations in oxygen delivery are measured.
[0044] Further shown in FIG. 8, the simulated parameters 813, 819 feed the system logic blocks 806. In the predictive mode, the controller 807 alters the system block 806 pathways so that the system status outputs 805 are responsive only to the simulated parameters 813, 819 and the stored features 632 (FIG. 6) recorded by the feature extractor 620 (FIG. 6) in the wellness mode. Hence, the extracted features of simulated (independent) parameters trigger the recall of dependent parameter features based upon monitored history. Accordingly, the system blocks 806 generate a system status 805 that reflects both the simulated parameter inputs 813, 819 and the historical patient response to those parameters.
[0045] Continuing the example based upon FIG. 4, as oxygen saturation and pulse rate are generated by the simulator 870, the feature storage of the system blocks 806, in "playback" mode, internally generates the corresponding "predicted" respiration rate, temperature and blood pressure parameters. The corresponding system status 805 is input to the diagnostic block 808, which generates a predictive wellness 809 output, which differs from the wellness output 703 (FIG. 7). In an embodiment, instead of a clinical diagnosis of an existing condition based upon the diagnostic knowledge base 720 (FIG. 7), predictive wellness indicates the likelihood of a near-term deterioration of an existing condition, such as a risk of infection, septic shock or an adverse drug reaction, to name a few, according to the predictive knowledge base 740 (FIG. 7).
[0046] A wellness analysis system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.

Claims

WHAT IS CLAIMED IS:
1. A wellness analyzer comprising:
a plurality of sensors that generate real-time physiological data from a plurality of sites on a patient;
a plurality of databases that provide non-real-time information relevant to a medical-related assessment of a patient;
a wellness monitor that, in a diagnostic mode, inputs the sensor data and generates a wellness output;
a plurality of adjunct layers that input the database information output supplemental information to the wellness monitor;
a plurality of adjunct layer logic blocks that process the database information so as to generate the supplemental information; and
a plurality of wellness monitor logic blocks that process the sensor data and supplemental information so as to generate the wellness output.
2. The wellness analyzer according to claim 1 further comprising:
a plurality of parameter blocks organized as a first level of the wellness monitor logic blocks so as to input the sensor data and generate a plurality of parameters as outputs;
a signal extraction function of the parameter blocks that extracts physiological signals from the sensor data; and
a signal analysis function of the parameter blocks that derive the parameters from the physiological signals.
3. The wellness analyzer according to claim 2 further comprising:
a plurality of system blocks organized as a second level of the wellness monitor logic blocks so as to input the parameters and generate a plurality of system status outputs; and
each system status output indicating the physiological condition of a biological system including any of patient's circulatory, respiratory, neurological, gastrointestinal, urinary, immune, musculoskeletal, endocrine and reproductive systems.
4. The wellness analyzer according to claim 3 further comprising at least one diagnostic block organized as a third level of the wellness monitor logic blocks so as to input the system statuses and generate the wellness output.
5. The wellness analyzer according to claim 5 further comprising:
a simulator that generates at least one simulated parameter output;
the system blocks and the at least one diagnostic block, with the wellness monitor in a simulation mode, responsive to the at least one simulated parameter so as to generate a predictive wellness output.
6. The wellness analyzer according to claim 5 wherein each of the system blocks comprises:
a feature extraction function responsive to the parameters so as to identify at least one of parameter levels, trends, patterns and statistics as extracted features; a feature memory that stores the extracted features in the diagnostic mode; and
a feature playback that recalls the extracted features in the simulation mode.
7. The wellness analyzer according to claim 6 wherein the at least one diagnostic blocks comprises:
a diagnostic knowledge base that stores diagnostic codes;
a predictive knowledge base that stores predictive codes; and
an expert system in communications with the diagnostic knowledge base and the predictive knowledge base;
the expert system responsive to system status outputs so as to generate the wellness output based upon the diagnostic knowledge base in the diagnostic mode; and
the expert system responsive to the system status outputs so as to generate the predictive wellness output based upon the predictive knowledge base in the simulation mode.
8. A wellness analysis method comprising:
inputting physiological sensor data to a monitor layer;
deriving a plurality of physiological parameters based upon the sensor data; outputting a plurality of physiological system statuses based at least in part upon the parameters; and
generating a wellness output based upon the system statuses.
9. The wellness analysis method according to claim 8 wherein generating comprises:
extracting a plurality of features from the parameters;
analyzing the features so as to determine the system statuses and
storing the features in a memory.
10. The wellness analysis method according to claim 9 wherein extracting comprises
routing the parameters to selected feature extractor functions; and
performing the extractor functions on the parameters;
the functions including at least level, trend and statistical calculations.
11. The wellness analysis method according to claim 10 wherein analyzing comprises reading a plurality of system status codes from a look-up table according to the extracted features.
12. The wellness analysis method according to claim 11 wherein generating a wellness state comprises:
providing an expert system in communications with a diagnostic knowledge base;
interpreting the system status codes with the expert system so as to generate a diagnostic code; and
creating at least one of a wellness index, diagnostic message and alarm based upon the diagnostic code.
13. The wellness analysis method according to claim 12 further comprising:
inputting non-real-time data to an adjunct layer;
deriving an adjunct layer output based upon the non-real-time data; and generating at least one of the system statuses based at least in part upon the adjunct layer output.
14. The wellness analysis method according to claim 13 further comprising:
simulating independent parameter;
playing back dependent parameters according to the stored features; and determining a predictive wellness output in response to the simulated and the played-back parameters.
15. A wellness analyzer comprising:
a monitor layer means for generating a wellness index responsive to real-time sensor data; and
an adjunct layer means coupled to the monitor layer means for supplementing the monitor layer wellness index according to non-real-time data.
16. The wellness analyzer according to claim 15 wherein the monitor layer comprises a parameter block means for extracting a signal from sensor data and analyzing the signal to generate a physiological parameter.
17. The wellness analyzer according to claim 16 wherein the monitor layer further comprises a system block means for extracting a feature from the physiological parameter and analyzing the feature to generate a physiological system status.
18. The wellness analyzer according to claim 17 wherein the monitor layer further comprises a diagnostic block means for compiling the system status to generate a diagnostic output.
19. The wellness analyzer according to claim 18 further comprising a feature storage means for storing extracted features in a diagnostic mode and replaying those features in a simulation mode.
20. The wellness analyzer according to claim 19 further comprising:
a simulator means for simulating an independent parameter in the simulation mode; and
a modified system block means for generating a dependent parameter in the simulation mode in response to the independent parameter and for extracting simulated features from the independent and dependent parameters so as to generate a simulated system status.
PCT/US2011/021745 2010-01-19 2011-01-19 Wellness analysis system WO2011091059A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011100282T DE112011100282T5 (en) 2010-01-19 2011-01-19 Wellness assessment system
GB1212698.3A GB2490817A (en) 2010-01-19 2011-01-19 Wellness analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29646710P 2010-01-19 2010-01-19
US61/296,467 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011091059A1 true WO2011091059A1 (en) 2011-07-28

Family

ID=43733353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/021745 WO2011091059A1 (en) 2010-01-19 2011-01-19 Wellness analysis system

Country Status (4)

Country Link
US (2) US11289199B2 (en)
DE (1) DE112011100282T5 (en)
GB (1) GB2490817A (en)
WO (1) WO2011091059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289199B2 (en) 2010-01-19 2022-03-29 Masimo Corporation Wellness analysis system

Families Citing this family (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
EP2319398B1 (en) 1998-06-03 2019-01-16 Masimo Corporation Stereo pulse oximeter
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
DE60139128D1 (en) 2000-08-18 2009-08-13 Masimo Corp PULSE OXIMETER WITH TWO OPERATING MODES
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
EP1722676B1 (en) 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US8190223B2 (en) 2005-03-01 2012-05-29 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US8280473B2 (en) 2006-10-12 2012-10-02 Masino Corporation, Inc. Perfusion index smoother
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
WO2008073855A2 (en) 2006-12-09 2008-06-19 Masimo Corporation Plethysmograph variability processor
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
WO2009049101A1 (en) 2007-10-12 2009-04-16 Masimo Corporation Connector assembly
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
WO2009111542A2 (en) 2008-03-04 2009-09-11 Glucolight Corporation Methods and systems for analyte level estimation in optical coherence tomography
JP5575752B2 (en) 2008-05-02 2014-08-20 マシモ コーポレイション Monitor configuration system
JP2011519684A (en) 2008-05-05 2011-07-14 マシモ コーポレイション Pulse oximeter system with electrical disconnect circuit
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
SE532941C2 (en) 2008-09-15 2010-05-18 Phasein Ab Gas sampling line for breathing gases
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
WO2010102069A2 (en) 2009-03-04 2010-09-10 Masimo Corporation Medical monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
WO2011035070A1 (en) 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US20110082711A1 (en) 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US8790268B2 (en) 2009-10-15 2014-07-29 Masimo Corporation Bidirectional physiological information display
US8690799B2 (en) 2009-10-15 2014-04-08 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
WO2011047216A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Physiological acoustic monitoring system
US10463340B2 (en) 2009-10-15 2019-11-05 Masimo Corporation Acoustic respiratory monitoring systems and methods
US9724016B1 (en) 2009-10-16 2017-08-08 Masimo Corp. Respiration processor
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (en) 2009-12-04 2013-03-28 Masimo Corporation Calibration for multi-level physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
JP2013521054A (en) 2010-03-01 2013-06-10 マシモ コーポレイション Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
WO2012027613A1 (en) 2010-08-26 2012-03-01 Masimo Corporation Blood pressure measurement system
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
JP5710767B2 (en) 2010-09-28 2015-04-30 マシモ コーポレイション Depth of consciousness monitor including oximeter
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
US10332630B2 (en) 2011-02-13 2019-06-25 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
EP3584799B1 (en) 2011-10-13 2022-11-09 Masimo Corporation Medical monitoring hub
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
WO2013056141A1 (en) 2011-10-13 2013-04-18 Masimo Corporation Physiological acoustic monitoring system
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
EP2845086B1 (en) 2012-03-25 2021-12-22 Masimo Corporation Physiological monitor touchscreen interface
JP6490577B2 (en) 2012-04-17 2019-03-27 マシモ・コーポレイション How to operate a pulse oximeter device
WO2013184965A1 (en) 2012-06-07 2013-12-12 Masimo Corporation Depth of consciousness monitor
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
CN103778171A (en) * 2012-10-24 2014-05-07 I-昂索夫特有限公司 System for health media recommendation based on wellbeing-index
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US9965946B2 (en) 2013-03-13 2018-05-08 Masimo Corporation Systems and methods for monitoring a patient health network
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
EP3054849B1 (en) 2013-10-07 2022-03-16 Masimo Corporation Regional oximetry sensor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10828007B1 (en) 2013-10-11 2020-11-10 Masimo Corporation Acoustic sensor with attachment portion
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US10532174B2 (en) 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
WO2015143085A1 (en) * 2014-03-18 2015-09-24 Zhang Jack Ke Techniques for wellness monitoring and emergency alert messaging
US8952818B1 (en) 2014-03-18 2015-02-10 Jack Ke Zhang Fall detection apparatus with floor and surface elevation learning capabilites
US9293023B2 (en) 2014-03-18 2016-03-22 Jack Ke Zhang Techniques for emergency detection and emergency alert messaging
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
US9197082B1 (en) 2014-12-09 2015-11-24 Jack Ke Zhang Techniques for power source management using a wrist-worn device
AU2016209104B2 (en) 2015-01-23 2020-04-30 Masimo Sweden Ab Nasal/oral cannula system and manufacturing
CN107431301B (en) 2015-02-06 2021-03-30 迈心诺公司 Connector assembly with retractable needle for use with medical sensors
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
EP3253289B1 (en) 2015-02-06 2020-08-05 Masimo Corporation Fold flex circuit for optical probes
US9300925B1 (en) 2015-05-04 2016-03-29 Jack Ke Zhang Managing multi-user access to controlled locations in a facility
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
US11653862B2 (en) 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US10448871B2 (en) 2015-07-02 2019-10-22 Masimo Corporation Advanced pulse oximetry sensor
US10991135B2 (en) 2015-08-11 2021-04-27 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
CN108348162B (en) 2015-08-31 2021-07-23 梅西莫股份有限公司 Wireless patient monitoring system and method
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
US10608817B2 (en) 2016-07-06 2020-03-31 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
US10750984B2 (en) 2016-12-22 2020-08-25 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
EP3585254B1 (en) 2017-02-24 2024-03-20 Masimo Corporation Medical device cable and method of sharing data between connected medical devices
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
WO2018156809A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Augmented reality system for displaying patient data
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
EP3592231A1 (en) 2017-03-10 2020-01-15 Masimo Corporation Pneumonia screener
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
US10856750B2 (en) 2017-04-28 2020-12-08 Masimo Corporation Spot check measurement system
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
JP7159208B2 (en) 2017-05-08 2022-10-24 マシモ・コーポレイション A system for pairing a medical system with a network controller by using a dongle
WO2019014629A1 (en) 2017-07-13 2019-01-17 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
USD906970S1 (en) 2017-08-15 2021-01-05 Masimo Corporation Connector
US10637181B2 (en) 2017-08-15 2020-04-28 Masimo Corporation Water resistant connector for noninvasive patient monitor
USD890708S1 (en) 2017-08-15 2020-07-21 Masimo Corporation Connector
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
JP7282085B2 (en) 2017-10-31 2023-05-26 マシモ・コーポレイション System for displaying oxygen status indicators
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US10932729B2 (en) 2018-06-06 2021-03-02 Masimo Corporation Opioid overdose monitoring
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
CA3115776A1 (en) 2018-10-11 2020-04-16 Masimo Corporation Patient connector assembly with vertical detents
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
EP3864869A1 (en) 2018-10-12 2021-08-18 Masimo Corporation System for transmission of sensor data using dual communication protocol
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
US11154240B2 (en) 2019-04-02 2021-10-26 Kpn Innovations Llc Methods and systems for utilizing diagnostics for informed vibrant constitutional guidance
JP2022529948A (en) 2019-04-17 2022-06-27 マシモ・コーポレイション Patient monitoring systems, equipment, and methods
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
KR20220083771A (en) 2019-10-18 2022-06-20 마시모 코오퍼레이션 Display layouts and interactive objects for patient monitoring
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
CN115176155A (en) 2019-10-25 2022-10-11 塞卡科实验室有限公司 Indicator compounds, devices including indicator compounds, and methods of making and using the same
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
EP4104037A1 (en) 2020-02-13 2022-12-21 Masimo Corporation System and method for monitoring clinical activities
EP4120901A1 (en) 2020-03-20 2023-01-25 Masimo Corporation Wearable device for noninvasive body temperature measurement
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
US11289206B2 (en) 2020-06-02 2022-03-29 Kpn Innovations, Llc. Artificial intelligence methods and systems for constitutional analysis using objective functions
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
US11211158B1 (en) 2020-08-31 2021-12-28 Kpn Innovations, Llc. System and method for representing an arranged list of provider aliment possibilities
USD946598S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946597S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946596S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5769785A (en) 1991-03-07 1998-06-23 Masimo Corporation Signal processing apparatus and method
US5782757A (en) 1991-03-21 1998-07-21 Masimo Corporation Low-noise optical probes
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6157850A (en) 1991-03-07 2000-12-05 Masimo Corporation Signal processing apparatus
US6650917B2 (en) 1991-03-07 2003-11-18 Masimo Corporation Signal processing apparatus
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US20040230105A1 (en) * 2003-05-15 2004-11-18 Widemed Ltd. Adaptive prediction of changes of physiological/pathological states using processing of biomedical signals
WO2006094107A1 (en) * 2005-03-01 2006-09-08 Masimo Laboratories, Inc. Physiological parameter confidence measure
WO2007106455A2 (en) * 2006-03-10 2007-09-20 Optical Sensors Incorporated Cardiography system and method using automated recognition of hemodynamic parameters and waveform attributes
US20080108884A1 (en) 2006-09-22 2008-05-08 Kiani Massi E Modular patient monitor
US20080146893A1 (en) * 2006-12-13 2008-06-19 Advanced Brain Monitoring, Inc. Apnea risk evaluation system - automated prediction of risk for perioperative complications
WO2009156936A2 (en) * 2008-06-27 2009-12-30 Koninklijke Philips Electronics N.V. System and method for determining a personal health related risk

Family Cites Families (524)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US791086A (en) * 1903-04-30 1905-05-30 Electric And Train Lighting Syndicate Ltd Self-alining bearing.
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US4960128A (en) 1988-11-14 1990-10-02 Paramed Technology Incorporated Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
US5163438A (en) 1988-11-14 1992-11-17 Paramed Technology Incorporated Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
GB9011887D0 (en) 1990-05-26 1990-07-18 Le Fit Ltd Pulse responsive device
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US6541756B2 (en) * 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US5377676A (en) * 1991-04-03 1995-01-03 Cedars-Sinai Medical Center Method for determining the biodistribution of substances using fluorescence spectroscopy
AU667199B2 (en) * 1991-11-08 1996-03-14 Physiometrix, Inc. EEG headpiece with disposable electrodes and apparatus and system and method for use therewith
US5956501A (en) * 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
JPH08503867A (en) * 1992-12-07 1996-04-30 クラテクノロジーズ インク Electronic stethoscope
US5341805A (en) 1993-04-06 1994-08-30 Cedars-Sinai Medical Center Glucose fluorescence monitor and method
US5494043A (en) * 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
USD353196S (en) 1993-05-28 1994-12-06 Gary Savage Stethoscope head
USD353195S (en) 1993-05-28 1994-12-06 Gary Savage Electronic stethoscope housing
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5456252A (en) 1993-09-30 1995-10-10 Cedars-Sinai Medical Center Induced fluorescence spectroscopy blood perfusion and pH monitor and method
US7376453B1 (en) 1993-10-06 2008-05-20 Masimo Corporation Signal processing apparatus
US5517405A (en) * 1993-10-14 1996-05-14 Aetna Life And Casualty Company Expert system for providing interactive assistance in solving problems such as health care management
US5533511A (en) 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
USD359546S (en) 1994-01-27 1995-06-20 The Ratechnologies Inc. Housing for a dental unit disinfecting device
US5436499A (en) 1994-03-11 1995-07-25 Spire Corporation High performance GaAs devices and method
US5810734A (en) * 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5791347A (en) 1994-04-15 1998-08-11 Vital Insite, Inc. Motion insensitive pulse detector
US5904654A (en) * 1995-10-20 1999-05-18 Vital Insite, Inc. Exciter-detector unit for measuring physiological parameters
US5590649A (en) * 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US5785659A (en) 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
US6371921B1 (en) * 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
USD363120S (en) 1994-04-21 1995-10-10 Gary Savage Stethoscope ear tip
USD362063S (en) 1994-04-21 1995-09-05 Gary Savage Stethoscope headset
USD361840S (en) 1994-04-21 1995-08-29 Gary Savage Stethoscope head
US5561275A (en) 1994-04-28 1996-10-01 Delstar Services Informatiques (1993) Inc. Headset for electronic stethoscope
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
EP1905352B1 (en) 1994-10-07 2014-07-16 Masimo Corporation Signal processing method
US5562002A (en) 1995-02-03 1996-10-08 Sensidyne Inc. Positive displacement piston flow meter with damping assembly
US5743262A (en) * 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US6517283B2 (en) 2001-01-16 2003-02-11 Donald Edward Coffey Cascading chute drainage system
SG38866A1 (en) 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US5737581A (en) * 1995-08-30 1998-04-07 Keane; John A. Quality system implementation simulator
US6010937A (en) 1995-09-05 2000-01-04 Spire Corporation Reduction of dislocations in a heteroepitaxial semiconductor structure
USD393830S (en) * 1995-10-16 1998-04-28 Masimo Corporation Patient cable connector
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US5726440A (en) 1995-11-06 1998-03-10 Spire Corporation Wavelength selective photodetector
US6232609B1 (en) 1995-12-01 2001-05-15 Cedars-Sinai Medical Center Glucose monitoring apparatus and method using laser-induced emission spectroscopy
US5747806A (en) 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US6040578A (en) 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US6253097B1 (en) 1996-03-06 2001-06-26 Datex-Ohmeda, Inc. Noninvasive medical monitoring instrument using surface emitting laser devices
US5890929A (en) * 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US6066204A (en) 1997-01-08 2000-05-23 Bandwidth Semiconductor, Llc High pressure MOCVD reactor system
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US6124597A (en) 1997-07-07 2000-09-26 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
US6415167B1 (en) 2000-05-02 2002-07-02 Instrumentation Metrics, Inc. Fiber optic probe placement guide
WO2002065090A2 (en) 2001-01-26 2002-08-22 Sensys Medical Noninvasive measurement of glucose through the optical properties of tissue
US6115673A (en) 1997-08-14 2000-09-05 Instrumentation Metrics, Inc. Method and apparatus for generating basis sets for use in spectroscopic analysis
US6255708B1 (en) 1997-10-10 2001-07-03 Rengarajan Sudharsanan Semiconductor P-I-N detector
US5987343A (en) 1997-11-07 1999-11-16 Datascope Investment Corp. Method for storing pulse oximetry sensor characteristics
US6184521B1 (en) * 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6241683B1 (en) 1998-02-20 2001-06-05 INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) Phonospirometry for non-invasive monitoring of respiration
US6525386B1 (en) * 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US6505059B1 (en) * 1998-04-06 2003-01-07 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US6728560B2 (en) * 1998-04-06 2004-04-27 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US7899518B2 (en) * 1998-04-06 2011-03-01 Masimo Laboratories, Inc. Non-invasive tissue glucose level monitoring
US6721582B2 (en) * 1999-04-06 2004-04-13 Argose, Inc. Non-invasive tissue glucose level monitoring
EP2319398B1 (en) 1998-06-03 2019-01-16 Masimo Corporation Stereo pulse oximeter
US6128521A (en) 1998-07-10 2000-10-03 Physiometrix, Inc. Self adjusting headgear appliance using reservoir electrodes
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6129675A (en) 1998-09-11 2000-10-10 Jay; Gregory D. Device and method for measuring pulsus paradoxus
US6519487B1 (en) 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6343224B1 (en) * 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6684091B2 (en) * 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6280381B1 (en) 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
EP1148809B1 (en) 1999-01-25 2007-11-14 Masimo Corporation Universal/upgrading pulse oximeter
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US7134996B2 (en) * 1999-06-03 2006-11-14 Cardiac Intelligence Corporation System and method for collection and analysis of patient information for automated remote patient care
US6526300B1 (en) * 1999-06-18 2003-02-25 Masimo Corporation Pulse oximeter probe-off detection system
US20030018243A1 (en) 1999-07-07 2003-01-23 Gerhardt Thomas J. Selectively plated sensor
US6301493B1 (en) 1999-07-10 2001-10-09 Physiometrix, Inc. Reservoir electrodes for electroencephalograph headgear appliance
USRE41333E1 (en) 1999-07-22 2010-05-11 Sensys Medical, Inc. Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US6515273B2 (en) * 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US6411373B1 (en) 1999-10-08 2002-06-25 Instrumentation Metrics, Inc. Fiber optic illumination and detection patterns, shapes, and locations for use in spectroscopic analysis
US6943348B1 (en) 1999-10-19 2005-09-13 Masimo Corporation System for detecting injection holding material
ATE326900T1 (en) 1999-10-27 2006-06-15 Hospira Sedation Inc MODULE FOR OBTAINING ELECTROENCEPHALOGRAPHY SIGNALS FROM A PATIENT
US6317627B1 (en) 1999-11-02 2001-11-13 Physiometrix, Inc. Anesthesia monitoring system based on electroencephalographic signals
WO2001033201A1 (en) 1999-11-03 2001-05-10 Argose, Inc. Asynchronous fluorescence scan
US6542764B1 (en) * 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US6587196B1 (en) 2000-01-26 2003-07-01 Sensys Medical, Inc. Oscillating mechanism driven monochromator
CA2400305A1 (en) 2000-02-18 2001-08-23 Argose,Inc. Generation of spatially-averaged excitation-emission map in heterogeneous tissue
EP1257195A2 (en) 2000-02-18 2002-11-20 Argose, Inc. Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
AU2001237067A1 (en) 2000-02-18 2001-08-27 Argose, Inc. Reduction of inter-subject variation via transfer standardization
US6587199B1 (en) 2000-02-25 2003-07-01 Sensys Medical, Inc. Embedded data acquisition and control system for non-invasive glucose prediction instrument
US7519406B2 (en) 2004-04-28 2009-04-14 Sensys Medical, Inc. Noninvasive analyzer sample probe interface method and apparatus
US7606608B2 (en) 2000-05-02 2009-10-20 Sensys Medical, Inc. Optical sampling interface system for in-vivo measurement of tissue
US6534012B1 (en) 2000-08-02 2003-03-18 Sensys Medical, Inc. Apparatus and method for reproducibly modifying localized absorption and scattering coefficients at a tissue measurement site during optical sampling
AU2001261618A1 (en) 2000-05-18 2001-11-26 Argose, Inc. Pre-and post-processing of spectral data for calibration using multivariate analysis techniques
US7395158B2 (en) 2000-05-30 2008-07-01 Sensys Medical, Inc. Method of screening for disorders of glucose metabolism
US7801591B1 (en) * 2000-05-30 2010-09-21 Vladimir Shusterman Digital healthcare information management
US6487429B2 (en) 2000-05-30 2002-11-26 Sensys Medical, Inc. Use of targeted glycemic profiles in the calibration of a noninvasive blood glucose monitor
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
US6738652B2 (en) 2000-06-15 2004-05-18 Sensys Medical, Inc. Classification and screening of test subjects according to optical thickness of skin
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
US6697656B1 (en) * 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
DE60139128D1 (en) 2000-08-18 2009-08-13 Masimo Corp PULSE OXIMETER WITH TWO OPERATING MODES
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
US6368283B1 (en) * 2000-09-08 2002-04-09 Institut De Recherches Cliniques De Montreal Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient
US6816241B2 (en) 2000-09-26 2004-11-09 Sensys Medical, Inc. LED light source-based instrument for non-invasive blood analyte determination
US6640117B2 (en) 2000-09-26 2003-10-28 Sensys Medical, Inc. Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination
AU2002230429A1 (en) 2000-11-13 2002-05-21 Argose, Inc. Reduction of spectral site to site variation
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
AU2002251877A1 (en) 2001-02-06 2002-08-19 Argose, Inc. Layered calibration standard for tissue sampling
US6985764B2 (en) * 2001-05-03 2006-01-10 Masimo Corporation Flex circuit shielded optical sensor
US6850787B2 (en) * 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US20030013975A1 (en) 2001-07-12 2003-01-16 Kiani Massi E. Method of selling a continuous mode blood pressure monitor
US6595316B2 (en) 2001-07-18 2003-07-22 Andromed, Inc. Tension-adjustable mechanism for stethoscope earpieces
US6876931B2 (en) 2001-08-03 2005-04-05 Sensys Medical Inc. Automatic process for sample selection during multivariate calibration
US6788965B2 (en) 2001-08-03 2004-09-07 Sensys Medical, Inc. Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
US6635559B2 (en) 2001-09-06 2003-10-21 Spire Corporation Formation of insulating aluminum oxide in semiconductor substrates
WO2003023356A2 (en) 2001-09-07 2003-03-20 Argose, Inc. Portable non-invasive glucose monitor
US6773397B2 (en) * 2001-10-11 2004-08-10 Draeger Medical Systems, Inc. System for processing signal data representing physiological parameters
CA2496143A1 (en) * 2001-10-12 2003-04-17 University Of Utah Research Foundation Anesthesia drug monitor
US8738392B2 (en) * 2001-10-24 2014-05-27 Inner Reach Corporation Health information gathering system
US20030140063A1 (en) * 2001-12-17 2003-07-24 Pizzorno Joseph E. System and method for providing health care advice by diagnosing system function
US20030212312A1 (en) 2002-01-07 2003-11-13 Coffin James P. Low noise patient cable
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US6822564B2 (en) * 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US7015451B2 (en) * 2002-01-25 2006-03-21 Masimo Corporation Power supply rail controller
AU2003217253A1 (en) * 2002-01-25 2003-09-02 Intellipatch, Inc. Evaluation of a patient and prediction of chronic symptoms
US20030156288A1 (en) 2002-02-20 2003-08-21 Barnum P. T. Sensor band for aligning an emitter and a detector
WO2003071939A1 (en) 2002-02-22 2003-09-04 Masimo Corporation Active pulse spectraphotometry
US7509494B2 (en) * 2002-03-01 2009-03-24 Masimo Corporation Interface cable
US20040122487A1 (en) * 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with composite parameter indices
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
EP1499231A4 (en) 2002-03-08 2007-09-26 Sensys Medical Inc Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US8718738B2 (en) 2002-03-08 2014-05-06 Glt Acquisition Corp. Method and apparatus for coupling a sample probe with a sample site
US7697966B2 (en) 2002-03-08 2010-04-13 Sensys Medical, Inc. Noninvasive targeting system method and apparatus
US8504128B2 (en) 2002-03-08 2013-08-06 Glt Acquisition Corp. Method and apparatus for coupling a channeled sample probe to tissue
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
GB2389290B (en) * 2002-05-31 2005-11-23 Qinetiq Ltd Data analysis system
US6661161B1 (en) 2002-06-27 2003-12-09 Andromed Inc. Piezoelectric biological sound monitor with printed circuit board
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
US7341559B2 (en) * 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7274955B2 (en) 2002-09-25 2007-09-25 Masimo Corporation Parameter compensated pulse oximeter
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
US20040106163A1 (en) 2002-11-12 2004-06-03 Workman Jerome James Non-invasive measurement of analytes
AU2003287735A1 (en) 2002-11-12 2004-06-03 Argose, Inc. Non-invasive measurement of analytes
WO2004047631A2 (en) * 2002-11-22 2004-06-10 Masimo Laboratories, Inc. Blood parameter measurement system
US6956649B2 (en) 2002-11-26 2005-10-18 Sensys Medical, Inc. Spectroscopic system and method using a ceramic optical reference
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US7919713B2 (en) * 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7620674B2 (en) 2003-03-07 2009-11-17 Sensys Medical, Inc. Method and apparatus for enhanced estimation of an analyte property through multiple region transformation
US7640140B2 (en) 2003-03-07 2009-12-29 Sensys Medical, Inc. Method of processing noninvasive spectra
US20050060194A1 (en) * 2003-04-04 2005-03-17 Brown Stephen J. Method and system for monitoring health of an individual
SE525095C2 (en) 2003-04-25 2004-11-30 Phasein Ab Window for IR gas analyzer and method for making such window
US20050055276A1 (en) 2003-06-26 2005-03-10 Kiani Massi E. Sensor incentive method
US7003338B2 (en) * 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
WO2005007215A2 (en) * 2003-07-09 2005-01-27 Glucolight Corporation Method and apparatus for tissue oximetry
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US8346482B2 (en) * 2003-08-22 2013-01-01 Fernandez Dennis S Integrated biosensor and simulation system for diagnosis and therapy
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US7483729B2 (en) * 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7373193B2 (en) 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
CA2842420C (en) * 2003-11-18 2016-10-11 Adidas Ag Method and system for processing data from ambulatory physiological monitoring
WO2005065241A2 (en) 2003-12-24 2005-07-21 Argose, Inc. Smmr (small molecule metabolite reporters) for use as in vivo glucose biosensors
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7510849B2 (en) * 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
US7371981B2 (en) 2004-02-20 2008-05-13 Masimo Corporation Connector switch
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
EP1722676B1 (en) 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
WO2005089640A2 (en) 2004-03-19 2005-09-29 Masimo Corporation Low power and personal pulse oximetry systems
US7292883B2 (en) 2004-03-31 2007-11-06 Masimo Corporation Physiological assessment system
CA2464029A1 (en) 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
CA2464634A1 (en) * 2004-04-16 2005-10-16 Andromed Inc. Pap estimator
US8868147B2 (en) 2004-04-28 2014-10-21 Glt Acquisition Corp. Method and apparatus for controlling positioning of a noninvasive analyzer sample probe
US9341565B2 (en) 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US7976472B2 (en) 2004-09-07 2011-07-12 Masimo Corporation Noninvasive hypovolemia monitor
WO2006039350A1 (en) 2004-09-29 2006-04-13 Masimo Corporation Multiple key position plug
USD526719S1 (en) 2004-11-19 2006-08-15 Sensys Medical, Inc. Noninvasive glucose analyzer
USD529616S1 (en) 2004-11-19 2006-10-03 Sensys Medical, Inc. Noninvasive glucose analyzer
US7514725B2 (en) 2004-11-30 2009-04-07 Spire Corporation Nanophotovoltaic devices
USD554263S1 (en) 2005-02-18 2007-10-30 Masimo Corporation Portable patient monitor
US20060189871A1 (en) 2005-02-18 2006-08-24 Ammar Al-Ali Portable patient monitor
USD566282S1 (en) * 2005-02-18 2008-04-08 Masimo Corporation Stand for a portable patient monitor
US7937129B2 (en) 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US7593230B2 (en) 2005-05-05 2009-09-22 Sensys Medical, Inc. Apparatus for absorbing and dissipating excess heat generated by a system
US7698105B2 (en) 2005-05-23 2010-04-13 Sensys Medical, Inc. Method and apparatus for improving performance of noninvasive analyte property estimation
US20100270257A1 (en) 2005-07-13 2010-10-28 Vitality, Inc. Medicine Bottle Cap With Electronic Embedded Curved Display
US20070073116A1 (en) 2005-08-17 2007-03-29 Kiani Massi E Patient identification using physiological sensor
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7530942B1 (en) 2005-10-18 2009-05-12 Masimo Corporation Remote sensing infant warmer
EP2374407B1 (en) 2005-11-29 2021-05-05 Masimo Corporation Optical sensor including disposable and reusable elements
WO2007065015A2 (en) 2005-12-03 2007-06-07 Masimo Corporation Physiological alarm notification system
CN101330867A (en) 2005-12-19 2008-12-24 皇家飞利浦电子股份有限公司 Hierarchical real-time patient state indices for patient monitoring
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US20070244377A1 (en) 2006-03-14 2007-10-18 Cozad Jenny L Pulse oximeter sleeve
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US8998809B2 (en) 2006-05-15 2015-04-07 Cercacor Laboratories, Inc. Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
US9176141B2 (en) 2006-05-15 2015-11-03 Cercacor Laboratories, Inc. Physiological monitor calibration system
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US8028701B2 (en) 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
USD592507S1 (en) 2006-07-06 2009-05-19 Vitality, Inc. Top for medicine container
US20080064965A1 (en) 2006-09-08 2008-03-13 Jay Gregory D Devices and methods for measuring pulsus paradoxus
USD587657S1 (en) * 2007-10-12 2009-03-03 Masimo Corporation Connector assembly
US8315683B2 (en) 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
USD614305S1 (en) * 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
USD609193S1 (en) * 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US20080094228A1 (en) 2006-10-12 2008-04-24 Welch James P Patient monitor using radio frequency identification tags
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US8280473B2 (en) 2006-10-12 2012-10-02 Masino Corporation, Inc. Perfusion index smoother
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
WO2008073855A2 (en) 2006-12-09 2008-06-19 Masimo Corporation Plethysmograph variability processor
US7791155B2 (en) 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US20080319796A1 (en) * 2007-02-16 2008-12-25 Stivoric John M Medical applications of lifeotypes
US20090093687A1 (en) 2007-03-08 2009-04-09 Telfort Valery G Systems and methods for determining a physiological condition using an acoustic monitor
US20080221418A1 (en) 2007-03-09 2008-09-11 Masimo Corporation Noninvasive multi-parameter patient monitor
WO2008118993A1 (en) 2007-03-27 2008-10-02 Masimo Laboratories, Inc. Multiple wavelength optical sensor
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US8764671B2 (en) 2007-06-28 2014-07-01 Masimo Corporation Disposable active pulse sensor
US8068104B2 (en) * 2007-06-29 2011-11-29 Carlyle Rampersad Totally integrated intelligent dynamic systems display
US20090036759A1 (en) 2007-08-01 2009-02-05 Ault Timothy E Collapsible noninvasive analyzer method and apparatus
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
US8355766B2 (en) 2007-10-12 2013-01-15 Masimo Corporation Ceramic emitter substrate
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
JP2011501274A (en) 2007-10-12 2011-01-06 マシモ コーポレイション System and method for storing, analyzing and retrieving medical data
WO2009049101A1 (en) 2007-10-12 2009-04-16 Masimo Corporation Connector assembly
US20090095926A1 (en) 2007-10-12 2009-04-16 Macneish Iii William Jack Physiological parameter detector
US20090247984A1 (en) 2007-10-24 2009-10-01 Masimo Laboratories, Inc. Use of microneedles for small molecule metabolite reporter delivery
EP3493216A1 (en) * 2007-11-13 2019-06-05 Oridion Medical 1987 Ltd. Medical system, apparatus and method
CN101903884B (en) 2007-12-18 2017-05-17 皇家飞利浦电子股份有限公司 Integration of physiological models in medical decision support systems
WO2009111542A2 (en) 2008-03-04 2009-09-11 Glucolight Corporation Methods and systems for analyte level estimation in optical coherence tomography
JP5575752B2 (en) 2008-05-02 2014-08-20 マシモ コーポレイション Monitor configuration system
KR20110009667A (en) 2008-05-02 2011-01-28 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 External ear-placed non-invasive physiological sensor
JP2011519684A (en) 2008-05-05 2011-07-14 マシモ コーポレイション Pulse oximeter system with electrical disconnect circuit
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
USD606659S1 (en) 2008-08-25 2009-12-22 Masimo Laboratories, Inc. Patient monitor
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8630691B2 (en) 2008-08-04 2014-01-14 Cercacor Laboratories, Inc. Multi-stream sensor front ends for noninvasive measurement of blood constituents
SE532941C2 (en) 2008-09-15 2010-05-18 Phasein Ab Gas sampling line for breathing gases
WO2010031070A2 (en) 2008-09-15 2010-03-18 Masimo Corporation Patient monitor including multi-parameter graphical display
US20100099964A1 (en) 2008-09-15 2010-04-22 Masimo Corporation Hemoglobin monitor
CN102246197A (en) * 2008-10-10 2011-11-16 心血管疾病诊断技术公司 Automated management of medical data using expert knowledge and applied complexity science for risk assessment and diagnoses
US8401602B2 (en) 2008-10-13 2013-03-19 Masimo Corporation Secondary-emitter sensor position indicator
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
WO2010053743A1 (en) * 2008-10-29 2010-05-14 The Regents Of The University Of Colorado Long term active learning from large continually changing data sets
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
WO2010102069A2 (en) 2009-03-04 2010-09-10 Masimo Corporation Medical monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US20100234718A1 (en) 2009-03-12 2010-09-16 Anand Sampath Open architecture medical communication system
US8897847B2 (en) 2009-03-23 2014-11-25 Masimo Corporation Digit gauge for noninvasive optical sensor
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US8418524B2 (en) 2009-06-12 2013-04-16 Masimo Corporation Non-invasive sensor calibration device
US8670811B2 (en) 2009-06-30 2014-03-11 Masimo Corporation Pulse oximetry system for adjusting medical ventilation
US20110208015A1 (en) 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US20110040197A1 (en) 2009-07-20 2011-02-17 Masimo Corporation Wireless patient monitoring system
US8471713B2 (en) 2009-07-24 2013-06-25 Cercacor Laboratories, Inc. Interference detector for patient monitor
US20110028809A1 (en) 2009-07-29 2011-02-03 Masimo Corporation Patient monitor ambient display device
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US20110028806A1 (en) 2009-07-29 2011-02-03 Sean Merritt Reflectance calibration of fluorescence-based glucose measurements
US20110087081A1 (en) 2009-08-03 2011-04-14 Kiani Massi Joe E Personalized physiological monitor
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US20110172498A1 (en) 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
WO2011035070A1 (en) 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
US8571618B1 (en) 2009-09-28 2013-10-29 Cercacor Laboratories, Inc. Adaptive calibration system for spectrophotometric measurements
US20110077968A1 (en) * 2009-09-29 2011-03-31 Cerner Innovation Inc. Graphically representing physiology components of an acute physiological score (aps)
US20110082711A1 (en) 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US8690799B2 (en) 2009-10-15 2014-04-08 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US10463340B2 (en) 2009-10-15 2019-11-05 Masimo Corporation Acoustic respiratory monitoring systems and methods
US9106038B2 (en) 2009-10-15 2015-08-11 Masimo Corporation Pulse oximetry system with low noise cable hub
WO2011047216A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Physiological acoustic monitoring system
US8790268B2 (en) 2009-10-15 2014-07-29 Masimo Corporation Bidirectional physiological information display
US9724016B1 (en) 2009-10-16 2017-08-08 Masimo Corp. Respiration processor
US20110118561A1 (en) 2009-11-13 2011-05-19 Masimo Corporation Remote control for a medical monitoring device
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (en) 2009-12-04 2013-03-28 Masimo Corporation Calibration for multi-level physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
US11289199B2 (en) 2010-01-19 2022-03-29 Masimo Corporation Wellness analysis system
JP2013521054A (en) 2010-03-01 2013-06-10 マシモ コーポレイション Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US8712494B1 (en) 2010-05-03 2014-04-29 Masimo Corporation Reflective non-invasive sensor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US8852994B2 (en) 2010-05-24 2014-10-07 Masimo Semiconductor, Inc. Method of fabricating bifacial tandem solar cells
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US8740792B1 (en) 2010-07-12 2014-06-03 Masimo Corporation Patient monitor capable of accounting for environmental conditions
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
WO2012027613A1 (en) 2010-08-26 2012-03-01 Masimo Corporation Blood pressure measurement system
US20130310422A1 (en) 2010-09-01 2013-11-21 The General Hospital Corporation Reversal of general anesthesia by administration of methylphenidate, amphetamine, modafinil, amantadine, and/or caffeine
US8455290B2 (en) 2010-09-04 2013-06-04 Masimo Semiconductor, Inc. Method of fabricating epitaxial structures
JP5710767B2 (en) 2010-09-28 2015-04-30 マシモ コーポレイション Depth of consciousness monitor including oximeter
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US20120165629A1 (en) 2010-09-30 2012-06-28 Sean Merritt Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US8723677B1 (en) 2010-10-20 2014-05-13 Masimo Corporation Patient safety system with automatically adjusting bed
US20120123231A1 (en) 2010-11-11 2012-05-17 O'reilly Michael Monitoring cardiac output and vessel fluid volume
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
US20120209084A1 (en) 2011-01-21 2012-08-16 Masimo Corporation Respiratory event alert system
US10332630B2 (en) 2011-02-13 2019-06-25 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
EP2699161A1 (en) 2011-04-18 2014-02-26 Cercacor Laboratories, Inc. Pediatric monitor sensor steady game
US8830449B1 (en) 2011-04-18 2014-09-09 Cercacor Laboratories, Inc. Blood analysis system
US9095316B2 (en) 2011-04-20 2015-08-04 Masimo Corporation System for generating alarms based on alarm patterns
US20140187973A1 (en) 2011-05-06 2014-07-03 Emery N. Brown System and method for tracking brain states during administration of anesthesia
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US20130023775A1 (en) 2011-07-20 2013-01-24 Cercacor Laboratories, Inc. Magnetic Reusable Sensor
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US8755872B1 (en) 2011-07-28 2014-06-17 Masimo Corporation Patient monitoring system for indicating an abnormal condition
US20130060147A1 (en) 2011-08-04 2013-03-07 Masimo Corporation Occlusive non-inflatable blood pressure device
US20130096405A1 (en) 2011-08-12 2013-04-18 Masimo Corporation Fingertip pulse oximeter
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
WO2013056141A1 (en) 2011-10-13 2013-04-18 Masimo Corporation Physiological acoustic monitoring system
EP3584799B1 (en) 2011-10-13 2022-11-09 Masimo Corporation Medical monitoring hub
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US9267572B2 (en) 2012-02-08 2016-02-23 Masimo Corporation Cable tether system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
EP2845086B1 (en) 2012-03-25 2021-12-22 Masimo Corporation Physiological monitor touchscreen interface
JP6490577B2 (en) 2012-04-17 2019-03-27 マシモ・コーポレイション How to operate a pulse oximeter device
US20130296672A1 (en) 2012-05-02 2013-11-07 Masimo Corporation Noninvasive physiological sensor cover
WO2013184965A1 (en) 2012-06-07 2013-12-12 Masimo Corporation Depth of consciousness monitor
US20130345921A1 (en) 2012-06-22 2013-12-26 Masimo Corporation Physiological monitoring of moving vehicle operators
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
USD692145S1 (en) 2012-09-20 2013-10-22 Masimo Corporation Medical proximity detection token
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US20140180160A1 (en) 2012-10-12 2014-06-26 Emery N. Brown System and method for monitoring and controlling a state of a patient during and after administration of anesthetic compound
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9787568B2 (en) 2012-11-05 2017-10-10 Cercacor Laboratories, Inc. Physiological test credit method
US20140166076A1 (en) 2012-12-17 2014-06-19 Masimo Semiconductor, Inc Pool solar power generator
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
US9965946B2 (en) 2013-03-13 2018-05-08 Masimo Corporation Systems and methods for monitoring a patient health network
US20150005600A1 (en) 2013-03-13 2015-01-01 Cercacor Laboratories, Inc. Finger-placement sensor tape
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
US20140275871A1 (en) 2013-03-14 2014-09-18 Cercacor Laboratories, Inc. Wireless optical communication between noninvasive physiological sensors and patient monitors
US9986952B2 (en) 2013-03-14 2018-06-05 Masimo Corporation Heart sound simulator
US9474474B2 (en) 2013-03-14 2016-10-25 Masimo Corporation Patient monitor as a minimally invasive glucometer
WO2014159132A1 (en) 2013-03-14 2014-10-02 Cercacor Laboratories, Inc. Systems and methods for testing patient monitors
US10456038B2 (en) 2013-03-15 2019-10-29 Cercacor Laboratories, Inc. Cloud-based physiological monitoring system
JP2016520374A (en) 2013-04-23 2016-07-14 ザ ジェネラル ホスピタル コーポレイション System and method for monitoring brain metabolism and activity using electroencephalogram and optical imaging
US20140316217A1 (en) 2013-04-23 2014-10-23 Patrick L. Purdon System and method for monitoring anesthesia and sedation using measures of brain coherence and synchrony
WO2014176444A1 (en) 2013-04-24 2014-10-30 The General Hospital Corporation System and method for estimating high time-frequency resolution eeg spectrograms to monitor patient state
WO2014176441A1 (en) 2013-04-24 2014-10-30 The General Hospital Corporation System and method for monitoring level of dexmedatomidine-induced sedation
US10383574B2 (en) 2013-06-28 2019-08-20 The General Hospital Corporation Systems and methods to infer brain state during burst suppression
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
WO2015038969A1 (en) 2013-09-13 2015-03-19 The General Hospital Corporation Systems and methods for improved brain monitoring during general anesthesia and sedation
EP3054849B1 (en) 2013-10-07 2022-03-16 Masimo Corporation Regional oximetry sensor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10828007B1 (en) 2013-10-11 2020-11-10 Masimo Corporation Acoustic sensor with attachment portion
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US10532174B2 (en) 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
WO2016057553A1 (en) 2014-10-07 2016-04-14 Masimo Corporation Modular physiological sensors
AU2016209104B2 (en) 2015-01-23 2020-04-30 Masimo Sweden Ab Nasal/oral cannula system and manufacturing
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
CN107431301B (en) 2015-02-06 2021-03-30 迈心诺公司 Connector assembly with retractable needle for use with medical sensors
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
EP3253289B1 (en) 2015-02-06 2020-08-05 Masimo Corporation Fold flex circuit for optical probes
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
US11653862B2 (en) 2015-05-22 2023-05-23 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US10448871B2 (en) 2015-07-02 2019-10-22 Masimo Corporation Advanced pulse oximetry sensor
US20170024748A1 (en) 2015-07-22 2017-01-26 Patient Doctor Technologies, Inc. Guided discussion platform for multiple parties
US10991135B2 (en) 2015-08-11 2021-04-27 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
CN108348162B (en) 2015-08-31 2021-07-23 梅西莫股份有限公司 Wireless patient monitoring system and method
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US10471159B1 (en) 2016-02-12 2019-11-12 Masimo Corporation Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles
US20170251974A1 (en) 2016-03-04 2017-09-07 Masimo Corporation Nose sensor
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
US10608817B2 (en) 2016-07-06 2020-03-31 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
WO2018071715A1 (en) 2016-10-13 2018-04-19 Masimo Corporation Systems and methods for patient fall detection
US10750984B2 (en) 2016-12-22 2020-08-25 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
EP3585254B1 (en) 2017-02-24 2024-03-20 Masimo Corporation Medical device cable and method of sharing data between connected medical devices
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
WO2018156809A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Augmented reality system for displaying patient data
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
EP3592231A1 (en) 2017-03-10 2020-01-15 Masimo Corporation Pneumonia screener
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
USD822215S1 (en) 2017-04-26 2018-07-03 Masimo Corporation Medical monitoring device
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD822216S1 (en) 2017-04-28 2018-07-03 Masimo Corporation Medical monitoring device
US10856750B2 (en) 2017-04-28 2020-12-08 Masimo Corporation Spot check measurement system
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
JP7159208B2 (en) 2017-05-08 2022-10-24 マシモ・コーポレイション A system for pairing a medical system with a network controller by using a dongle
USD833624S1 (en) 2017-05-09 2018-11-13 Masimo Corporation Medical device
WO2019014629A1 (en) 2017-07-13 2019-01-17 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
USD880477S1 (en) 2017-08-15 2020-04-07 Masimo Corporation Connector
USD906970S1 (en) 2017-08-15 2021-01-05 Masimo Corporation Connector
US10637181B2 (en) 2017-08-15 2020-04-28 Masimo Corporation Water resistant connector for noninvasive patient monitor
USD864120S1 (en) 2017-08-15 2019-10-22 Masimo Corporation Connector
USD890708S1 (en) 2017-08-15 2020-07-21 Masimo Corporation Connector
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
JP7282085B2 (en) 2017-10-31 2023-05-26 マシモ・コーポレイション System for displaying oxygen status indicators
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
WO2019204368A1 (en) 2018-04-19 2019-10-24 Masimo Corporation Mobile patient alarm display
US11883129B2 (en) 2018-04-24 2024-01-30 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US20210161465A1 (en) 2018-06-06 2021-06-03 Masimo Corporation Kit for opioid overdose monitoring
US10932729B2 (en) 2018-06-06 2021-03-02 Masimo Corporation Opioid overdose monitoring
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
USD887549S1 (en) 2018-09-10 2020-06-16 Masino Corporation Cap for a flow alarm device
USD887548S1 (en) 2018-09-10 2020-06-16 Masimo Corporation Flow alarm device housing
US20200111552A1 (en) 2018-10-08 2020-04-09 Masimo Corporation Patient database analytics
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
CA3115776A1 (en) 2018-10-11 2020-04-16 Masimo Corporation Patient connector assembly with vertical detents
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
EP3864869A1 (en) 2018-10-12 2021-08-18 Masimo Corporation System for transmission of sensor data using dual communication protocol
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
US20200113520A1 (en) 2018-10-16 2020-04-16 Masimo Corporation Stretch band with indicators or limiters
US20200138368A1 (en) 2018-11-05 2020-05-07 Masimo Corporation System to manage patient hydration
US20200163597A1 (en) 2018-11-27 2020-05-28 Cercacor Laboratories, Inc. Assembly for medical monitoring device with multiple physiological sensors
US20200253474A1 (en) 2018-12-18 2020-08-13 Masimo Corporation Modular wireless physiological parameter system
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
EP3920791A1 (en) 2019-02-07 2021-12-15 Masimo Corporation Combining multiple qeeg features to estimate drug-independent sedation level using machine learning
US20200288983A1 (en) 2019-02-26 2020-09-17 Masimo Corporation Respiratory core body temperature measurement systems and methods
US20200275841A1 (en) 2019-02-26 2020-09-03 Masimo Corporation Non-contact core body temperature measurement systems and methods
JP2022529948A (en) 2019-04-17 2022-06-27 マシモ・コーポレイション Patient monitoring systems, equipment, and methods
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
US20210104173A1 (en) 2019-10-03 2021-04-08 Cercacor Laboratories, Inc. Personalized health coaching system
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
KR20220083771A (en) 2019-10-18 2022-06-20 마시모 코오퍼레이션 Display layouts and interactive objects for patient monitoring
CN115176155A (en) 2019-10-25 2022-10-11 塞卡科实验室有限公司 Indicator compounds, devices including indicator compounds, and methods of making and using the same
AU2021207471A1 (en) 2020-01-13 2022-09-01 Masimo Corporation Wearable device with physiological parameters monitoring
US20210236729A1 (en) 2020-01-30 2021-08-05 Cercacor Laboratories, Inc. Redundant staggered glucose sensor disease management system
EP4104037A1 (en) 2020-02-13 2022-12-21 Masimo Corporation System and method for monitoring clinical activities
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
US20210275101A1 (en) 2020-03-04 2021-09-09 Cercacor Laboratories, Inc. Systems and methods for securing a tissue site to a sensor
EP4120901A1 (en) 2020-03-20 2023-01-25 Masimo Corporation Wearable device for noninvasive body temperature measurement

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650917B2 (en) 1991-03-07 2003-11-18 Masimo Corporation Signal processing apparatus
US5769785A (en) 1991-03-07 1998-06-23 Masimo Corporation Signal processing apparatus and method
US6157850A (en) 1991-03-07 2000-12-05 Masimo Corporation Signal processing apparatus
US5782757A (en) 1991-03-21 1998-07-21 Masimo Corporation Low-noise optical probes
US6088607A (en) 1991-03-21 2000-07-11 Masimo Corporation Low noise optical probe
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US20040230105A1 (en) * 2003-05-15 2004-11-18 Widemed Ltd. Adaptive prediction of changes of physiological/pathological states using processing of biomedical signals
WO2006094107A1 (en) * 2005-03-01 2006-09-08 Masimo Laboratories, Inc. Physiological parameter confidence measure
WO2007106455A2 (en) * 2006-03-10 2007-09-20 Optical Sensors Incorporated Cardiography system and method using automated recognition of hemodynamic parameters and waveform attributes
US20080108884A1 (en) 2006-09-22 2008-05-08 Kiani Massi E Modular patient monitor
US20080146893A1 (en) * 2006-12-13 2008-06-19 Advanced Brain Monitoring, Inc. Apnea risk evaluation system - automated prediction of risk for perioperative complications
WO2009156936A2 (en) * 2008-06-27 2009-12-30 Koninklijke Philips Electronics N.V. System and method for determining a personal health related risk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289199B2 (en) 2010-01-19 2022-03-29 Masimo Corporation Wellness analysis system

Also Published As

Publication number Publication date
US20110230733A1 (en) 2011-09-22
DE112011100282T5 (en) 2012-11-29
US11289199B2 (en) 2022-03-29
GB201212698D0 (en) 2012-08-29
US20220277849A1 (en) 2022-09-01
GB2490817A (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US20220277849A1 (en) Wellness analysis system
EP1133256B1 (en) A diagnostic tool using a predictive instrument
JP5584413B2 (en) Patient monitoring system and monitoring method
US9700218B2 (en) Systems and methods for reducing nuisance alarms in medical devices
US5724983A (en) Continuous monitoring using a predictive instrument
US7292883B2 (en) Physiological assessment system
US20110087081A1 (en) Personalized physiological monitor
KR20200024767A (en) Spot check measuring system
CN107438399A (en) Angiocarpy deteriorates early warning scoring
US9785745B2 (en) System and method for providing multi-organ variability decision support for extubation management
US20180064354A1 (en) Analysis and Characterization of Patient Signals
EP1277433B1 (en) Adjustable coefficients to customize predictive instruments
CN113168759B (en) Predicting critical alarms
US20220202349A1 (en) Multiparameter noninvasive sepsis monitor
Rocha et al. Wearable computing for patients with coronary diseases: Gathering efforts by comparing methods
CN114680820A (en) State alarm method, monitoring device, monitoring system and readable storage medium
Wong et al. Identifying vital sign abnormality in acutely-ill patients
Chow Using Pulsatile and Multi-Channel Electrocardiographic Waveforms to Identify and Evaluate False ICU Crisis Alarms
Santos Vital-sign data-fusion methods to identify patient deterioration in the emergency department
Pyke Analysis of inpatient surveillance data for automated classification of deterioration
CN117860261A (en) Multi-parameter electrocardiograph monitor design method and system for displaying shock index
CN117594180A (en) Method for displaying medical data and life information processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11702329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1212698

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110119

WWE Wipo information: entry into national phase

Ref document number: 1212698.3

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120111002823

Country of ref document: DE

Ref document number: 112011100282

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11702329

Country of ref document: EP

Kind code of ref document: A1