WO2005033731A1 - Pressure-wave-based sensory device which is used to measure the co-ordinates of objects, in particular, objects found during paleo-archaeological excavations - Google Patents

Pressure-wave-based sensory device which is used to measure the co-ordinates of objects, in particular, objects found during paleo-archaeological excavations Download PDF

Info

Publication number
WO2005033731A1
WO2005033731A1 PCT/ES2004/070079 ES2004070079W WO2005033731A1 WO 2005033731 A1 WO2005033731 A1 WO 2005033731A1 ES 2004070079 W ES2004070079 W ES 2004070079W WO 2005033731 A1 WO2005033731 A1 WO 2005033731A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
transducers
beacons
acoustic
objects
Prior art date
Application number
PCT/ES2004/070079
Other languages
Spanish (es)
French (fr)
Inventor
Antonio Ramón JIMENEZ RUIZ
Ramón CERES RUIZ
Leopoldo CALDERÓN ESTÉVEZ
José Luis PONS ROVIRA
Fernando Seco Granja
Fernando MORGADO RODRÍGUEZ
Luis Jenaro Barrios Bravo
Salvador Ros Torrecillas
Antoni CANALS SALOMÓ
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Rovira I Virgili
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Rovira I Virgili filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2005033731A1 publication Critical patent/WO2005033731A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/46Indirect determination of position data
    • G01S2015/465Indirect determination of position data by Trilateration, i.e. two transducers determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the transducers, the position data of the target is determined

Definitions

  • This invention which is embedded in the sector of physical, sensor and automatic technologies, is oriented and conceived to be used in the measurement of position, shape and orientation coordinates of objects found in excavations of paleo-archaeological sites. But in addition to the archaeological sector, the concept is valid and applicable in other sectors (construction, agriculture warehouse management, water exploration, ).
  • the mode of operation could be divided in a very simplistic way into three feses: 1) Excavation in the archaeological site until obtaining interesting findings, 2) Measurement and annotation on paper or electronic agenda of the characteristic data of each of the findings (XYZ position, shape, orientation and others), and 3) Analysis of the data obtained together and especially of their spatial relationships to obtain conclusions.
  • the first two phases are done simultaneously in the excavation campaign, and the third one is done later in the laboratory.
  • the technique of the rn.anu.al reticulate of the excavation is used in general, using extended and tense ropes forming squares of 1 square meter.
  • the measurement of the XY Cartesian coordinates of the finding is made by noting the chart and measuring the location of the finding with respect to the origin of the chart.
  • the Z coordinate is subsequently estimated, for example, by a liquid level of communicating vessels.
  • This measurement procedure is not linked to a commercial product but it is an artisanal solution that the paleontologist or archaeologist himself assembles in each excavation. So far, the technique of crosslinking is the best solution, or at least the most operative, in the vast majority of the excavation types.
  • the measurement technique based on the cross-linking is not very precise, making mistakes both in the phase of drawing and forming the grids, and later in the measurement phase with the tape measure and the level. It is estimated that the error in some cases can exceed 10 centimeters. If the final phase of the analysis of the data that characterizes each of the findings is taken into account, the error or inaccuracy of the measurements may cause that in some cases no accurate or valid conclusions can be obtained.
  • the sensory system consists in the improvement of the known principle of measurement by ultrasonic or sonic trilateration, to obtain a new product applicable in the paleo-archaeological sector of the registration of objects in exteriors, with precision requirements of about 5 mm, and spaces of I work means between a few square meters and a few hundred square meters. This sensory system could be applicable as a locator in other areas with similar requirements.
  • the device object of the invention is a sensory system based on the concept of acoustic measurement by trilateration that together with a series of novelties claimed in this patent, allows to measure the position of an object of interest in its three Cartesian coordinates X, Y and Z with pinpoint accuracy in outdoor environments with air currents and even when the object to be located is not visible with respect to the static beacons necessary to apply the principle of trilateration. It also allows obtaining the profile or contour of the object with which its characterization is achieved in terms of shape and orientation with respect to its major axis of symmetry.
  • the sensory system is conceived from the location requirements in paleo-archaeological excavations, being able to be applied directly in this sector since it solves the problems they are currently facing: measures with manual crosslinking few precise and repetitive; These measuring implements cause an artificial division and structuring of the excavation environment, and on the other hand the alternative techniques (total stations, theodolites and photogrammetry) are slow, they do not allow simultaneous excavation with data collection, and by the topology of the Excavation in many cases are not applicable.
  • the sensory device object of protection can be applied in other sectors where XYZ absolute location is required, exterior or interior, with pinpoint accuracy, small-medium work areas, and the object to be measured does not have a direct view on the fixed beacons. placed in known positions that are necessary to operate according to the principle of trilateration.
  • a pole that separates the measuring point of the ultrasonic emission transducers.
  • the pole orientation itself is detected without additional tilt / orientation sensors using two, or more, transducers at the top of the pole.
  • sonic or ultrasonic signals in the air to perform distance measurements in outdoor environments despite air currents, using a technique that makes use of the ultrasonic measurement system itself together with an extra emitter located in a fixed place in the middle of the work area. By measuring the position of this fixed emitter and proper processing, the air currents are detected and the errors introduced in the measurements are compensated.
  • Another alternative technique proposed to cancel the negative effects of the wind on the accuracy in the position determination consists in the bi-directional propagation of the acoustic signals between the beacons and the courttiga, by means of the use of transducers by emitter / receiver pairs and acting the transducers at one end as signal repeaters to create the return signal.
  • Figure 1 shows an overview of the configuration of the sensory system for locating and characterizing findings and the mode of operation and use by one or several excavators / collectors.
  • Figure 2 shows the detailed configuration of the pole to be used to locate findings, indicating the placement of the two ultrasonic transducers, and details of the location of the electronics, push-buttons and internal wiring.
  • Figure 3 shows the implement designed to place the pole vertically passively and simplify and make the self-calibration process operational using the ultrasonic-based sensory system itself to find out the coordinates of the transducers in fixed positions.
  • Figure 4 shows an overview of another possible configuration of the sensory system, in particular the location of the fixed beacons on a roof instead of fixed vertical posters as in Figure 1.
  • the pole is shown for the case in the that bi-directional propagation is used and therefore pairs of transmitter / receiver transducers are needed.
  • the sensory device described in this patent is a measuring device based on the concept of acoustic measurement by trilateration that, together with a series of innovative developments, makes possible in particular the measurement of coordinates and the characterization of findings in paleo-archaeological applications. A similar concept could also be applied in other application sectors with similar requirements.
  • This sensory system allows to measure the position of an object of interest in its three Cartesian coordinates X, Y and Z with pinpoint accuracy in outdoor environments with air currents and even when the object to be located is not visible with respect to the static beacons necessary for apply the principle of trilateration. It also allows obtaining the profile or contour of the object with which its characterization is achieved in terms of shape and orientation with respect to its major axis of symmetry.
  • the sensory device is based on a series of improvements on the known concept of trilateration that measures flight times between a transducer in an unknown mobile position that can be used as an emitter or as an acoustic receiver; and a set of beacons or transducers in fixed and known positions around the working volume, which act as receivers or emitters of pressure waves, respectively.
  • v s is the speed of sound in the middle.
  • n is the number of beacons that must be at least three to be able to solve the system of equations, assuming known v s , or they must be four if you also want to estimate the speed of sound.
  • the ideas presented in this invention are equally valid when there is no synchronism between the sender and the receivers. In this case, the absolute flight time cannot be measured, but when using one more beacon it is possible to measure the differences in arrival times with respect to the first signal received in one of the beacons.
  • This method of trilateration is known as hyperbolic trilateration. Whatever the method of trilateration used, the ideas presented in this invention are equally valid and applicable.
  • the sensory device as outlined in Figure 1, consists of a set of mast type supports (1) that are supported on bases (2) with sufficient weight and support surface so that the masts do not move . Two, or more, beacons (3 and 4) are placed on this mast, one of them at mid-height (4) and the other at its upper end (3).
  • Each of the beacons contains an acoustic sensor (piezoelectric, capacitive, electromagnetic, or any other technology useful for capturing / generating pressure waves) that can act as both an ultrasonic emitter or receiver.
  • the beacon contains an electronic filter, amplification and pre-processed signal that is finally transferred to a central processing unit (6) via cable (6a), or optionally wirelessly.
  • a central processing unit (6) via cable (6a), or optionally wirelessly.
  • 3 to 4 of these masts (1) are usually used, which means that we have a minimum of 6 or 8 bauzas, which are sufficient to obtain the necessary equations and even add a certain degree of redundancy. robustness to accidental occlusions of some of the beacons.
  • the fixed beacons can also be placed subject to a roof over the work area or area of interest, as shown in Figure 4.
  • the advantages of this configuration over that shown in Figure 1 may vary depending on of the type of application. On the one hand it is less invasive because it does not require placing vertical posters on the same work area, it also facilitates the extension or scalability of the sensory system in certain applications when we want to cover more extensive work areas.
  • a button (7 fig. 2) to generate the acoustic emissions that allow the measurement of flight times, in case of the senses, between the transducers of the pole and the beacons.
  • the pole (fig. 2) (7 and 9 fig. 1) (3 fig. 3) is made of rigid and lightweight tubular material, and is about two meters long. The upper part of this pole is in turn the support of two, or more, omnidirectional acoustic transducers (7a and 7b fig.
  • the pole (1) is actually composed of two tube segments (1 and 2) that are joined by a piece (11) embedded in the ends of both segments.
  • the connecting piece (11 fig.2), can be like the one shown in the figure, which has a diameter of less than a centimeter in its central part (10), serves as a support for the central transducer (8) that must be cylindrical, and in turn is perforated to allow the passage of cables (12) to the upper transducer (9).
  • the connecting piece between the lower and upper segment can be a vertical grid of cylindrical foil with a diameter similar to that of the tubes, the transducers being covered and semi-hidden by this gridded support.
  • a button (7) or any other device that allows the entry of commands, is located to allow the operator to indicate when he wants to make a measurement.
  • the necessary communication, processing or excitation electronics (6) are located, and also the batteries (4) that can be recharged through a jack type connector (5), or similar.
  • the transducers to be used on the pole must be oriented upwards or reflector elements must be placed, to allow the correct propagation of the acoustic signals in directions around the vertical (+/- 50 degrees) between the pole in the lower position and the beacons in the upper position, or in the direction of reverse propagation, that is, from the beacons to the pole.
  • the sensory device making use of the described pole (fig. 2) is characterized by being able to measure the positions of objects on the ground, even if there are operators in parallel (12 fig. 1) performing excavation work, since the roads of propagation of the acoustic signals between the transmitting and receiving transducers are free of obstacles when the transmission is carried out in a plane superior to that of the objects (8 fig.l) and operators (12 fig.l).
  • the sensory system using the previous estimation of the two transducers of the upper end (8 and 9 fig.2) of the pole is characterized by knowing at all times the orientation of the pole without requiring the use of additional sensors type inclinometers and compasses .
  • this pole-based configuration with acoustic transducers at its upper end allows measurement in hard-to-reach places, since it is not a requirement to keep the pole fully vertical, it is possible to orient the pole until its end is placed on an object semi-hidden It is possible to locate several poles concurrently (7 and 9 fig.l), which is essential so that several operators can perform measurements at the same time using each pole. To enable the simultaneous location of several poles, temporary multiplexing is used, which actually uses sequential measurements but which the user appears as simultaneous due to a typical delay of less than 200 milliseconds since the operator makes the measurement request until This really happens.
  • the poles used by the sensory device are wireless and incorporate batteries (4 fig.2) and an electronics (6 fig.2) suitable for communicating the central processing system (6 fig.l) and the poles via radio, infrared, bluetooth o Wireless LAN.
  • the central processing system (6 fig.l) that is part of the sensory device can be based on a standard PC-type processing architecture, and it is where the estimation calculations are centralized, the resolution of the systems of equations of trilateration both spherical (ec.l) as hyperbolic, and therefore the element that knows the location of the findings.
  • This central processing unit (6 fig.l) communicates the positioning information of the findings by wireless lines with RS-232, TCP / IP protocols, etc. for a peripheral LCD type display, a handheld computer (PDA) or an electronic agenda, located next to each pole, can visualize and record the position measurements.
  • the sensory device object of this invention is capable of compensating and eliminating position errors due to the effect of wind, or of the medium in general. by two complementary or alternative strategies.
  • the first uses one or more tr.ansductors (10 fig. 10 fig. 4) in known positions placed on fixed supports (11 fig. 11 fig. 4) around the center of the working volume. It is possible to estimate the air currents that occur in the workspace, both its intensity and its direction. This is achieved thanks to the approach of the trilateration equations (ec.l), particularized to the case in which the speed of sound depends on the vector velocity of the air (ec.2). In this system of equations all the parameters corresponding to the fixed positions of the transducers that emit and receive are known, and the air velocity is the unknown to estimate.
  • the other strategy contemplated, which is more direct but more complex to implement, to eliminate position errors due to the effect of the wind is that the propagation of the acoustic signals between the beacons and the transducers in the pole is bidirectional, is say back and forth. This strategy directly compensates for the longitudinal component of the wind along the propagation axis, eliminating this undesirable effect.
  • the implementation is more complex because it implies that both the beacons and the pole di ⁇ ongan of reception and emission transducers placed in pairs and very close to each other. This solution requires doubling the number of acoustic transducers and incorporating a stage, either in the beacons or in the pole, acting as a signal repeater to achieve the two-way emission.
  • the sensory device is capable of measuring the XYZ coordinates of the object of interest (8 fig.l) with an absolute precision of less than 5 mm, enabling the measurement of the object's profile, by sequential positioning of the pole along the contour of the object under measurement, thanks to a smaller resolution of the millimeter, and from this outline the orientation of the object based on its major axis of symmetry.
  • a very important aspect and prior to the practical use of the measuring device is the calibration, or measurement of the coordinates of the transducers in the fixed beacons (3a and 4a fig.l) that we had so far assumed as known.
  • the location of the beacons are not known, since they are placed manually around the periphery of the work area (5 fig.l) to be covered.
  • a total station without a reflector could be used, pointing to each of the transducers in fixed positions, this method, apart from requiring very expensive instrumentation, is quite slow.
  • the described measurement system incorporates a self-calibration method based on precisely placing the pole (fig.2) (3 fig.3) in an upright position on two or more reference points with known XYZ coordinates (5 fig.3) .
  • fig.2 3 fig.3
  • 5 fig.3 known XYZ coordinates
  • two more equations are generated and added to the system of equations proposed to find out the position of each of the fixed beacons with unknown initial positions (3rd and 4th fig. 1).
  • each system of equations has a sufficient number of equations to be solved, each of the coordinates of the fixed beacons is obtained (3rd and 4th fig. 1).
  • the sensory system In the self-calibration (figure 3), to position the pole (3) in an upright position the sensory system is characterized by having an accessory based on a tripod (1) with a perforated platform (la) of about 10 centimeters of di .meter on which a support (2a) of a kneecap (2) is supported with its perforated central axis where the pole (3) passes and is supported.
  • This pole (3) by means of a counterweight (4) is maintained in a vertical position by gravity on the reference of known coordinates (5).
  • the self-calibration method is characterized by not requiring any special device for measuring fixed beacon coordinates, since it only makes use of its own Ultrasonic sensory system (fig. 1), an implement to maintain the vertical pole (fig. 3), and knowledge of the XYZ coordinates of two or more fixed references (5 fig. 3) within the excavation.
  • This self-calibration method is valid both for a minimum configuration of 3 to 8 receivers, and for a multiple configuration covering .ample surfaces, without more than consecutively moving the pole vertically on different known points until all beacons are calibrated in fixed positions .
  • the system is applicable in the construction, agriculture, in the management of the location of objects in warehouses, it is also especially applicable in underwater works, and in general in all those applications where it is required to locate objects in environments where objects can be in places with certain access difficulties, or there are people, or any other obstacle, which could limit the operation of traditional location systems, or there is little visibility due to natural or artificial phenomena such as fogs, dust or turbid waters .
  • each beacon 3 and 4
  • the mast is made of 30 mm diameter aluminum tube.
  • the transducers (3rd and 4th) housed in each beacon are piezo ceramic ceramics of the house Murata and type MA40A5R, that is they are transducers receivers that will be used as ultrasonic sensors and have a resonance frequency around 40 kHz.
  • beacons are on the ceiling, and you also want to use bi-directional propagation of the acoustic signals to cancel the movement of the medium, and also pseudorandom coding in the signals generated to facilitate simultaneous measurement, then it is recommended to use two broadband acoustic translators in the beacons (a transmitter and a receiver) to emit and re-receive the signal sent by the pole in a second phase.
  • two broadband acoustic translators in the beacons (a transmitter and a receiver) to emit and re-receive the signal sent by the pole in a second phase.
  • tweeters sonic speakers that even reach the ultrasonic band,> 20 kHz
  • bandwidths of at least 15 kHz such as the N13aton CP13 model
  • miniature microphones would be used of at least the same bandwidth as the speaker, such as the VM-61 B model of Panasonic Industrial.
  • the speaker and microphone pair would be mounted on top of each other in such a way that the speaker emission centers were closest to the acoustic center of the microphone.
  • the ultrasonic emitters fig. 1 (7a and 7b) are shipped on the wireless poles (7 and 9), at a height of 1.30 with respect to the lower tip (7b) and at the upper end at a height of 2.00 meters (7a).
  • These transducers are piezoelectric, PVDF-type ultrasonic emitters with a cylindrical shape, for example the US40KT-01 model of the Measurement Specialties Inc house, which work in the 40 kHz band.
  • the cylindrical PNDF translators would be replaced by loudspeaker / microphone pairs, such as the Visaron CP13 model and Panasonic VM-61B model Industrial, or any other pair of transducers of similar characteristics.
  • the pole would also include electronics to perform acoustic repeater functions, preventing coupling by changing frequencies and filtering.
  • the separation of the four masts that define the workspace fig.l (5) is 5 meters forming a square of 5 meters side and an interior area of 25 square meters, of which approximately 20 central square meters have the adequate coverage to meet the precision requirements set forth in the description of the invention.
  • Each of the masts (fig. 1), or beacons on the ceiling (fig. 4), has a 10 meter shielded cable (6 fig. 1) that is long enough to carry the pre-amplified signals of the acoustic signals, or directly the flight times already calculated, to the central processing unit (6).
  • These cables also carry the necessary DC power supplies for filtering and amplification prior to scanning, or digital preprocessing.
  • the processing unit fig.l (6) can consist of a PC (personal computer) with a 2.5 GHz Pentium IN micro type, 100 Gbytes hard disk and 512 Mbytes of memory where the acquisition software is executed , signal processing, position estimation and communication developed in a C ++ programming environment.
  • This central processing unit consists of an amplification stage with increasing gain over time, and an acquisition PCI card that is sampled at 1MHz, eg using AdLink PCI9812 card.
  • the ultrasonic ultrasonic signals are shown in such a way that there are 25 samples for each period of the transmitted ultrasonic wave that is 40 kHz.
  • the central PC (6) would communicate to collect the flight times already calculated For the beacons, it is not necessary to perform the analog / digital conversion using a dedicated card.
  • the central PC would download work and its mission would focus on the execution of the algorithms of trilateration and on the digital communication with beacons and poles.
  • the fixed mast fig.l (11) that is placed in the center of the work area has a single emitter transducer (10) type US40KT-01 of the Measurement Specialties Inc house, and said mast is telescopically regulated in height until leaving the emitting transducer (10) at a height of 1.60 meters from its base.
  • the pole detailed in Figure 2 should preferably be used in a position close to the vertical. It admits an inclination angle of +/- 20 degrees that are defined by the emission lobe of the PVDF transducers (8 and 9 fig. 2) which, due to their cylindrical configuration, are not totally omnidirectional, that is, they emit 360 ° horizontally (when the pole is upright), but only emit a +/- 20 ° lobe vertically.
  • the tube used in the pole is a 25 mm diameter aluminum tube and is hollow on the inside. This hole is used to place electronics and power batteries inside.
  • the batteries are composed of 10 Ni-MH series battery cells of 1.2 volts each, to give a total of 12 volts, with a current capacity of 4.5 Ah and a range of several days of operation depending of its use Thanks to the fact that the electronics embedded in the pole are always deactivated except when a measurement request is re-activated, by means of the button (7 fig. 2), the consumption is very low.
  • the acoustic excitation electronics at 40 kHz (ultrasonic) in the simplest case could generate a 5-pulse train 12 microseconds high and 13 microseconds in low.
  • the voltage level of this pulse train is 12 volts and after passing through a transformer it is amplified up to 350 volts.
  • the range of the ultrasonic pulse train taking into account the attenuation with the distance and the signal to noise ratio is 6 meters.
  • this basic configuration described here would be replicated as many times as necessary to cover the entire work volume.
  • Gold codes could be used, for example 31.63 or 127 bits using two sine symbols per bit and BPSK modulation. In this case the transducers should have a good bandwidth to faithfully transmit the coded signal created.
  • Each beacon, or each lower or upper part of the pole would use its own code to distinguish where the signals come from in case of simultaneous emissions.
  • the implement used to maintain the vertical bar and perform the self-calibration can be made from a standard tripod with height adjustment, to which the circular platform ( Figure 3) is added. 124 mm in diameter with a perforation of 89 mm in diameter. On this platform a circular support of 95 mm in diameter is placed (2nd fig. 3) that contains in its center a perforated ball joint of 25 mm of internal diameter, through which the pole slides. Once the pole is locked in the kneecap, the pole rotates by pivoting around the kneecap at an angle sufficient to absorb the lack of verticality of the tripod base.
  • the counterweight is a stainless steel cylinder with a central hole of 25 mm and a weight of 2.5 kilograms.

Abstract

The invention relates to a sensory system which is based on ultrasonic trilateration measurements and which can be used to measure the position of an object in the three Cartesian co-ordinates thereof, X, Y and Z, with millimetric precision, in external environments with air currents, even when the object to be located is not visible in relation to the static markers required in order to apply the principle of trilateration. In addition, the inventive device can be used to obtain the profile or contour of the object, which can in turn be used to characterise said object in terms of shape and orientation in relation to the major axis of symmetry thereof. The device is designed and intended to be used to determine the position co-ordinates, the shape and the orientation of objects found during the excavation of paleo-archaeological sites, although it is also suitable for use in other sectors.

Description

TÍTULOTITLE
DISPOSITIVO SENSORIAL BASADO EN ONDAS DE PRESIÓN PARA MEDIR COORDENADAS DE OBJETOS, EN PARTICULAR, DE HALLAZGOS EN EXCAVACIONES PALEO-ARQUEOLÓGICASSENSORY DEVICE BASED ON PRESSURE WAVES TO MEASURE COORDINATES OF OBJECTS, IN PARTICULAR, OF FINDINGS IN PALEO-ARCHAEOLOGICAL EXCAVATIONS
CAMPO DE LA TÉCNICAFIELD OF THE TECHNIQUE
Este invento, que se ennrarca en el sector de kis tecnologías físicas, sensores y automática, está orientado y concebido para ser usado en la medida de coordenadas de posición, forma y orientación de objetos hallados en excavaciones de yacimientos paleo-arqueológicos. Pero además del sector arqueológico, el concepto es válido y aplicable en otros sectores (construcción, agricultura gestión de almacenes, exploración acuática,... ).This invention, which is embedded in the sector of physical, sensor and automatic technologies, is oriented and conceived to be used in the measurement of position, shape and orientation coordinates of objects found in excavations of paleo-archaeological sites. But in addition to the archaeological sector, the concept is valid and applicable in other sectors (construction, agriculture warehouse management, water exploration, ...).
Antecedentes La localización o medición absoluta de la posición de un objeto estático o móvil, es una línea de investigación y desarrollo en la que se han aportado muchas soluciones, algunas de ellas plenamente operativas y otras aún en fase de estudio por su complejidad. Bajo una perspectiva muy amplia, existen dispositivos sensoriales basados en técnicas ópticas, acústicas, radar, inerciales u odométricas, para localizar y guiar aviones, misiles, robots móviles, vehículos, referencias natur.ales o artificides, etc en temas de logística y tansporte, en automatización industrial, topografía, ingeniería inversa, biomecánica, realidad virtud, y un largo etcétera. La técnica que proporciona una solución genérica para determinar la localización de un objeto no existe, y en función de cada problema concreto se hace necesario la utilización o el des,arrollo de estrategias específicas.Background The location or absolute measurement of the position of a static or mobile object is a line of research and development in which many solutions have been provided, some of them fully operational and others still under study due to their complexity. From a very broad perspective, there are sensory devices based on optical, acoustic, radar, inertial or orthometric techniques, to locate and guide airplanes, missiles, mobile robots, vehicles, natural or artificial references, etc. in matters of logistics and transport, in industrial automation, topography, reverse engineering, biomechanics, virtue reality, and much more. The technique that provides a generic solution to determine the location of an object does not exist, and depending on each specific problem it is necessary to use or develop specific strategies.
En el sector de la paleo-arqueología, el modo de operar se podría dividir de una forma muy simplista en tres feses: 1) Excavación en el yacimiento .arqueológico hasta obtener hallazgos de interés, 2) Medición y anotación en papel o agenda electrónica de los datos característicos de cada uno de los hallazgos (posición XYZ, forma, orientación y otros), y 3) Análisis de los datos obtenidos en conjunto y en especial de sus relaciones espaciales para obtener conclusiones. Las dos primeras fases se hacen simultáne.amente en la campaña de excavación, y la tercera se hace a posteriori en el laboratorio. En la propia tarea de medición (fase 2), se utiliza de forma generalizada la técnica del reticulado rn.anu.al de la excavación, empleando cuerdas extendidas y tensas formando cuadros de 1 metro cuadrado. La medida de las coordenadas cartesianas X-Y del hallazgo se hace anotando el cuadro y midiendo con una cinta métrica la ubicación del hallazgo respecto al origen del cuadro. La coordenada Z se estima posteriormente, por ejemplo, mediante un nivel líquido de vasos comunicantes. Este procedimiento de medida no está ligado a un producto comercial sino que es una solución artesanal que el propio paleontólogo o arqueólogo monta en cada excavación. Hasta el momento la técnica del reticulado es la mejor solución, o al menos la más operativa, en la gran mayoría de las tipolo Í4 s de excavación.In the paleo-archeology sector, the mode of operation could be divided in a very simplistic way into three feses: 1) Excavation in the archaeological site until obtaining interesting findings, 2) Measurement and annotation on paper or electronic agenda of the characteristic data of each of the findings (XYZ position, shape, orientation and others), and 3) Analysis of the data obtained together and especially of their spatial relationships to obtain conclusions. The first two phases are done simultaneously in the excavation campaign, and the third one is done later in the laboratory. In the measurement task itself (phase 2), the technique of the rn.anu.al reticulate of the excavation is used in general, using extended and tense ropes forming squares of 1 square meter. The measurement of the XY Cartesian coordinates of the finding is made by noting the chart and measuring the location of the finding with respect to the origin of the chart. The Z coordinate is subsequently estimated, for example, by a liquid level of communicating vessels. This measurement procedure is not linked to a commercial product but it is an artisanal solution that the paleontologist or archaeologist himself assembles in each excavation. So far, the technique of crosslinking is the best solution, or at least the most operative, in the vast majority of the excavation types.
La técnica de medida basada en el reticulado es poco precisa, cometiéndose errores tanto en la fase de trazado y formación de las cuadrículas, como posteriormente en la fase de medición con la cinta métrica y el nivel. Se estima que el error en algunos casos puede llegar a superar los 10 centímetros. Si se tiene en cuenta la fase final de análisis de los datos que caracterizan cada uno de los hallazgos, el error o imprecisión de las mediciones pueden provocar que en algunos casos no se puedan obtener conclusiones acertadas o válidas.The measurement technique based on the cross-linking is not very precise, making mistakes both in the phase of drawing and forming the grids, and later in the measurement phase with the tape measure and the level. It is estimated that the error in some cases can exceed 10 centimeters. If the final phase of the analysis of the data that characterizes each of the findings is taken into account, the error or inaccuracy of the measurements may cause that in some cases no accurate or valid conclusions can be obtained.
Por todo lo expuesto anteriormente, la medida fiable en cuanto a localización, forma y orientación, entre otros, de los objetos extraídos en excavaciones arqueológicas es una labor que demanda el desarrollo de ayudas técmcas. En este sentido, se ha tratado de utilizar dispositivos comerciales de localización para realizar estas medidas, en concreto, teodilitos, estaciones totales o fotogrametría. Las técnicas fotogramétricas son bastante precisas pero requieren que periódicamente, y tras el etiquetado previo de cada una de los objetos, se retire el personal de la excavación para la toma de imágenes. Lo mismo ocurre con los teodolitos y estaciones totales que además presentan el inconveniente de ser procesos muy lentos. Sin embargo, y aunque en algunas topologías de excavación pueden ser aplicables y válidas, en general son escasamente utilizada por su lentitud y por no permitir simultanear la labor de excavar con la medida de datos en sí, ya que la medición requiere una zona de trabajo despejada de personas. Otras técnicas de localización en exteriores por trilateración con radio-frecuencia que son muy empleadas actualmente como el GPS, DGPS, etc no son aplicables por problemas de precisión, ya que no alcanzan los 5 mm que se demudan en este tipo de aplicaciones, y también por problemas de cobertura ya que en algunos casos se trabajan en lugares angostos con visión escasa de satélites.For all the above, the reliable measurement in terms of location, shape and orientation, among others, of the objects extracted in archaeological excavations is a task that demands the development of técmcas aids. In this sense, we have tried to use commercial location devices to perform these measurements, specifically, theodilites, total stations or photogrammetry. The photogrammetric techniques are quite precise but require that periodically, and after the previous labeling of each of the objects, the personnel of the excavation for the taking of images is removed. The same goes for the theodolites and total stations that also have the disadvantage of being very slow processes. However, and although in some excavation topologies they may be applicable and valid, in general they are rarely used because of their slowness and because they do not allow to combine the work of digging with the data measure itself, since the measurement requires a work area cleared of people. Other outdoor location techniques by radio frequency trilateration that are currently used as GPS, DGPS, etc. are not applicable due to precision problems, since they do not reach the 5 mm that are delayed in this type of applications, and also for coverage problems since in some cases they work in narrow places with poor satellite vision.
En la literatura existen trabajos que plantean la realización de dispositivos para estimar la posición XYZ de objetos utilizando ondas de presión, en concreto ultrasonidos (US 6141293, US 6317386). Esta técnica conocida como trilateración ultrasónica consiste en la colocación de un emisor ultrasónico en el punto cuyas coordenadas queremos averiguar, y colocar una serie de receptores en posiciones conocidas en la periferia del volumen de trabajo. Generando un pulso ultrasónico podemos medir el tiempo que tarda en llegar a cada uno de los receptores. Conociendo estos tiempos, que deben ser al menos tres, es posible estimar la posición XYZ del emisor. La aplicación directa de esta técnica en el problema de registro arqueológico no es posible por varios motivos: Los ultrasonidos , y en general las ondas acústicas, necesitan un camino directo Ubre entre el emisor y los receptores para propagarse en línea recta y poder medir correctamente la distancia entre emisor y receptor. Por tanto la posición de un emisor colocado directamente sobre el objeto normalmente no podrá ser estimada por las oclusiones provocadas por los cuerpos de los múltiples operarios. Los ultrasonidos, y en general las ondas acústicas de presión las cuales necesitan de un medio como el aire para propagarse, son sensibles a las corrientes de aire. Esto implica que al trabajar en exteriores la existencia de aire puede introducir errores muy significativos en las medidas (aprox. lcm de error por cada m/seg en la velocidad del aire, siendo este factor proporcional a la distancia emisor-receptor) El sistema sensorial objeto de esta invención consiste en la mejora del conocido principio de medida por trilateración ultrasónica o sónica, para obtener un nuevo producto aplicable en el sector paleo-arqueológico del registro de objetos en exteriores, con requerimientos de precisión de unos 5 mm, y espacios de trabajo medios de entre unos pocos metros cuadrados y unos cientos de metros cuadrados. Este sistema sensorial podría ser aplicable como localizador en otros .ámbitos con requerimientos similares. Referencias: US 6141293, Amorai-Moriya, "Ultrasonic positioning and tracking system", Oct., 2000 US 6317386, Ward ,"Method of increasing the capacity and addressing rate of .an ultrasonic location system", 13 noviembre, 2001 BREVE DESCRIPCIÓN DE LA INVENCIÓNIn the literature there are works that propose the realization of devices to estimate the XYZ position of objects using pressure waves, specifically ultrasound (US 6141293, US 6317386). This technique known as ultrasonic trilateration consists of placing an ultrasonic emitter at the point whose coordinates we want to find out, and placing a series of receivers in known positions on the periphery of the work volume. By generating an ultrasonic pulse we can measure the time it takes to reach each of the receivers. Knowing these times, which must be at least three, it is possible to estimate the XYZ position of the issuer. The direct application of this technique in the archaeological record problem is not possible for several reasons: Ultrasound, and in general sound waves, need a direct path between the emitter and the receivers to propagate in a straight line and to correctly measure the Distance between sender and receiver. Therefore, the position of a transmitter placed directly on the object cannot normally be estimated by the occlusions caused by the bodies of the multiple operators. Ultrasound, and in general sound pressure waves which need a medium like air to propagate, are sensitive to air currents. This implies that when working outdoors the existence of air can introduce very significant errors in the measurements (approx. Lcm of error for each m / sec in the air velocity, this factor being proportional to the emitter-receiver distance) The sensory system The object of this invention consists in the improvement of the known principle of measurement by ultrasonic or sonic trilateration, to obtain a new product applicable in the paleo-archaeological sector of the registration of objects in exteriors, with precision requirements of about 5 mm, and spaces of I work means between a few square meters and a few hundred square meters. This sensory system could be applicable as a locator in other areas with similar requirements. References: US 6141293, Amorai-Moriya, "Ultrasonic positioning and tracking system", Oct., 2000 US 6317386, Ward, "Method of increasing the capacity and addressing rate of .an ultrasonic location system", November 13, 2001 BRIEF DESCRIPTION OF THE INVENTION
El dispositivo objeto de la invención, es un sistema sensorial basado en el concepto de medición acústica por trilateración que junto con una serie de novedades reivindicadas en esta patente, permite medir la posición de un objeto de interés en sus tres coordenadas cartesianas X, Y y Z con una precisión milimétrica en entornos exteriores con corrientes de aire e incluso cuando el objeto a localizar no es visible respecto a las balizas estáticas necesarias para aplicar el principio de trilateración. Además permite obtener el perfil o contorno del objeto con lo cual se logra su caracterización en cuanto a forma y orientación respecto a su eje mayor de simetría. El sistema sensorial está concebido a partir de los requisitos de localización en excavaciones de tipo paleo-arqueológicas, pudiéndose aplicar directamente en este sector ya que resuelve los problemas con los que actualmente se encuentran: medidas con reticulado manual pocos precisas y repetitivas; dichos aperos de medida causan una división y estructuración artificial del entorno de excavación, y por otro lado las técnicas alternativas (estaciones totales, teodolitos y fotogrametría) son lentas, no permiten simult.anear excavación con toma de datos, y por la topología de la excavación en bastantes casos no son aplicables. No obstante el dispositivo sensorial objeto de protección puede ser aplicado en otros sectores donde se requiera locaüzación absoluta XYZ, exterior o interior, con precisión milimétrica, áreas de trabajo pequeñas- medianas, y el objeto a medir no tenga una visión directa sobre las balizas fijas colocadas en posiciones conocidas que son necesarias para oper.ar según el principio de trilateración.The device object of the invention, is a sensory system based on the concept of acoustic measurement by trilateration that together with a series of novelties claimed in this patent, allows to measure the position of an object of interest in its three Cartesian coordinates X, Y and Z with pinpoint accuracy in outdoor environments with air currents and even when the object to be located is not visible with respect to the static beacons necessary to apply the principle of trilateration. It also allows obtaining the profile or contour of the object with which its characterization is achieved in terms of shape and orientation with respect to its major axis of symmetry. The sensory system is conceived from the location requirements in paleo-archaeological excavations, being able to be applied directly in this sector since it solves the problems they are currently facing: measures with manual crosslinking few precise and repetitive; These measuring implements cause an artificial division and structuring of the excavation environment, and on the other hand the alternative techniques (total stations, theodolites and photogrammetry) are slow, they do not allow simultaneous excavation with data collection, and by the topology of the Excavation in many cases are not applicable. However, the sensory device object of protection can be applied in other sectors where XYZ absolute location is required, exterior or interior, with pinpoint accuracy, small-medium work areas, and the object to be measured does not have a direct view on the fixed beacons. placed in known positions that are necessary to operate according to the principle of trilateration.
Las ventajas fundamentales de este dispositivo frente a otros desde el punto de vista de la aplicación en el sector de las excavaciones arqueológicas son: Mide X, Y, Z, Orientación y Forma de los objetos de interés de una forma más precisa, repetitiva y objetiva que los métodos aplicables actualmente. De esta forma la información registrada es más fiable y completa, de cara a un tratamiento de análisis posterior. Además, ya que las medidas se obtienen digitalmente, se posibilita el registro automático en unidad de almacenamiento evitando el apunte manual en cuadernos. Posibilita la operación simultánea del proceso de excavación y registro de las coordenadas de los hallazgos, al separar el área de excavación del área de medida, ya que mediante esta innovación la medida se realiza en un plano superior al ocupado por los operarios en la excavación. Esto supone una mayor productividad. Los desafíos y mejoras tecnológicas solventadas con esta invención, desde el punto de vista de la tecnología ultrasónica por trilateración y sujeta a restricciones de precisión operatividad, simplicidad y coste, son:The fundamental advantages of this device over others from the point of view of application in the field of archaeological excavations are: Measures X, Y, Z, Orientation and Shape of objects of interest in a more precise, repetitive and objective way than the methods currently applicable. In this way, the information registered is more reliable and complete, with a view to further analysis. In addition, since the measurements are obtained digitally, automatic registration in the storage unit is made possible by avoiding manual entry in notebooks. It allows the simultaneous operation of the process of excavation and registration of the coordinates of the findings, by separating the excavation area from the measurement area, since by means of this innovation the measurement is carried out in a plane superior to that occupied by the operators in the excavation. This means greater productivity. The challenges and technological improvements solved with this invention, from the point of view of ultrasonic technology by trilateration and subject to restrictions of operational accuracy, simplicity and cost, are:
Se posibilita medir objetos situados en lugares sin tener una visión directa con un mínimo número de balizas posicionadas en lugares fijos y conocidos. Para ello se utiliza una pértiga que separa el punto de medida de los transductores de emisión ultrasónica. La propia orientación de la pértiga se detecta sin sensores adicionales de inclinación/orientación utilizando dos, o más, transductores en la parte superior de la pértiga. Se posibilita la utilización de señales sónicas o ultrasónicas en el aire para realizar medidas de distancia en entornos exteriores a pesar de las corrientes de aire, mediante una técnica que hace uso del propio sistema de medición ultrasónico junto con un emisor extra situado en un lugar fijo en medio del .área de trabajo. Mediante la medida de la posición de este emisor fijo y un procesamiento adecuado se detectan las corrientes de aire y se compensan los errores introducidos en las medidas. Otra técnica alternativa propuesta para cancelar los efectos negativos del viento en la precisión en la determinación de posición, consiste en la propagación bi-direccional de las señales acústicas entre las balizas y la pétiga, mediante la utilización de trasductores por pares emisor/receptor y actuando los trasductores en uno de los extremos como repetidores de señal para crear la señal de vuelta.It is possible to measure objects located in places without having a direct vision with a minimum number of beacons positioned in fixed and known places. For this, a pole is used that separates the measuring point of the ultrasonic emission transducers. The pole orientation itself is detected without additional tilt / orientation sensors using two, or more, transducers at the top of the pole. It is possible to use sonic or ultrasonic signals in the air to perform distance measurements in outdoor environments despite air currents, using a technique that makes use of the ultrasonic measurement system itself together with an extra emitter located in a fixed place in the middle of the work area. By measuring the position of this fixed emitter and proper processing, the air currents are detected and the errors introduced in the measurements are compensated. Another alternative technique proposed to cancel the negative effects of the wind on the accuracy in the position determination, consists in the bi-directional propagation of the acoustic signals between the beacons and the pétiga, by means of the use of transducers by emitter / receiver pairs and acting the transducers at one end as signal repeaters to create the return signal.
Se posibilita la auto-calibración o la determinación de las posiciones de las balizas fijas utilizando el propio sistema de medida ultrasónico junto con dos o más puntos en el volumen de trabajo, con coordenadas XYZ conocidas, y un apero que de forma pasiva coloca la pértiga en posición vertical sobre cada uno de los tres puntos. Por t.anto asumiendo disponibles estos dos o más puntos con coordenadas XYZ conocidos en la excavación, no es necesario ningún dispositivo externo o adicional para calibrar el sistema y ponerlo en marcha. BREVE DESCRIPCIÓN DEL CONTENDIÓ DE LAS FIGURASSelf-calibration or determination of the positions of the fixed beacons is possible using the ultrasonic measurement system itself together with two or more points in the work volume, with known XYZ coordinates, and an implement that passively places the pole in an upright position on each of the three points. Therefore, assuming these two or more points with known XYZ coordinates available in the excavation are available, no external or additional device is necessary to calibrate the system and start it up. BRIEF DESCRIPTION OF THE CONTENT OF THE FIGURES
La figura 1 muestra una visión general de la configuración del sistema sensorial de localización y caracterización de hallazgos y del modo de operación y uso por parte de uno o varios excavadores/recolectores. La figura 2 muestra la configuración detallada de la pértiga a utilizar para localizar hallazgos, indicando la colocación de los dos transductores ultrasónicos, y detalles de ubicación de la electrónica, pulsadores y cableados internos.Figure 1 shows an overview of the configuration of the sensory system for locating and characterizing findings and the mode of operation and use by one or several excavators / collectors. Figure 2 shows the detailed configuration of the pole to be used to locate findings, indicating the placement of the two ultrasonic transducers, and details of the location of the electronics, push-buttons and internal wiring.
La figura 3 muestra el apero concebido para colocar la pértiga verticalmente de forma pasiva y simplificar y hacer operativo el proceso de auto-calibrado utilizando el propio sistema sensorial basado en ultrasonidos para averiguar las coordenadas de los transductores en posiciones fijas.Figure 3 shows the implement designed to place the pole vertically passively and simplify and make the self-calibration process operational using the ultrasonic-based sensory system itself to find out the coordinates of the transducers in fixed positions.
La figura 4 muestra una visión general de otra posible configuración del sistema sensorial, en particular de la ubicación de las balizas fijas sobre una techumbre en vez de sobre posters verticales fijos como ocurre en la figura 1. Se muestra la pértiga para el caso en el que se utilice propagación bi-direccional y por tanto se necesitan parejas de trasductores emisores/receptores.Figure 4 shows an overview of another possible configuration of the sensory system, in particular the location of the fixed beacons on a roof instead of fixed vertical posters as in Figure 1. The pole is shown for the case in the that bi-directional propagation is used and therefore pairs of transmitter / receiver transducers are needed.
DESCRD7CIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
El dispositivo sensorial que se describe en esta patente, es un dispositivo de medida basado en el concepto de medición acústica por trilateración que junto con una serie de novedades innovadoras posibilita en especial la medición de coordenadas y la caracterización de hallazgos en aplicaciones paleo-arqueológicas. Un concepto similar también se podría aplicar en otros sectores de aplicación con requisitos similares. Este sistema sensorial permite medir la posición de un objeto de interés en sus tres coordenadas cartesianas X, Y y Z con una precisión milimétrica en entornos exteriores con corrientes de aire e incluso cuando el objeto a localizar no es visible respecto a las balizas estáticas necesarias para aplicar el principio de trilateración. Además permite obtener el perfil o contorno del objeto con lo cual se logra su caracterización en cuanto a forma y orientación respecto a su eje mayor de simetría. El dispositivo sensorial está basado en una serie de mejoras sobre el concepto conocido de la trilateración que mide los tiempos de vuelo entre un transductor en posición móvil desconocida que puede ser utilizado como emisor o como receptor acústico; y un conjunto de balizas o transductores en posiciones fijas y conocidas alrededor del volumen de trabajo, que actúan como receptores o emisores de ondas de presión, respectivamente. Conociendo los tiempos de vuelo entre cada pareja emisor-receptor (para lo cual es necesario que exista un sincronismo de relojes en emisores y receptores) y la velocidad del sonido en el medio (aire, agua, etc), se plantean las conocidas ecuaciones de trilateración esférica (ec.l) para estimar las coordenadas x, y, z del transductor en posición desconocida, fc = tf -v; = (x-Xiγ + CV -Λ- )2 + (*-*, ?L, (βcl) donde t¡ es el tiempo de vuelo desde el trasductor en posición incógnita a cada baliza iThe sensory device described in this patent is a measuring device based on the concept of acoustic measurement by trilateration that, together with a series of innovative developments, makes possible in particular the measurement of coordinates and the characterization of findings in paleo-archaeological applications. A similar concept could also be applied in other application sectors with similar requirements. This sensory system allows to measure the position of an object of interest in its three Cartesian coordinates X, Y and Z with pinpoint accuracy in outdoor environments with air currents and even when the object to be located is not visible with respect to the static beacons necessary for apply the principle of trilateration. It also allows obtaining the profile or contour of the object with which its characterization is achieved in terms of shape and orientation with respect to its major axis of symmetry. The sensory device is based on a series of improvements on the known concept of trilateration that measures flight times between a transducer in an unknown mobile position that can be used as an emitter or as an acoustic receiver; and a set of beacons or transducers in fixed and known positions around the working volume, which act as receivers or emitters of pressure waves, respectively. Knowing the flight times between each emitter-receiver pair (for which it is necessary that there be a synchronism of clocks in transmitters and receivers) and the speed of sound in the middle (air, water, etc.), the well-known equations of spherical trilateration (ec.l) to estimate the x, y, z coordinates of the transducer in an unknown position, fc = tf -v; = (x- Xi γ + CV -Λ-) 2 + (* - *,? L, ( β cl) where t¡ is the flight time from the transducer in an unknown position to each beacon i
(i=l..n) en las posiciones conocidas x¡, y¡, z¡). vs es la velocidad del sonido en el medio. n es el número de balizas que debe ser al menos de tres para poder resolver el sistema de ecuaciones, asumiendo conocido vs, o deben de ser cuatro si se quiere estima también la velocidad del sonido.(i = l..n) in the known positions x¡, y¡, z¡). v s is the speed of sound in the middle. n is the number of beacons that must be at least three to be able to solve the system of equations, assuming known v s , or they must be four if you also want to estimate the speed of sound.
La ideas presentadas en esta invención son igualmente válidas cuando no existe sincronismo entre el emisor y los receptores. En este caso no se puede medir el tiempo de vuelo absoluto, pero utilizado una baliza más es posible medir las diferencias de tiempos de llegada respecto a la primera señal recibida en una de las balizas. A este método de trilateración se le conoce como trilateración hiperbólica. Sea cual sea el método de trilateración utilizado las ideas presentadas en esta invención son igualmente válidas y aplicables. El dispositivo sensorial, tal y como se esquematiza en la figura 1, consta de un conjunto de soportes tipo mástil (1) que están apoyados sobre unas bases (2) con el suficiente peso y superficie de apoyo como para que los mástiles no se muevan. Sobre este mástil se colocan dos, o más, balizas (3 y 4), una de ellas a media altura (4) y la otra en su extremo superior (3). Cada una de las balizas contiene un tr.ansductor acústico (piezoeléctrico, capacitivo, electromagnético, o de cualquier otra tecnología útil para captar/generar ondas de presión) que puede actuar tanto como emisor o receptor de ultrasonidos. En este último caso, la baliza contiene una electrónica de filtrado, amplificación y pre-procesado de la señal que finalmente es transferida a una unidad central de procesamiento (6) via cable (6a), u opcionalmente de forma inalámbrica. En una configuración básica se suelen utilizar de 3 a 4 de estos mástiles (1), con lo cual disponemos de un mínimo de 6 u 8 bauzas, las cuales son suficientes para obtener las ecuaciones necesarias e incluso poder añadir un cierto grado de redundancia y robustez ante oclusiones accidentales de algunas de las balizas. Con la configuración básica de cuatro mástiles, con dos balizas cada uno, tal y como se muestra en la figura se obtienen áreas de trabajo (5) típicas de unos 25 metros cuadrados (5x5 metros), no siendo recomendable separar más los mástiles para poder seguir garantizando una precisión milimétrica. De forma alternativa las balizas fijas también pueden colocarse sujetas a una techumbre sobre el área de trabajo o zona de interés, tal y como se muestra en la figura 4. Las ventajas de esta configuración sobre la mostrada en la figura 1 pueden ser varias en función del tipo de aplicación. Por un lado es menos invasiva al no requerir colocar los posters verticales sobre la misma zona de trabajo, además facilita la extensión o escalabilidad del sistema sensorial en determinadas aplicaciones cuando queremos cubrir áreas de trabajo más extensas.The ideas presented in this invention are equally valid when there is no synchronism between the sender and the receivers. In this case, the absolute flight time cannot be measured, but when using one more beacon it is possible to measure the differences in arrival times with respect to the first signal received in one of the beacons. This method of trilateration is known as hyperbolic trilateration. Whatever the method of trilateration used, the ideas presented in this invention are equally valid and applicable. The sensory device, as outlined in Figure 1, consists of a set of mast type supports (1) that are supported on bases (2) with sufficient weight and support surface so that the masts do not move . Two, or more, beacons (3 and 4) are placed on this mast, one of them at mid-height (4) and the other at its upper end (3). Each of the beacons contains an acoustic sensor (piezoelectric, capacitive, electromagnetic, or any other technology useful for capturing / generating pressure waves) that can act as both an ultrasonic emitter or receiver. In the latter case, the beacon contains an electronic filter, amplification and pre-processed signal that is finally transferred to a central processing unit (6) via cable (6a), or optionally wirelessly. In a basic configuration, 3 to 4 of these masts (1) are usually used, which means that we have a minimum of 6 or 8 bauzas, which are sufficient to obtain the necessary equations and even add a certain degree of redundancy. robustness to accidental occlusions of some of the beacons. With the basic configuration of Four masts, with two beacons each, as shown in the figure, work areas (5) typical of about 25 square meters (5x5 meters) are obtained, it is not advisable to separate the masts further to be able to continue guaranteeing millimeter accuracy . Alternatively, the fixed beacons can also be placed subject to a roof over the work area or area of interest, as shown in Figure 4. The advantages of this configuration over that shown in Figure 1 may vary depending on of the type of application. On the one hand it is less invasive because it does not require placing vertical posters on the same work area, it also facilitates the extension or scalability of the sensory system in certain applications when we want to cover more extensive work areas.
Volviendo a la figura 1, los múltiples operarios (12) que trabajan continuamente en la excavación, extrayendo objetos de interés y a continuación midiendo sus coordenadas, utilizan una pértiga (7 o 9) que colocan sobre el objeto de interés (8). Una vez colocada la pértiga en posición preferentemente próxima a la vertical sobre el objeto de interés el oper.ario (12) presiona un pulsador (7 fig.2) para generar las emisiones acústicas que permiten medir los tiempos de vuelo, en cu quiera de los sentidos, entre los trasductores de la pértiga y las balizas. La pértiga (fig.2) (7 y 9 fig.l) (3 fig.3) está hecha de material tubular rígido y ligero, y tiene unos dos metros de longitud. La parte superior de esta pértiga es a su vez el soporte de dos, o más,transductores de acústicos omnidireccionales (7a y 7b fig.l) (8 y 9 fig.2) separados unos 70 centímetros entre sí. El extremo inferior finaliza en una punta estrecha y roma (3 y 3a fig.2) que se coloca sobre el objeto, siendo este extremo inferior la posición 3D que estima el dispositivo de forma indirecta tras estimar previamente las posiciones absolutas de los dos transductores del extremo superior (8 y 9 fíg.2).Returning to Figure 1, the multiple operators (12) who work continuously in the excavation, extracting objects of interest and then measuring their coordinates, use a pole (7 or 9) that they place on the object of interest (8). Once the pole is placed in a position preferably close to the vertical on the object of interest, the operator (12) presses a button (7 fig. 2) to generate the acoustic emissions that allow the measurement of flight times, in case of the senses, between the transducers of the pole and the beacons. The pole (fig. 2) (7 and 9 fig. 1) (3 fig. 3) is made of rigid and lightweight tubular material, and is about two meters long. The upper part of this pole is in turn the support of two, or more, omnidirectional acoustic transducers (7a and 7b fig. 1) (8 and 9 fig. 2) separated about 70 centimeters from each other. The lower end ends at a narrow, blunt tip (3 and 3 fig. 2) that is placed on the object, this lower end being the 3D position that the device estimates indirectly after previously estimating the absolute positions of the two transducers of the upper end (8 and 9 fig. 2).
Como se detalla en la figura 2, la pértiga (1) se compone en realidad de dos segmentos de tubo (1 y 2) que están unidos por una pieza (11) empotrada en los extremos de ambos segmentos. La pieza de unión (11 fig.2), puede ser como la mostrada en la figura, que tiene un di.ametro de menos del centímetro en su parte central (10), sirve de soporte al trasductor central (8) que debe ser cilindrico, y a su vez está perforado para permitir el paso de cables (12) hacia el trasductor superior (9). Alternativamente, la pieza de unión entre el segmento inferior y superior puede ser un enrejillado vertical de forama cilindrico con diámetro similar al de los tubos, quedando los trasductores cubiertos y semi-ocultos por este soporte enrejillado. Sobre el segmento inferior (1) se ubica un pulsador (7), o cualquier otro dispositivo que posibilite la entrada de comandos, para permitir al operario indica cuando quiere realizar una medida. Dentro del segmento inferior (1) se ubica la electrónica necesaria de comunicación, procesamiento o excitación (6), y también las baterías (4) que se pueden recargar a través de un conector tipo jack (5), o similar.As detailed in Figure 2, the pole (1) is actually composed of two tube segments (1 and 2) that are joined by a piece (11) embedded in the ends of both segments. The connecting piece (11 fig.2), can be like the one shown in the figure, which has a diameter of less than a centimeter in its central part (10), serves as a support for the central transducer (8) that must be cylindrical, and in turn is perforated to allow the passage of cables (12) to the upper transducer (9). Alternatively, the connecting piece between the lower and upper segment can be a vertical grid of cylindrical foil with a diameter similar to that of the tubes, the transducers being covered and semi-hidden by this gridded support. On the lower segment (1) a button (7), or any other device that allows the entry of commands, is located to allow the operator to indicate when he wants to make a measurement. Within the lower segment (1) the necessary communication, processing or excitation electronics (6) are located, and also the batteries (4) that can be recharged through a jack type connector (5), or similar.
Alternativamente, y en el caso de que las balizas se encuentren en una techumbre (fig. 4) los trasductores a utilizar en la pértiga deberán estar orientados hacia arriba o se deberán colocar elementos reflectores, para permitir la correcta propagación de las señales acústicas en direcciones entorno a la vertical (+/-50 grados) entre la pértiga en posición inferior y las balizas en posición superior, o en dirección de propagación inversa, es decir de las balizas a la pértiga.Alternatively, and in the event that the beacons are on a roof (fig. 4) the transducers to be used on the pole must be oriented upwards or reflector elements must be placed, to allow the correct propagation of the acoustic signals in directions around the vertical (+/- 50 degrees) between the pole in the lower position and the beacons in the upper position, or in the direction of reverse propagation, that is, from the beacons to the pole.
El dispositivo sensorial haciendo uso de la pértiga descrita (fig.2) está caracterizado por ser capaz de medir las posiciones de los objetos sobre el terreno, incluso si paralelamente existen operarios (12 fig.l) realizando labores de excavación, ya que los caminos de propagación de las señales acústicas entre los transductores de emisión y recepción quedan libres de obstáculos al realizarse la transmisión en un plano superior al de los objetos (8 fig.l) y operarios (12 fig.l). El sistema sensorial haciendo uso de la estimación previa de los dos transductores del extremo superior (8 y 9 fig.2) de la pértiga está caracterizado por conocer en todo momento la orientación de la pértiga sin requerir el uso de sensores adicionales tipo inclinómetros y brújulas. Además, esta configuración basada en pértiga con transductores acústicos en su extremo superior posibilita la medida en lugares de difícil acceso, ya que al no ser un requisito mantener la pértiga totalmente vertical, es posible orientar e inclinar la pértiga hasta colocar su extremo sobre un objeto semi-escondido. Es posible localizar concurrentemente varias pértigas (7 y 9 fig.l), lo cual es imprescindible para que varios operarios puedan realizar medidas a la vez utilizando cada uno su pértiga. Para posibilitar la localización simultánea de varias pértigas se recurre al multiplexado temporal, que en realidad utiliza mediciones secuenciales pero que de cara la usuario aparecen como simultáneas debido a un retardo típico de menos de 200 milisegundos desde que el operario hace la petición de medida hasta que esta realmente ocurre. Otras alternativas, útiles cuando las demandas de medida son muy altas (p.ej. más de diez demandas por segundo) son la utilización de emisiones acústicas a diferentes frecuencias, y la codificación individual, mediante códigos pseudoaleatórios (Gold, Golay, o cualquier otro método de codificación con buenas propiedades de autocorrelación), de las señales de excitación acústicas.The sensory device making use of the described pole (fig. 2) is characterized by being able to measure the positions of objects on the ground, even if there are operators in parallel (12 fig. 1) performing excavation work, since the roads of propagation of the acoustic signals between the transmitting and receiving transducers are free of obstacles when the transmission is carried out in a plane superior to that of the objects (8 fig.l) and operators (12 fig.l). The sensory system using the previous estimation of the two transducers of the upper end (8 and 9 fig.2) of the pole is characterized by knowing at all times the orientation of the pole without requiring the use of additional sensors type inclinometers and compasses . In addition, this pole-based configuration with acoustic transducers at its upper end allows measurement in hard-to-reach places, since it is not a requirement to keep the pole fully vertical, it is possible to orient the pole until its end is placed on an object semi-hidden It is possible to locate several poles concurrently (7 and 9 fig.l), which is essential so that several operators can perform measurements at the same time using each pole. To enable the simultaneous location of several poles, temporary multiplexing is used, which actually uses sequential measurements but which the user appears as simultaneous due to a typical delay of less than 200 milliseconds since the operator makes the measurement request until This really happens. Other alternatives, useful when the measurement demands are very high (eg more than ten demands per second) are the use of acoustic emissions at different frequencies, and the individual coding, by means of pseudorandom codes (Gold, Golay, or any other coding method with good autocorrelation properties), of the acoustic excitation signals.
Las pértigas utilizadas por el dispositivo sensorial son inalámbricas e incorporan baterías (4 fig.2) y una electrónica (6 fig.2) adecuada para comunicar el sistema central de procesamiento (6 fig.l) y las pértigas vía radio, infrarrojos, bluetooth o Wireless LAN. El sistema central de procesamiento (6 fig.l) que forma parte del dispositivo sensorial, puede estar basado en una arquitectura estándar de procesamiento tipo PC, y es donde se centralizan los cálculos de estimación, la resolución de los sistemas de ecuaciones de trilateración tanto esférica (ec.l) como hiperbólica, y por tanto el elemento que conoce la ubicación de los hallazgos. Esta unidad central de procesamiento (6 fig.l) comunica la información de posicionamiento de los hallazgos por líneas inalámbricas con protocolos RS-232, TCP/IP, etc p.ara que un periférico visualizador tipo LCD, un ordenador de mano (PDA) o una agenda electrónica, situados próximos a cada pértiga, puedan visualizar y registrar las medidas de posición.The poles used by the sensory device are wireless and incorporate batteries (4 fig.2) and an electronics (6 fig.2) suitable for communicating the central processing system (6 fig.l) and the poles via radio, infrared, bluetooth o Wireless LAN. The central processing system (6 fig.l) that is part of the sensory device, can be based on a standard PC-type processing architecture, and it is where the estimation calculations are centralized, the resolution of the systems of equations of trilateration both spherical (ec.l) as hyperbolic, and therefore the element that knows the location of the findings. This central processing unit (6 fig.l) communicates the positioning information of the findings by wireless lines with RS-232, TCP / IP protocols, etc. for a peripheral LCD type display, a handheld computer (PDA) or an electronic agenda, located next to each pole, can visualize and record the position measurements.
Los sistemas de trilateración por propagación acústica en un medio (aire, agua, etc) son sensibles a la corriente existente en dicho medio (viento, corrientes marinas, etc) ya que esta se acopla directamente a la velocidad del sonido, vs, falseando las medidas de posición. Si la velocidad del medio, que en particular para la aplicación arqueológica es el aire, se descompone en la velocidad del aire longitudinal al camino de propagación emisor-receptor, va¡, y en la velocidad del aire tangencial a esta línea de propagación, vat, entonces se puede expresa la velocidad del sonido aparente, vsa (que incluye el acoplamiento del medio o aire en movimiento), como:Acoustic propagation trilateration systems in a medium (air, water, etc.) are sensitive to the current in that medium (wind, sea currents, etc.) since it is directly coupled to the speed of sound, v s , distorting Position measurements If the velocity of the medium, which in particular for the archaeological application is air, decomposes in the velocity of the longitudinal air to the emitter-receiver propagation path, v to ¡, and in the speed of the tangential air to this propagation line, v a t, then the speed of the apparent sound, v sa (which includes the coupling of the moving medium or air), can be expressed as:
Figure imgf000012_0001
Se puede apreciar (ec. 2), que hay un término dependiente de vM dentro de la raiz cuadrada que es muy próximo a la unidad, pero el término correspondiente a la velocidad del aire longitudinal, va¡, se suma directamente a la velocidad del sonido, y es el aspecto que más afecta en los errores de posición. Para distancias de 3,4 metros una velocidad del aire de 1 metro/segundo provoca un error de 1 centímetro distribuido en las coordenadas x,y,z del objeto a medir.
Figure imgf000012_0001
It can be seen (ec. 2), that there is a term dependent on v M within the square root that is very close to the unit, but the term corresponding to the longitudinal air velocity, v a ¡, is directly added to the speed of sound, and is the aspect that most affects position errors. For distances of 3.4 meters an air velocity of 1 meter / second causes an error of 1 centimeter distributed in the x, y, z coordinates of the object to be measured.
El dispositivo sensorial objeto de esta invención es capaz de compensar y eliminar los errores de posición debidos al efecto del viento, o del medio en eeneral. mediante dos estrategias complementaria o alternativas. La primera utiliza uno o más tr.ansductores (10 fig.l o 10 fig 4) en posiciones conocidas colocados sobre soporte fijos (11 fig.l o 11 fig.4) en torno al centro del volumen de trabajo. Es posible estimar las corrientes de aire que se producen en el espacio de trabajo, tanto su intensidad como su dirección. Esto se consigue gracias al planteamiento de las ecuaciones de trilateración (ec.l), particularizadas al caso en que la velocidad del sonido depende de la velocidad vectorial del aire (ec.2). En este sistema de ecuaciones todos los parámetros correspondientes a las posiciones fijas de los transductores que emiten y reciben son conocidas, y la velocidad del aire es la incógnita a estimar. Una vez medida la velocidad del aire, que se asume es homogénea dentro del volumen de trabajo, se plantean de nuevo las ecuaciones de trilateración (ec.l) incluyendo el valor del aire estimado y se mide la coordenada XYZ incógnita sin errores provocados por los efectos del aire. Es importante matizar que la estimación de la posición es independiente de la velocidad del aire cuando esta es uniforme y no turbulenta en el volumen de propagación de los ultrasonidos.The sensory device object of this invention is capable of compensating and eliminating position errors due to the effect of wind, or of the medium in general. by two complementary or alternative strategies. The first uses one or more tr.ansductors (10 fig. 10 fig. 4) in known positions placed on fixed supports (11 fig. 11 fig. 4) around the center of the working volume. It is possible to estimate the air currents that occur in the workspace, both its intensity and its direction. This is achieved thanks to the approach of the trilateration equations (ec.l), particularized to the case in which the speed of sound depends on the vector velocity of the air (ec.2). In this system of equations all the parameters corresponding to the fixed positions of the transducers that emit and receive are known, and the air velocity is the unknown to estimate. Once the air velocity, which is assumed to be homogeneous within the work volume, is measured, the trilateration equations (ec.l) are raised again including the estimated air value and the unknown XYZ coordinate is measured without errors caused by the air effects It is important to clarify that position estimation is independent of air velocity when it is uniform and not turbulent in the volume of ultrasound propagation.
La otra estrategia contemplada, que es más directa aunque más compleja de implementar, para elimina los errores de posición debidos al efecto del viento consiste en que la propagación de las señales acústicas entre l.as balizas y los trasductores en la pértiga sea bidireccional, es decir de ida y vuelta. Esta estrategia compensa de forma directa la componente longitudinal del viento a lo largo del eje de propagación, elimin.ando dicho efecto indeseable. La implementación es más compleja pues supone que tanto las balizas como la pértiga diφongan de trasductores de recepción y de emisión colocados en parejas y muy próximos entre sí. Esta solución requiere duplicar el número de trasductores acústicos e incorporar una etapa, bien en las balizas o en la pértiga, actuando como repetidor de señal para conseguir la emisión en los dos sentidos. Ambas estrategias se complementan pues la primera, aparte de atenuar el efecto del viento en las componentes trasversales no eliminadas por el segundo método, permite a su vez obtener de forma precisa la velocidad del sonido, mejorado la precisión de la medida de posición. El dispositivo sensorial es capaz de medir las coordenadas XYZ del objeto de interés (8 fig.l) con una precisión absoluta menor de 5 mm, posibilitando la medida del perfil del objeto, mediante posicionamiento secuencial de la pértiga a lo largo del contorno del objeto bajo medición, gracias a una resolución menor del milímetro, y a partir de este contorno la orientación del objeto basándose en su eje mayor de simetría. Estas características son valores típicos que incluyen la operación en exteriores con posibles corrientes de aire y operando en volúmenes de trabajo (5 fíg.l) de hasta 25 metros cuadrados en una configuración mínima de 3 a 8 balizas fijas, y con volúmenes de trabajo superiores, según necesidades, colocando más balizas fijas para cubrir todo el área de trabajo deseado.The other strategy contemplated, which is more direct but more complex to implement, to eliminate position errors due to the effect of the wind is that the propagation of the acoustic signals between the beacons and the transducers in the pole is bidirectional, is say back and forth. This strategy directly compensates for the longitudinal component of the wind along the propagation axis, eliminating this undesirable effect. The implementation is more complex because it implies that both the beacons and the pole diφongan of reception and emission transducers placed in pairs and very close to each other. This solution requires doubling the number of acoustic transducers and incorporating a stage, either in the beacons or in the pole, acting as a signal repeater to achieve the two-way emission. Both strategies complement each other because the first one, apart from attenuating the effect of the wind on the transverse components not eliminated by the second method, allows in turn to obtain in a precise way the speed of the sound, improving the precision of the position measurement. The sensory device is capable of measuring the XYZ coordinates of the object of interest (8 fig.l) with an absolute precision of less than 5 mm, enabling the measurement of the object's profile, by sequential positioning of the pole along the contour of the object under measurement, thanks to a smaller resolution of the millimeter, and from this outline the orientation of the object based on its major axis of symmetry. These characteristics are typical values that include outdoor operation with possible air currents and operating in work volumes (5 fig.) Of up to 25 square meters in a minimum configuration of 3 to 8 fixed beacons, and with higher work volumes , according to needs, placing more fixed beacons to cover the entire desired work area.
Un aspecto muy importante y previo a la utilización práctica del dispositivo medidor es el calibrado, o medición de las coordenadas de los transductores en las balizas fijas (3a y 4a fig.l) que hasta ahora habíamos asumido como conocidas. En la práctica la ubicación de las balizas no son conocidas, ya que se colocan manualmente en torno a la periferia del área de trabajo (5 fig.l) a cubrir. Para realizar la calibración se podría utiliza una estación total sin reflector apuntando sobre cada uno de los trωsductores en posiciones fij.as, este método a parte de requerir una instrumentación muy cara es bastante lenta. El sistema de medida descrito incorpora un método de auto-calibrado basado en colocar con precisión la pértiga (fig.2) (3 fig.3) en posición vertical sobre dos o más puntos de referencia con coordenadas XYZ conocidas (5 fig.3). Por cada posicionamiento vertical de la pértiga sobre una referencia se generan y se añaden dos ecuaciones más al sistema de ecuaciones planteado para averiguar la posición de cada una de las balizas fijas con posiciones iniciales incógnita (3a y 4a fig.l). Una vez que cada sistema de ecuaciones tiene el suficiente número de ecuaciones para ser resuelto, se obtienen cada una de las coordenadas de las balizas fijas (3a y 4a fig.l).A very important aspect and prior to the practical use of the measuring device is the calibration, or measurement of the coordinates of the transducers in the fixed beacons (3a and 4a fig.l) that we had so far assumed as known. In practice, the location of the beacons are not known, since they are placed manually around the periphery of the work area (5 fig.l) to be covered. To perform the calibration, a total station without a reflector could be used, pointing to each of the transducers in fixed positions, this method, apart from requiring very expensive instrumentation, is quite slow. The described measurement system incorporates a self-calibration method based on precisely placing the pole (fig.2) (3 fig.3) in an upright position on two or more reference points with known XYZ coordinates (5 fig.3) . For each vertical positioning of the pole on a reference, two more equations are generated and added to the system of equations proposed to find out the position of each of the fixed beacons with unknown initial positions (3rd and 4th fig. 1). Once each system of equations has a sufficient number of equations to be solved, each of the coordinates of the fixed beacons is obtained (3rd and 4th fig. 1).
En el auto-calibrado (figura 3), para posicionar la pértiga (3) en posición vertical el sistema sensorial se caracteriza por disponer de un accesorio basado en un trípode (1) con una plataforma perforada (la) de unos 10 centímetros de di.ámetro sobre la cual se apoya un soporte (2a) de una rótula (2) con su eje central perforado por donde pasa y se soporta la pértiga (3). Esta pértiga (3) por medio de un contrapeso (4) se mantiene en posición vertical por gravedad sobre la referencia de coordenadas conocidas (5). Una vez la pértiga colocada pasivamente en vertical, la regulación de la posición en X-Y del extremo inferior de la pértiga (3a fig.2) para que apunte precisamente sobre la referencia (5 fig.3), se realiza empujando manualmente el soporte (2a fig.3) sobre la plataforma (la fig.3). El método de auto-calibrado se caracteriza por no requerir ningún dispositivo especial de medida de coordenadas de las balizas fijas, ya que solo hace uso del propio sistema sensorial ultrasónico (fig.l), un apero para mantener la pértiga vertical (fig.3), y el conocimiento de las coordenadas XYZ de dos o más referencias fijas (5 fig.3) dentro de la excavación. Este método de auto-calibrado es válido tanto para una configuración mínima de 3 a 8 receptores, como para una configuración múltiple cubriendo .amplias superficies, sin más que ir desplazando consecutivamente la pértiga verticalmente sobre diferentes puntos conocidos hasta calibrar todas las balizas en posiciones fijas. De una forma inmediata el sistema es aplicable en los sectores de la construcción, agricultura, en la gestión de la localización de objetos en almacenes, igualmente es especialmente aplicable en trabajos submarinos, y en general en todas aquellas aplicaciones donde se requiera localizar objetos en entornos donde los objetos puedan estar en lugares con ciertas dificultades de acceso, o exista gente, o cualquier otro obstáculo, que pudiera limitar la operación de sistemas de localización tradicionales, o exista poca visibilidad por fenómenos naturales o artificiales tales como nieblas, polvo o aguas turbias.In the self-calibration (figure 3), to position the pole (3) in an upright position the sensory system is characterized by having an accessory based on a tripod (1) with a perforated platform (la) of about 10 centimeters of di .meter on which a support (2a) of a kneecap (2) is supported with its perforated central axis where the pole (3) passes and is supported. This pole (3) by means of a counterweight (4) is maintained in a vertical position by gravity on the reference of known coordinates (5). Once the pole is passively placed vertically, the adjustment of the XY position of the lower end of the pole (3rd fig. 2) so that it points precisely on the reference (5th fig. 3) is performed by manually pushing the support (2nd fig.3) on the platform (fig.3). The self-calibration method is characterized by not requiring any special device for measuring fixed beacon coordinates, since it only makes use of its own Ultrasonic sensory system (fig. 1), an implement to maintain the vertical pole (fig. 3), and knowledge of the XYZ coordinates of two or more fixed references (5 fig. 3) within the excavation. This self-calibration method is valid both for a minimum configuration of 3 to 8 receivers, and for a multiple configuration covering .ample surfaces, without more than consecutively moving the pole vertically on different known points until all beacons are calibrated in fixed positions . In an immediate way the system is applicable in the construction, agriculture, in the management of the location of objects in warehouses, it is also especially applicable in underwater works, and in general in all those applications where it is required to locate objects in environments where objects can be in places with certain access difficulties, or there are people, or any other obstacle, which could limit the operation of traditional location systems, or there is little visibility due to natural or artificial phenomena such as fogs, dust or turbid waters .
EJEMPLOSEXAMPLES
Como ejemplo de realización de esta invención, y concretando la configuración descrita en la figura 1, podemos utilizar un total de 4 mástiles (1) cada uno de ellos con dos balizas (3 y 4), la inferior (4) a 1,20 metros del suelo y la superior (3) a 2,10 metros del suelo, es decir, separadas entre sí 90 centímetros. El mástil está hecho de tubo de aluminio de 30 mm de diámetro. Los tr.ansductores (3a y 4a) alojados en cada baliza son cerámicas piezo eléctricas de la casa Murata y de tipo MA40A5R, es decir son transductores receptores que se utilizarán como sensores ultrasónicos y tienen una frecuencia de resonancia entorno a 40 kHz. Si se opta por una configuración como la de la figura A, donde las balizas están en el techo, y además se quiere utilizar propagación bi-direccional de las señales acústicas para cancelar el movimiento del medio, y también codificación pseudoaleatoria en las señales generadas para facilitar la medición simultánea, entonces se recomienda utiliza dos traductores acústicos de banda ancha en las balizas (un emisor y un receptor) para en una primera fase emitir y en una segunda recibir la señal re enviada por la pértiga. En este caso se podrían usar como emisores tweeters (altavoces sónicos que incluso llegan a la banda ultrasónica, >20 kHz) con anchos de banda de al menos 15 kHz, como el modelo CP13 de Nisaton. Como elemento receptor se utilizarían micrófonos miniatura de al menos el mismo .ancho de banda que el altavoz, como por ejemplo el modelo VM- 61 B de Panasonic Industrial. La pareja altavoz y micrófono se montarían uno sobre el otro de tal forma que los centros de emisión del altavoz estuviese lo mas cerca del centro acústico del micrófono. En la primera alternativa los emisores ultrasónicos fig. 1 (7a y 7b) van embarcados en las pértigas inalámbricas (7 y 9), a una altura de 1,30 respecto a la punta inferior (7b) y en el extremo superior a una altura de 2,00 metros (7a). Estos transductores son emisores ultrasónicos piezoeléctricos de tipo PVDF y con forma cilindrica, por ejemplo el modelo US40KT-01 de la casa Measurement Specialities Inc, que trabajan en la banda de 40 kHz. En el caso de la segunda alternativa (balizas techo, emisión bidireccional, trasductores de buen ancho de banda), los traductores PNDF cilindricos se sustituirían por parejas altavoz/micrófono, como por ejemplo el modelo CP13 de Visaron y el modelo VM-61B de Panasonic Industrial, o cualquier otra pareja de trasductores de similares características. La pértiga incluiría también la electrónica para hacer funciones de repetidor acústico, evitando el acoplamiento cambiando las frecuencias y filtrando.As an example of embodiment of this invention, and specifying the configuration described in Figure 1, we can use a total of 4 masts (1) each with two beacons (3 and 4), the lower one (4) to 1.20 meters from the ground and the upper one (3) at 2.10 meters from the ground, that is, 90 centimeters apart. The mast is made of 30 mm diameter aluminum tube. The transducers (3rd and 4th) housed in each beacon are piezo ceramic ceramics of the house Murata and type MA40A5R, that is they are transducers receivers that will be used as ultrasonic sensors and have a resonance frequency around 40 kHz. If you choose a configuration like the one in figure A, where the beacons are on the ceiling, and you also want to use bi-directional propagation of the acoustic signals to cancel the movement of the medium, and also pseudorandom coding in the signals generated to facilitate simultaneous measurement, then it is recommended to use two broadband acoustic translators in the beacons (a transmitter and a receiver) to emit and re-receive the signal sent by the pole in a second phase. In this case, tweeters (sonic speakers that even reach the ultrasonic band,> 20 kHz) with bandwidths of at least 15 kHz, such as the N13aton CP13 model, could be used as emitters. As a receiving element, miniature microphones would be used of at least the same bandwidth as the speaker, such as the VM-61 B model of Panasonic Industrial. The speaker and microphone pair would be mounted on top of each other in such a way that the speaker emission centers were closest to the acoustic center of the microphone. In the first alternative the ultrasonic emitters fig. 1 (7a and 7b) are shipped on the wireless poles (7 and 9), at a height of 1.30 with respect to the lower tip (7b) and at the upper end at a height of 2.00 meters (7a). These transducers are piezoelectric, PVDF-type ultrasonic emitters with a cylindrical shape, for example the US40KT-01 model of the Measurement Specialties Inc house, which work in the 40 kHz band. In the case of the second alternative (ceiling beacons, bidirectional emission, transducers of good bandwidth), the cylindrical PNDF translators would be replaced by loudspeaker / microphone pairs, such as the Visaron CP13 model and Panasonic VM-61B model Industrial, or any other pair of transducers of similar characteristics. The pole would also include electronics to perform acoustic repeater functions, preventing coupling by changing frequencies and filtering.
La separación de los cuatro mástiles que definen el espacio de trabajo fig.l (5) es de 5 metros formando un cuadrado de 5 metros de lado y un área interior de 25 metros cuadrados, de los cuales aproximadamente los 20 metros cuadrados centrales tienen la cobertura adecuada para cumplir los requisitos de precisión plasmados en la descripción de la invención.The separation of the four masts that define the workspace fig.l (5) is 5 meters forming a square of 5 meters side and an interior area of 25 square meters, of which approximately 20 central square meters have the adequate coverage to meet the precision requirements set forth in the description of the invention.
Cada uno de los mástiles (fig.l), o balizas en el techo (fig.4), tiene un cable apantallado de 10 metros (6 fig. 1) que es lo suficientemente largo como para llevar las señales pre- .amplificadas de las señales acústicas, o directamente los tiempos de vuelo ya calculados, a la unidad central de proces.amiento (6). Estos cables también llev,an las alimentaciones DC necesarias para realizar el filtrado y amplificación previo a su digitalización, o un preprocesamiento digital.Each of the masts (fig. 1), or beacons on the ceiling (fig. 4), has a 10 meter shielded cable (6 fig. 1) that is long enough to carry the pre-amplified signals of the acoustic signals, or directly the flight times already calculated, to the central processing unit (6). These cables also carry the necessary DC power supplies for filtering and amplification prior to scanning, or digital preprocessing.
La unidad de procesamiento fig.l (6) puede constar de un PC (computador personal) con un micro tipo Pentium IN a 2,5 GHz, disco duro de 100 Gbytes y 512 Mbytes de memoria donde se ejecuta el softw.are de adquisición, procesamiento de señales, estimación de la posición y comunicación desarrollado en un entorno de programación C++. Esta unidad central de procesamiento consta de una etapa de amplificación con ganancia creciente con el tiempo, y de una tarjeta PCI de adquisición que se muestrea a 1MHz, p.ej utilizando la tarjeta PCI9812 de AdLink. Las señales ultr.asónicas quedan muestrcadas de tal forma que se tienen 25 muestras por cada periodo de la onda ultrasónica transmitida que es de 40 kHz.The processing unit fig.l (6) can consist of a PC (personal computer) with a 2.5 GHz Pentium IN micro type, 100 Gbytes hard disk and 512 Mbytes of memory where the acquisition software is executed , signal processing, position estimation and communication developed in a C ++ programming environment. This central processing unit consists of an amplification stage with increasing gain over time, and an acquisition PCI card that is sampled at 1MHz, eg using AdLink PCI9812 card. The ultrasonic ultrasonic signals are shown in such a way that there are 25 samples for each period of the transmitted ultrasonic wave that is 40 kHz.
En el caso en que se opte por incorporar un micro-procesador con entradas A D y salidas D/A a cada baliza (3 y 4 fig.l), entonces el PC central (6) se comunicaría para recoger los tiempos de vuelo ya calculados por las balizas, no necesit ndose realizar la conversión analógico/digital mediante una tarjeta dedicada. El PC central se descargaría de trabajo y su misión se centraría en la ejecución de los algoritmos de trilateración y en la comunicación digital con balizas y pértigas. El mástil fijo fig.l (11) que se coloca en el centro del área de trabajo tiene un único tr.ansductor emisor (10) tipo US40KT-01 de la casa Measurement Specialities Inc, y dicho mástil se regula telescópicamente en altura hasta dejar el transductor emisor (10) a una altura de 1,60 metros respecto a su base. Es decir, se coloca a media altura respecto a las alturas de los emisores superior (7a) e inferior (7b) ubicados en las pértigas. Si se opta por la solución bidireccional, en principio no es neces.ario utiliza este mástil diferencial (11), pero se recomienda su utilización para estimar de forma precisa la velocidad del sonido, y permitir cancelar incluso los términos trasversales poco significativos debidos al movimiento del medio. La pértiga que se detalla en la figura 2, debe utilizarse preferentemente en posición próxima a la vertical. Admite un ángulo de inclinación de +/- 20 grados que vienen definidos por el lóbulo de emisión de los transductores PVDF (8 y 9 fig.2) que por su configuración cilindrica no son totalmente omnidireccionales, es decir emiten en los 360° en horizontal (cuando la pértiga está en posición vertical), pero solo emiten un lóbulo de +/- 20° en vertical. El tubo utilizado en la pértiga es un tubo de aluminio de 25 mm de diámetro y por 1anto es hueco por dentro. Este hueco se utiliza para colocar la electrónica y las baterías de alimentación en su interior. Las baterías están compuestas por 10 celdas de pilas en serie de Ni-MH de 1,2 voltios cada una, para dar un total de 12 voltios, con una capacidad de corriente de 4,5 Ah y una autonomía de varios días de operación dependiendo de su uso. Gracias a que la electrónica embarcada en la pértiga está siempre desactivada salvo cuando se reahza una petición de medida, mediante el pulsador (7 fig.2), el consumo es muy bajo.In the case where you choose to incorporate a micro-processor with AD inputs and D / A outputs to each beacon (3 and 4 fig.l), then the central PC (6) would communicate to collect the flight times already calculated For the beacons, it is not necessary to perform the analog / digital conversion using a dedicated card. The central PC would download work and its mission would focus on the execution of the algorithms of trilateration and on the digital communication with beacons and poles. The fixed mast fig.l (11) that is placed in the center of the work area has a single emitter transducer (10) type US40KT-01 of the Measurement Specialties Inc house, and said mast is telescopically regulated in height until leaving the emitting transducer (10) at a height of 1.60 meters from its base. That is, it is placed at medium height with respect to the heights of the upper (7a) and lower (7b) emitters located in the poles. If the bidirectional solution is chosen, in principle it is not necessary to use this differential mast (11), but its use is recommended to accurately estimate the speed of the sound, and allow canceling even the insignificant transverse terms due to movement medium. The pole detailed in Figure 2 should preferably be used in a position close to the vertical. It admits an inclination angle of +/- 20 degrees that are defined by the emission lobe of the PVDF transducers (8 and 9 fig. 2) which, due to their cylindrical configuration, are not totally omnidirectional, that is, they emit 360 ° horizontally (when the pole is upright), but only emit a +/- 20 ° lobe vertically. The tube used in the pole is a 25 mm diameter aluminum tube and is hollow on the inside. This hole is used to place electronics and power batteries inside. The batteries are composed of 10 Ni-MH series battery cells of 1.2 volts each, to give a total of 12 volts, with a current capacity of 4.5 Ah and a range of several days of operation depending of its use Thanks to the fact that the electronics embedded in the pole are always deactivated except when a measurement request is re-activated, by means of the button (7 fig. 2), the consumption is very low.
La electrónica de excitación acústica a 40 kHz (ultrasónica) en el caso más sencillo podría generar un tren de 5 pulsos de 12 microsegundos de tiempo en alto y 13 microsegundos en bajo. El nivel de voltaje de este tren de pulsos es de 12 voltios y tras pasar por un transformador se amplifica hasta 350 voltios. El alcance del tren de pulsos ultrasónicos teniendo en cuenta la atenuación con la distancia y la relación señal ruido es de 6 metros. En el caso de necesitarse cubrir un área de trabajo mayor se replicaría esta configuración básica aquí descrita tantas veces como fuese necesario hasta cubrir todo el volumen de trabajo. En el caso de emisión codificada se podrían usar códigos Gold, por ejemplo de 31,63 o 127 bits utilizando dos símbolos senoidales por bit y modulación BPSK. En este caso los trasductores deberían tener un buen ancho de b.anda para tiasmitir fielmente la señal codificada creada. Cada baliza, o cada parte inferior o superior de la pértiga, utilizaría su propio código para distinguir de donde provienen las señales en caso de emisiones simultáneas.The acoustic excitation electronics at 40 kHz (ultrasonic) in the simplest case could generate a 5-pulse train 12 microseconds high and 13 microseconds in low. The voltage level of this pulse train is 12 volts and after passing through a transformer it is amplified up to 350 volts. The range of the ultrasonic pulse train taking into account the attenuation with the distance and the signal to noise ratio is 6 meters. In the case of needing to cover a larger work area, this basic configuration described here would be replicated as many times as necessary to cover the entire work volume. In the case of coded broadcast, Gold codes could be used, for example 31.63 or 127 bits using two sine symbols per bit and BPSK modulation. In this case the transducers should have a good bandwidth to faithfully transmit the coded signal created. Each beacon, or each lower or upper part of the pole, would use its own code to distinguish where the signals come from in case of simultaneous emissions.
El apero utilizado para mantener la barra vertical y realizar la autocalibración, que se esquematiza en la figura 3, se puede realizar a partir de un trípode estándar con regulación en altura, al cual se le añade la plataforma circular (la fig.3) de 124 mm de diámetro con una perforación de 89 mm de diámetro. Sobre esta plataforma se posa un soporte circular de 95 mm de diámetro (2a fig.3) que contiene en su centro una rótula perforada de 25 mm de diámetro interno, por donde se desliza la pértiga. Una vez bloqueada la pértiga en la rótula, la pértiga gira pivotando entorno a la rótula el ángulo suficiente como para absorber la falta de verticalidad de la base del trípode. El contrapeso es un cilindro de acero inoxidable con un taladro central de 25 mm y un peso de 2,5 kilogr.amos. Una vez la pértiga colocada pasivamente en vertical, la regulación de la posición en X-Y del extremo inferior de la pértiga (3a fig.2) para que apunte precisamente sobre la referencia (5 fig.3), se realiza empujando manualmente y deslizando el soporte (2a fig.3) sobre la plataforma (la fig.3). The implement used to maintain the vertical bar and perform the self-calibration, which is outlined in Figure 3, can be made from a standard tripod with height adjustment, to which the circular platform (Figure 3) is added. 124 mm in diameter with a perforation of 89 mm in diameter. On this platform a circular support of 95 mm in diameter is placed (2nd fig. 3) that contains in its center a perforated ball joint of 25 mm of internal diameter, through which the pole slides. Once the pole is locked in the kneecap, the pole rotates by pivoting around the kneecap at an angle sufficient to absorb the lack of verticality of the tripod base. The counterweight is a stainless steel cylinder with a central hole of 25 mm and a weight of 2.5 kilograms. Once the pole is passively placed vertically, the adjustment of the XY position of the lower end of the pole (3rd fig. 2) so that it points precisely on the reference (5 fig. 3), is done by manually pushing and sliding the support (2nd fig. 3) on the platform (fig. 3).

Claims

REIVINDICACIONES 1. Dispositivo sensorial basado en la propagación de ondas de presión para medir coordenadas de objetos, en particular, de hallazgos en excavaciones paleo- arqueológicas, caracterizado por ser capaz de medir las coordenadas XYZ de un objeto de interés con una precisión absoluta inferior a 5 mm, posibilit.ando la medida del perfil del objeto, mediante posicionamiento secuencial de la pértiga a lo largo del contorno del objeto bajo medición, gracias a una resolución inferior al milímetro, y a partir de este contorno la orientación del objeto mediante su eje mayor de simetría. Estas características son valores típicos que incluyen la operación en exteriores con posibles corrientes de aire y operando en volúmenes de trabajo (5 fig.l) de hasta 25 metros cuadrados en una configuración mínima de 3 a 8 balizas fijas, y con volúmenes de trabajo superiores, según necesidades, colocando más balizas fijas para cubrir todo el área de trabajo deseado. El dispositivo sensorial está basado en una serie de mejoras y optimizaciones hechas sobre la metodología conocida como trilateración acústica, donde se miden los tiempos de vuelo (trilateración esférica) o diferencias de tiempo de llegada (trilateración hiperbólica) entre un transductor o transductores en posiciones móviles desconocidas que pueden ser utilizados como emisores o como receptores acústicos ; y un conjunto de balizas o transductores en posiciones fijas y conocidas alrededor del volumen de trabajo, que actúan como receptores o emisores acústicos, respectivamente.CLAIMS 1. Sensory device based on the propagation of pressure waves to measure coordinates of objects, in particular, of findings in paleo-archaeological excavations, characterized by being able to measure the XYZ coordinates of an object of interest with an absolute precision lower than 5 mm, making it possible to measure the profile of the object, by sequential positioning of the pole along the contour of the object under measurement, thanks to a resolution of less than a millimeter, and from this contour the orientation of the object through its major axis of symmetry These characteristics are typical values that include outdoor operation with possible air currents and operating in work volumes (5 fig.l) of up to 25 square meters in a minimum configuration of 3 to 8 fixed beacons, and with higher work volumes , according to needs, placing more fixed beacons to cover the entire desired work area. The sensory device is based on a series of improvements and optimizations made on the methodology known as acoustic trilateration, where flight times (spherical trilateration) or arrival time differences (hyperbolic trilateration) between a transducer or transducers in mobile positions are measured unknown that can be used as emitters or as acoustic receivers; and a set of beacons or transducers in fixed and known positions around the work volume, which act as acoustic receivers or emitters, respectively.
2. Dispositivo de medida basado en la reivindicación (1), caracterizado por utilizar un pértiga (fig.2) (7 y 9 fig.l) (3 fig.3) tubular de material rígido y ligero preferiblemente de unos dos metros de longitud que colocada preferentemente en posición próxima a la vertical sirve de señalador del objeto cuya coordenada deseamos conocer (8 fig.l). La parte superior de esta pértiga es a su vez el soporte de dos, o más, transductores acústicos omnidireccionales (7a y 7b fig.l) (8 y 9 fig.2) separados del orden de unos 70 centímetros entre sí. El extremo inferior finaliza en una punta estrecha y roma (3-3a fig.2) que se coloca sobre el objeto, siendo este extremo inferior la posición 3D que estima el dispositivo de forma indirecta tras estimar previamente las posiciones absolutas de los dos transductores del extremo superior (8 y 9 fig.2).2. Measuring device based on claim (1), characterized by using a pole (fig.2) (7 and 9 fig.l) (3 fig.3) rigid and lightweight tubular material preferably about two meters in length which, preferably placed in a position close to the vertical, serves as an indicator of the object whose coordinate we wish to know (8 fig.l). The upper part of this pole is in turn the support of two, or more, omnidirectional acoustic transducers (7a and 7b fig.l) (8 and 9 fig.2) separated from the order of about 70 centimeters from each other. The lower end ends at a narrow, blunt tip (3-3a fig. 2) that is placed on the object, this lower end being the 3D position that the device estimates indirectly after previously estimating the absolute positions of the two transducers of the upper end (8 and 9 fig. 2).
3. Dispositivo de medida basado en las reivindicaciones (1 y 2), caracterizado por ser capaz de medir las posiciones de los objetos sobre el terreno, incluso si paralelamente existen operarios (10 fig.l) realizando labores de excavación, ya que los caminos de propagación de las señales acústicas entre los transductores de emisión y recepción quedan libres de obstáculos al realizarse la transmisión acústica en un plano superior al de los objetos (8 fig.l) y operarios (12 fig.l).3. Measuring device based on claims (1 and 2), characterized by being able to measure the positions of objects on the ground, even if there are operators in parallel (10 fig.l) performing excavation work, since the roads from The propagation of the acoustic signals between the emission and reception transducers is free of obstacles when the acoustic transmission is carried out in a plane superior to that of the objects (8 fig.l) and operators (12 fig.l).
4. Dispositivo de medida basado en las reivindicaciones (1, 2 y 3), que haciendo uso de la estimación de posición de los dos transductores del extremo .superior de la pértiga (8 y 9 fig.2), está caracterizado por conocer en todo momento la orientación de dicha pértiga sin requerir el uso de sensores adicionales tipo inclinómetros y brújulas. Además, esta configuración basada en pértiga con transductores acústicos en su extremo superior posibilita la medida en lugares de difícil acceso, ya que al no ser un requisito mantener la pértiga totalmente vertical, es posible orientar e inclinar la pértiga hasta colocar su extremo sobre un objeto semi-escondido.4. Measuring device based on claims (1, 2 and 3), which using the position estimation of the two transducers of the upper end of the pole (8 and 9 fig. 2), is characterized by knowing in at all times the orientation of said pole without requiring the use of additional sensors such as inclinometers and compasses. In addition, this pole-based configuration with acoustic transducers at its upper end allows measurement in hard-to-reach places, since it is not a requirement to keep the pole fully vertical, it is possible to orient the pole until its end is placed on an object semi-hidden
5. Dispositivo de medida basado en las reivindicaciones (1, 2, 3 y 4), caracterizado por permitir la localización concurrente de varias pértigas (7 y 9 fig.l) mediante multiplexado temporal, en frecuencia, o mediante codificación individual, con códigos pseudoaleatórios (Gold, Golay, o cualquier otro método de codificación con buenas propiedades de autocorrelación), de las propias señales de excitación acústicas. También se caracteriza por la utilización de pértigas inalámbricas que incorporan baterías (4 fig.2) y una electrónica (6 fig.2) adecuada para comunicar el sistema central de procesamiento y las pértigas vía radio, infrarrojos, bluetooth, Wireless LAN, o cualquier otro método de comunicación inalámbrica. El sistema central de procesamiento (6 fig.l) que forma parte del dispositivo sensorial, puede estar basado en una arquitectura estándar de procesamiento tipo PC, y es donde se centralizan los cálculos de estimación y por tanto el elemento que conoce la ubicación de los hallazgos. Esta unidad central de procesamiento comunica la información de posicionamiento de los hallazgos por líneas inalámbricas a través de protocolos RS-232, TCP/TP, o cualquier otro protocolo adecuado, para que un periférico visualizador tipo LCD, un ordenador de mano (PDA), una agenda electrónica, u otro elemento con funciones similares, situado próximo a cada pértiga, pueda visualizar y registrar las medidas de posición. 5. Measuring device based on claims (1, 2, 3 and 4), characterized by allowing the concurrent location of several poles (7 and 9 fig. 1) by time multiplexing, in frequency, or by individual coding, with codes pseudorandom (Gold, Golay, or any other coding method with good autocorrelation properties), of the acoustic excitation signals themselves. It is also characterized by the use of wireless poles that incorporate batteries (4 fig.2) and an electronics (6 fig.2) suitable for communicating the central processing system and the poles via radio, infrared, bluetooth, Wireless LAN, or any Another method of wireless communication. The central processing system (6 fig.l) that is part of the sensory device, can be based on a standard PC-type processing architecture, and this is where the estimation calculations are centralized and therefore the element that knows the location of the findings This central processing unit communicates the positioning information of the findings by wireless lines through RS-232, TCP / TP protocols, or any other suitable protocol, so that an LCD-type peripheral display, a handheld computer (PDA), an electronic agenda, or other item with similar functions, located next to each pole, can display and record the position measurements.
6. Dispositivo de medida basado en las reivindicaciones (1, 2, 3, 4 y 5), caracterizado por ser capaz de compensar y eliminar los errores de posición debidos al efecto del viento, o de movimientos del medio de propagación en general, mediante dos estrategias complementarias o alternativas. Una de ellas utiliza uno o más transductores (10 fíg.l o 10 fig.4) en posiciones conocidas colocados sobre soportes fijos (11 fig.l o 11 fig.4) en torno al centro del volumen de trabajo, que permitan estimar las corrientes de aire que se producen en el espacio de trabajo, tanto su intensidad como su dirección, así como la velocidad del sonido ideal, Vs, con el medio en reposo.. Esto se consigue gracias al planteamiento de las ecuaciones inversas de trilateración extendidas al caso en que la velocidad del sonido depende de la velocidad vectorial del aire u otro medio. En este sistema de ecuaciones todos los parámetros correspondientes a las posiciones fijas de los transductores que emiten y reciben son conocidas, y la velocidad del aire, junto con la velocidad del sonido, son las incógnitas a estimar. Una vez medida la velocidad del aire, que se asume es homogénea dentro del volumen de trabajo, se plantean de nuevo las ecuaciones directas de trilateración extendidas incluyendo el valor del movimiento del aire estimado y la velocidad del sonido, y se mide la coordenada XYZ incógnita sin errores provocados por los efectos del aire. La otra estrategia contemplada, que es más directa aunque más compleja de implemento, para elimina los errores de posición debidos al efecto del viento consiste en que la propagación de las señales acústicas entre las balizas y los trasductores en la pértiga sea bidireccional, es decir de ida y vuelta. Esta estrategia compensa de forma directa la componente longitudinal del viento a lo largo del eje de propagación, eliminando dicho efecto indeseable. La implementación es más compleja pues implica que tanto las balizas como la pértiga dispongan de trasductores de recepción y de emisión colocados en parejas y muy próximos entre sí. Esta solución requiere duplicar el número de trasductores acústicos e incorporar una etapa, bien en las balizas o en la pértiga, actuando como repetidor de señal para conseguir la emisión en los dos sentidos. Ambas estrategias se complementan pues la primera, aparte de atenuar el efecto del viento en las componentes trasversales no eliminadas por el segundo método, permite a su vez obtener de forma precisa la velocidad del sonido, mejorando la precisión de la medida de posición. 6. Measuring device based on claims (1, 2, 3, 4 and 5), characterized by being able to compensate and eliminate position errors due to the effect of wind, or movements of the propagation medium in general, by two complementary or alternative strategies. One of them uses one or more transducers (10 fig. 10 fig. 4) in known positions placed on fixed supports (11 fig. 11 fig. 4) around the center of the work volume, which allow estimating the air currents that occur in the space of work, both its intensity and its direction, as well as the ideal sound speed, Vs, with the medium at rest. This is achieved thanks to the approach of the inverse equations of trilateration extended to the case in which the speed of sound depends on the vector air velocity or other means. In this system of equations all the parameters corresponding to the fixed positions of the transducers that emit and receive are known, and the air velocity, together with the velocity of sound, are the unknowns to estimate. Once the air velocity, which is assumed to be homogeneous within the working volume, is measured, the extended direct trilateration equations are raised again including the estimated air movement value and the speed of the sound, and the unknown XYZ coordinate is measured No errors caused by the effects of the air. The other strategy contemplated, which is more direct but more complex to implement, to eliminate position errors due to the effect of the wind is that the propagation of the acoustic signals between the beacons and the transducers in the pole is bidirectional, that is to say round trip. This strategy directly compensates for the longitudinal component of the wind along the propagation axis, eliminating this undesirable effect. The implementation is more complex because it implies that both the beacons and the pole have reception and emission transducers placed in pairs and very close to each other. This solution requires doubling the number of acoustic transducers and incorporating a stage, either in the beacons or in the pole, acting as a signal repeater to achieve the two-way emission. Both strategies are complemented because the first, apart from attenuating the effect of the wind on the transverse components not eliminated by the second method, allows in turn to obtain precisely the speed of sound, improving the accuracy of the position measurement.
7. Dispositivo de medida basado en las reivindicaciones (1, 2, 3, 4, 5 y 6), caracterizado por incorporar un método de auto-calibrado basado en colocar con precisión la pértiga (fig.2) (3 fig.3) en posición vertical sobre dos o más puntos de referencia con coordenadas XYZ conocidas (5 fig.3). Por cada posicionamiento vertical de la pértiga sobre una referencia se generan y se añaden dos ecuaciones más al sistema de ecuaciones planteado para averiguar la posición de cada una de las balizas fijas con posiciones iniciales incógnita (3a y 4a fig.l). Una vez que cada sistema de ecuaciones tiene el suficiente número de ecuaciones para ser resuelto, se obtienen cada una de las coordenadas de las balizas fijas (3a y 4a fig.l). Para posicionar la pértiga en posición vertical el sistema sensorial se caracteriza por disponer de un accesorio basado en un trípode (1 fig.3) con una rótula (2 fig.3) en su eje central por donde pasa y se soporta la pértiga (3 fíg.3) que por medio de un contrapeso (4 fig.3) se mantiene en posición vertical sobre la referencia conocida (5 fig.3). Una vez la pértiga colocada pasivamente en vertical, la regulación de la posición en X-Y del extremo inferior de la pértiga (3a fig.2) para que apunte precisamente sobre la referencia (5 fig.3), se reahza empujando manualmente el soporte (2a fig.3) sobre la plataforma (la fig.3). Este sistema sensorial se caracteriza por no requerir ningún dispositivo especial de medida de coordenadas o calibrado de las bauzas fijas, ya que solo hace uso del propio sistema sensorial ultrasónico (fig.l), un apero para mantener la pértiga vertical, tal como el descrito en esta reivindicación (fig.3) o cualquier otro método para fijar en vertical la pértiga, y el conocimiento de las coordenadas XYZ de dos o más referencias fijas (5 fig.3) dentro de la excavación. Este método de auto-calibrado es váhdo tanto para una configuración mínima de 3 a 8 receptores, como para una configuración múltiple cubriendo amplías superficies, sin más que ir desplazando consecutivamente la pértiga verticalmente sobre diferentes puntos conocidos hasta calibrar todas las balizas en posiciones fijas. 7. Measuring device based on claims (1, 2, 3, 4, 5 and 6), characterized by incorporating a self-calibration method based on accurately positioning the pole (fig. 2) (3 fig. 3) in vertical position on two or more reference points with known XYZ coordinates (5 fig. 3). For each vertical positioning of the pole on a reference, two more equations are generated and added to the system of equations proposed to find out the position of each of the fixed beacons with unknown initial positions (3rd and 4th fig. 1). Once each system of equations has enough equations to be solved, each of the coordinates of the fixed beacons is obtained (3rd and 4th fig. 1). To position the pole vertically, the sensory system is characterized by having an accessory based on a tripod (1 fig. 3) with a ball joint (2 fig. 3) on its central axis through which the pole passes and is supported (3 Fig. 3) that, by means of a counterweight (4 fig. 3), it is kept upright on the known reference (5 fig. 3). Once the pole is passively placed vertically, the adjustment of the XY position of the lower end of the pole (3rd fig. 2) so that it points precisely on the reference (5th fig. 3), is re-pushed by manually pushing the support (2nd fig.3) on the platform (fig.3). This sensory system is characterized by not requiring any special device for measuring coordinates or calibrating the fixed trunks, since it only makes use of the ultrasonic sensory system itself (fig. 1), an implement to maintain the vertical pole, such as the one described in this claim (fig. 3) or any other method to fix the pole vertically, and the knowledge of the XYZ coordinates of two or more fixed references (5 fig. 3) within the excavation. This method of self-calibration is vahdo both for a minimum configuration of 3 to 8 receivers, and for a multiple configuration covering large surfaces, simply moving the pole vertically over different known points until all beacons are calibrated in fixed positions.
8. Dispositivo de medida basado en las reivindicaciones (1, 2, 3, 4, 5, 6 y 7), caracterizado por ser válido y aplicable en otros sectores distintos a los paleo- arqueológicos. De una forma inmediata el sistema es aplicable en los sectores de la construcción, agricultura, en la gestión de la localización de objetos en almacenes, igualmente es especialmente aplicable en trabajos submarinos, y en general en todas aquellas aplicaciones donde se requiera localizar objetos en entornos donde los objetos puedan estar en lugares con ciertas dificultades de acceso, o exista gente, o cualquier otro obstáculo, que pudiera limitar la operación de sistemas de localización tradicionales, o exista poca visibilidad a través del medio de propagación por fenómenos naturales o artificiales tales como nieblas, polvo o aguas turbias. 8. Measuring device based on claims (1, 2, 3, 4, 5, 6 and 7), characterized by being valid and applicable in sectors other than paleo-archeological. In an immediate way the system is applicable in the construction, agriculture, in the management of the location of objects in warehouses, it is also especially applicable in underwater works, and in general in all those applications where it is required to locate objects in environments where objects can be in places with certain access difficulties, or there are people, or any other obstacle, which could limit the operation of traditional location systems, or there is little visibility through the means of propagation by natural or artificial phenomena such as Mists, dust or murky waters.
PCT/ES2004/070079 2003-10-06 2004-10-05 Pressure-wave-based sensory device which is used to measure the co-ordinates of objects, in particular, objects found during paleo-archaeological excavations WO2005033731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200302312 2003-10-06
ES200302312A ES2229932B1 (en) 2003-10-06 2003-10-06 ULTRASOUND BASED SENSORY DEVICE FOR MEASURING COORDINATES OF OBJECTS, IN PARTICULAR, OF FINDINGS IN PALEO-ARCHAEOLOGICAL EXCAVATIONS.

Publications (1)

Publication Number Publication Date
WO2005033731A1 true WO2005033731A1 (en) 2005-04-14

Family

ID=34400671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070079 WO2005033731A1 (en) 2003-10-06 2004-10-05 Pressure-wave-based sensory device which is used to measure the co-ordinates of objects, in particular, objects found during paleo-archaeological excavations

Country Status (2)

Country Link
ES (1) ES2229932B1 (en)
WO (1) WO2005033731A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2028518A6 (en) * 1990-06-22 1992-07-01 Lopez Cruzado Domingo Localiser by radio waves of different frequencies
GB2329777A (en) * 1997-09-24 1999-03-31 Roke Manor Research Location system
US6141293A (en) * 1997-10-30 2000-10-31 Netmor Ltd. Ultrasonic positioning and tracking system
US6317386B1 (en) * 1999-01-22 2001-11-13 At&T Laboratories-Cambridge Limited Method of increasing the capacity and addressing rate of an ultrasonic location system
US6556942B1 (en) * 2000-09-29 2003-04-29 Ut-Battelle, Llc Short range spread-spectrum radiolocation system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2028518A6 (en) * 1990-06-22 1992-07-01 Lopez Cruzado Domingo Localiser by radio waves of different frequencies
GB2329777A (en) * 1997-09-24 1999-03-31 Roke Manor Research Location system
US6141293A (en) * 1997-10-30 2000-10-31 Netmor Ltd. Ultrasonic positioning and tracking system
US6317386B1 (en) * 1999-01-22 2001-11-13 At&T Laboratories-Cambridge Limited Method of increasing the capacity and addressing rate of an ultrasonic location system
US6556942B1 (en) * 2000-09-29 2003-04-29 Ut-Battelle, Llc Short range spread-spectrum radiolocation system and method

Also Published As

Publication number Publication date
ES2229932A1 (en) 2005-04-16
ES2229932B1 (en) 2006-07-01

Similar Documents

Publication Publication Date Title
US11719846B1 (en) Buried utility locating systems with wireless data communication including determination of cross coupling to adjacent utilities
US7834801B2 (en) Sensor fusion for model-based detection in pipe and cable locator systems
US7336078B1 (en) Multi-sensor mapping omnidirectional sonde and line locators
CN108650615A (en) System and method for the location information for determining mobile radio transmitter
JP2007506109A (en) Method and system for determining the spatial position of a portable measuring device
CN101010563A (en) Combination laser system and global navigation satellite system
DE69429987D1 (en) SYSTEM AND METHOD FOR DISTANCE MEASUREMENT BETWEEN TWO OBJECTS ON A GOLF COURSE
CN110794260B (en) Overhead transmission line positioning method based on double RTK unmanned aerial vehicles
WO2009147258A1 (en) Radio-tracking method, system and devices
KR102013802B1 (en) System for Surveying Geospatial Information of River bottom using drone and Driving Method thereof
US8769838B2 (en) Surveyor 's rod and magnetic locator
CN206573715U (en) A kind of underwater multi-target alignment system
US6590834B1 (en) Local positioning system using acoustic time-of-flight and a fixed array of receivers and method for use
EP1726915A1 (en) Active surveying pole
US5835069A (en) GPS antennas and receivers configured as handles for a surveyor's optical total station
CN107917693B (en) Inclination measuring device and method based on optical ranging
CN108828604A (en) It seeks fish system and seeks the underwater scanning detection method of fish system using this
García-Requejo et al. Positioning Android devices in large indoor spaces and transitioning to outdoors by sensor fusion
KR20070034179A (en) Position detection method of observation target
WO2005033731A1 (en) Pressure-wave-based sensory device which is used to measure the co-ordinates of objects, in particular, objects found during paleo-archaeological excavations
CN207675158U (en) One kind being based on anallatic inclination measuring device
Jiménez et al. Ultrasonic localization methods for accurate positioning
AU2020279821B2 (en) Underground line locator system with real time kinematic and global satellite positioning
US20130214975A1 (en) Target location positioning method and device
JP4251396B2 (en) Bird observation device and bird observation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase