Search Images Maps Play YouTube Gmail Drive Calendar More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS8791599 B2
Publication typeGrant
Application numberUS 12/649,635
Publication date29 Jul 2014
Filing date30 Dec 2009
Priority date12 Jul 2005
Also published asCA2615123A1, CA2615123C, CN101258658A, CN101258658B, CN101860089A, CN101860089B, CN102255398A, CN102255398B, CN102983639A, CN102983639B, EP1902505A2, EP2306615A2, EP2306615A3, EP2306616A2, EP2306616A3, US7741734, US8022576, US8076800, US8084889, US8395282, US8395283, US8400018, US8400019, US8400020, US8400021, US8400022, US8400023, US8400024, US8760007, US8760008, US8766485, US8772971, US8772972, US9065286, US9450421, US20070222542, US20090195332, US20090195333, US20090267709, US20090267710, US20100096934, US20100102639, US20100102640, US20100102641, US20100117455, US20100123353, US20100123354, US20100123355, US20100127573, US20100127574, US20100127575, US20100133918, US20100133919, US20100133920, US20100187911, US20100207458, US20110043046, US20150048676, US20150188321, US20160380481, WO2007008646A2, WO2007008646A3
Publication number12649635, 649635, US 8791599 B2, US 8791599B2, US-B2-8791599, US8791599 B2, US8791599B2
InventorsJohn D. Joannopoulos, Aristeidis Karalis, Marin Soljacic
Original AssigneeMassachusetts Institute Of Technology
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Wireless energy transfer to a moving device between high-Q resonators
US 8791599 B2
Abstract
Described herein are embodiments of a first resonator with a quality factor, Q1, greater than 100, coupled to an energy source, generating an oscillating near field region, and a second resonator, with a quality factor, Q2, greater than 100, optionally coupled to an energy drain, and moving freely within the near field region of the first resonator. The first resonator and the second resonator may be coupled to transfer electromagnetic energy from said first resonator to said second resonator as the second resonator moves freely within the near field region.
Images(8)
Previous page
Next page
Claims(48)
What is claimed is:
1. A system, comprising:
a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1) greater than 100, and configured to be coupled to an energy source to generate an oscillating near field region; and
a second resonator having a resonant frequency ω2 and an intrinsic loss rate Γ2, and capable of storing electromagnetic energy with an intrinsic quality factor Q22/(2Γ2) greater than 100, and configured to move freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are configured to be coupled to transfer electromagnetic energy from said first resonator to said second resonator when the first resonator is coupled to the energy source as the second resonator moves freely within the near field region, and
further comprising the energy source configured to be coupled to the first resonator and an energy drain configured to be coupled to the second resonator to provide useful power to the energy drain, and wherein the energy source is configured to provide energy to the first resonator at a rate that varies with a rate of wireless energy transfer κ between the first resonator and the second resonator.
2. The system of claim 1, wherein near field of the near field region is a magnetic field.
3. The system of claim 1, wherein near field of the near field region is an electromagnetic field.
4. The system of claim 1, wherein each intrinsic loss rate comprises a resistive component and a radiative component.
5. The system of claim 1, wherein the energy source is configured to provide energy to the first resonator at a rate that substantially minimizes the energy stored in the first resonator and the second resonator.
6. The system of claim 1, wherein the energy source is configured to provide energy to the first resonator at a rate that substantially maximizes a ratio of the useful power to lost power from the energy source to the energy drain.
7. A method, comprising:
providing a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1) greater than 100, coupled to an energy source, generating an oscillating near field region; and
providing a second resonator having a resonant frequency ω2 and an intrinsic loss rate Γ2, and capable of storing electromagnetic energy with an intrinsic quality factor Q2=∩2/(2Γ2), greater than 100, and moving freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are coupled to transfer electromagnetic energy from said first resonator to said second resonator as the second resonator moves freely within the near field region,
wherein an energy drain is coupled to the second resonator to provide useful power to the energy drain, and the method further comprises providing energy to the first resonator at a rate that varies with a rate of wireless energy transfer κ between the first resonator and the second resonator.
8. The method of claim 7, wherein near field of the near field region is a magnetic field.
9. The method of claim 7, wherein near field of the near field region is an electromagnetic field.
10. The method of claim 7, wherein each intrinsic loss rate comprises a resistive component and a radiative component.
11. The method of claim 7, wherein the energy source provides energy to the first resonator at a rate that substantially minimizes the energy stored in the first resonator and the second resonator.
12. The method of claim 7, wherein the energy source provides energy to the first resonator at a rate that substantially maximizes a ratio of the useful power to lost power from the energy source to the energy drain.
13. A system, comprising:
a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), and configured to be coupled to an energy source to generate a near field region comprising an oscillating magnetic field; and
a second resonator having a resonant frequency ω2 and an intrinsic loss rate Γ2, and capable of storing electromagnetic energy with an intrinsic quality factor Q22/(2Γ2), and configured to move freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are configured to be coupled to wirelessly transfer electromagnetic energy from said first resonator to said second resonator when the first resonator is coupled to the energy source as the second resonator moves freely within the near field region,
wherein √{square root over (Q1Q2)}>100, and
further comprising the energy source configured to be coupled to the first resonator and an energy drain configured to be coupled to the second resonator to provide useful power to the energy drain, and wherein the energy source is configured to provide energy to the first resonator at a rate that varies with a rate of wireless energy transfer κ between the first resonator and the second resonator.
14. The system of claim 13, where Q1>100 and Q2>100.
15. The system of claim 13, further comprising an energy drain coupled to the second resonator.
16. The system of claim 15, wherein the energy drain comprises a robot, vehicle, computer, cell phone, or a portable electronic device.
17. The system of claim 13, further comprising a third resonator, optionally coupled to an energy drain, located at a variable distance from the first resonator, and wherein the first resonator and the third resonator are coupled to wirelessly transfer electromagnetic energy from the first resonator to the third resonator.
18. The system of claim 13, further comprising a third resonator, optionally coupled to an external power supply, located at a variable distance from the second resonator, and wherein the third resonator and the second resonator are coupled to wirelessly transfer electromagnetic energy from the third resonator to the second resonator.
19. The system of claim 13, wherein at least one of the resonators is a tunable resonator.
20. The system of claim 13, wherein the energy transfer in the near-field region occurs over a range of distances that includes 5 cm.
21. The system of claim 13, wherein the energy transfer in the near-field region occurs over a range of distances that includes 10 cm.
22. The system of claim 13, wherein the energy transfer in the near-field region occurs over a range of distances that includes 30 cm.
23. The system of claim 13, wherein the efficiency of the wireless energy transfer is at least 20% over a range of distances in the near-field region.
24. The system of claim 13, further comprising a feedback mechanism coupled to at least one of the resonators to correct for detuning.
25. The system of claim 13, wherein the energy source is configured to provide energy to the first resonator at a rate that substantially minimizes the energy stored in the first resonator and the second resonator.
26. The system of claim 13, wherein the energy source is configured to provide energy to the first resonator at a rate that substantially maximizes a ratio of the useful power to lost power from the energy source to the energy drain.
27. The system of claim 13, where Q1>200 and Q2>200.
28. The system of claim 13, wherein each intrinsic loss rate comprises a resistive component and a radiative component.
29. A system, comprising:
a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), and configured to be coupled to an energy source to generate a near field region comprising an oscillating magnetic field; and
a second resonator having a resonant frequency ω2 and an intrinsic loss rate Γ2, and capable of storing electromagnetic energy with an intrinsic quality factor Q22/(2Γ2), and configured to move freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are configured to be coupled to wirelessly transfer electromagnetic energy from said first resonator to said second resonator when the first resonator is coupled to the energy source as the second resonator moves freely within the near field region,
wherein √{square root over (Q1Q2)}>100, and
further comprising the energy drain coupled to the second resonator, and wherein the power supply and energy drain are configured to be driven to increase the ratio of useful-to-lost power for varying wireless energy transfer rates κ between the first resonator and the second resonator.
30. A system, comprising:
a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), and configured to be coupled to an energy source to generate a near field region comprising an oscillating magnetic field; and
a second resonator having a resonant frequency ω2 and an intrinsic loss rate Γ2 and capable of storing electromagnetic energy with an intrinsic quality factor Q22/(2Γ2), and configured to move freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are configured to be coupled to wirelessly transfer electromagnetic energy from said first resonator to said second resonator when the first resonator is coupled to the energy source as the second resonator moves freely within the near field region,
wherein √{square root over (Q1Q2)}>100, and
wherein the first resonator and second resonator are configured to be adjustably tuned to increase the ratio of useful-to-lost power for varying wireless energy transfer rates κ between the first resonator and the second resonator.
31. A method, comprising:
providing a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), coupled to an energy source, generating a near field region comprising an oscillating magnetic field; and
providing a second resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), and moving freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are coupled to wirelessly transfer electromagnetic energy from said first resonator to said second resonator as the second resonator moves freely within the near field region,
wherein √{square root over (Q1Q2)}>100, and
wherein an energy drain is coupled to the second resonator to provide useful power to the energy drain, and the method further comprises providing energy to the first resonator at a rate that varies with a rate of wireless energy transfer κ between the first resonator and the second resonator.
32. The method of claim 31, where Q1>100 and Q2>100.
33. The method of claim 31, wherein an energy drain is coupled to the second resonator.
34. The method of claim 33, wherein the energy drain comprises a robot, vehicle, computer, cell phone, or a portable electronic device.
35. The method of claim 31, wherein a third resonator is optionally coupled to an energy drain and is located at a variable distance from the first resonator, and further comprising wirelessly transferring electromagnetic energy from the first resonator to the third resonator.
36. The method of claim 31, wherein a third resonator is optionally coupled to an external power supply and is located at a variable distance from the second resonator, and further comprising wirelessly transferring electromagnetic energy from the third resonator to the second resonator.
37. The method system of claim 31, wherein at least one of the resonators is a tunable resonator.
38. The method of claim 31, wherein the energy transfer in the near-field region occurs over a range of distances that includes 5 cm.
39. The method of claim 31, wherein the energy transfer in the near-field region occurs over a range of distances that includes 10 cm.
40. The method of claim 31, wherein the energy transfer in the near-field region occurs over a range of distances that includes 30 cm.
41. The method of claim 31, wherein the efficiency of the wireless energy transfer is at least 20% over a range of distances in the near-field region.
42. The method of claim 31, wherein a feedback mechanism is coupled to at least one of the resonators to correct for detuning.
43. The method of claim 31, wherein the energy source provides energy to the first resonator at a rate that substantially minimizes the energy stored in the first resonator and the second resonator.
44. The method of claim 31, wherein the energy source provides energy to the first resonator at a rate that substantially maximizes a ratio of the useful power to lost power from the energy source to the energy drain.
45. The method of claim 31, where Q1>200 and Q2>200.
46. The method of claim 31, wherein each intrinsic loss rate comprises a resistive component and a radiative component.
47. A method, comprising:
providing a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), coupled to an energy source, generating a near field region comprising an oscillating magnetic field; and
providing a second resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), and moving freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are coupled to wirelessly transfer electromagnetic energy from said first resonator to said second resonator as the second resonator moves freely within the near field region,
wherein √{square root over (Q1Q2)}>100, and
wherein the energy drain is coupled to the second resonator, and wherein the power supply and energy drain are driven to increase the ratio of useful-to-lost power for varying wireless energy transfer rates κ between the first resonator and the second resonator.
48. A method, comprising:
providing a first resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), coupled to an energy source, generating a near field region comprising an oscillating magnetic field; and
providing a second resonator having a resonant frequency ω1 and an intrinsic loss rate Γ1, and capable of storing electromagnetic energy with an intrinsic quality factor Q11/(2Γ1), and moving freely within the near field region of the first resonator,
wherein the first resonator and the second resonator are coupled to wirelessly transfer electromagnetic energy from said first resonator to said second resonator as the second resonator moves freely within the near field region,
wherein √{square root over (Q1Q2)}>100, and
wherein the first resonator and second resonator are adjustably tuned to increase the ratio of useful-to-lost power for varying wireless energy transfer rates κ between the first resonator and the second resonator.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of co-pending United States patent application entitled WIRELESS NON-RADIATIVE ENERGY TRANSFER filed on Sep. 3, 2009 having Ser. No. 12/553,957 ('957 Application), the entirety of which is incorporated herein by reference. The '957 application is a continuation of co-pending United States patent application entitled WIRELESS NON-RADIATIVE ENERGY TRANSFER filed on Jul. 5, 2006 and having Ser. No. 11/481,077 ('077 Application), the entirety of which is incorporated herein by reference. The '077 Application claims the benefit of provisional application Ser. No. 60/698,442 filed Jul. 12, 2005 ('442 Application), the entirety of which is incorporated herein by reference.

STATEMENT REGARDING GOVERNMENT FUNDING

This invention was made, in whole or in part by grant DMR-0213282 from the National Science Foundation. Accordingly, the Government may have certain rights in the invention.

BACKGROUND OF THE INVENTION

The invention relates to the field of oscillatory resonant electromagnetic modes, and in particular to oscillatory resonant electromagnetic modes, with localized slowly evanescent field patterns, for wireless non-radiative energy transfer.

In the early days of electromagnetism, before the electrical-wire grid was deployed, serious interest and effort was devoted towards the development of schemes to transport energy over long distances wirelessly, without any carrier medium. These efforts appear to have met with little, if any, success. Radiative modes of omni-directional antennas, which work very well for information transfer, are not suitable for such energy transfer, because a vast majority of energy is wasted into free space. Directed radiation modes, using lasers or highly-directional antennas, can be efficiently used for energy transfer, even for long distances (transfer distance LTRANS>>LDEV, where LDEV is the characteristic size of the device), but require existence of an uninterruptible line-of-sight and a complicated tracking system in the case of mobile objects.

Rapid development of autonomous electronics of recent years (e.g. laptops, cell-phones, house-hold robots, that all typically rely on chemical energy storage) justifies revisiting investigation of this issue. Today, the existing electrical-wire grid carries energy almost everywhere; even a medium-range wireless non-radiative energy transfer would be quite useful. One scheme currently used for some important applications relies on induction, but it is restricted to very close-range (LTRANS<<LDEV) energy transfers.

SUMMARY OF THE INVENTION

According to one aspect of the invention, there is provided an electromagnetic energy transfer device. The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.

According to another aspect of the invention, there is provided a method of transferring electromagnetic energy. The method includes providing a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. Also, the method includes a second resonator structure being positioned distal from the first resonator structure, and supplying useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Furthermore, the method includes transferring non-radiative energy between the first resonator structure and the second resonator structure through coupling of their resonant-field evanescent tails.

In another aspect, a method of transferring energy is disclosed including the steps of providing a first resonator structure receiving energy from an external power supply, said first resonator structure having a first resonant frequency ω1, and a first Q-factor Q1, and characteristic size L1. Providing a second resonator structure being positioned distal from said first resonator structure, at closest distance D, said second resonator structure having a second resonant frequency ω2, and a second Q-factor Q2, and characteristic size L2, where the two said frequencies ω1 and ω2 are close to within the narrower of the two resonance widths Γ1, and Γ2, and transferring energy non-radiatively between said first resonator structure and said second resonator structure, said energy transfer being mediated through coupling of their resonant-field evanescent tails, and the rate of energy transfer between said first resonator and said second resonator being denoted by κ, where non-radiative means D is smaller than each of the resonant wavelengths λ1 and λ2, where c is the propagation speed of radiation in the surrounding medium.

Embodiments of the method may include any of the following features. In some embodiments, said resonators have Q1>100 and Q2>100, Q1>200 and Q2>200, Q1>500 and Q2>500, or even Q1>1000 and Q2>1000. In some such embodiments, κ/sqrt(Γ12) may be greater than 0.2, greater than 0.5, greater than 1, greater than 2, or even greater than 5. In some such embodiments D/L2 may be greater than 1, greater than 2, greater than 3, greater than 5.

In another aspect, an energy transfer device is disclosed which includes: a first resonator structure receiving energy from an external power supply, said first resonator structure having a first resonant frequency ω1, and a first Q-factor Q1, and characteristic size L1, and a second resonator structure being positioned distal from said first resonator structure, at closest distance D, said second resonator structure having a second resonant frequency ω2, and a second Q-factor Q2, and characteristic size L2.

The two said frequencies ω1 and ω2 are close to within the narrower of the two resonance widths Γ1, and Γ2. The non-radiative energy transfer between said first resonator structure and said second resonator structure is mediated through coupling of their resonant-field evanescent tails, and the rate of energy transfer between said first resonator and said second resonator is denoted by κ. The non-radiative means D is smaller than each of the resonant wavelengths λ1 and λ2, where c is the propagation speed of radiation in the surrounding medium.

Embodiments of the device may include any of the following features. In some embodiments, said resonators have Q1>100 and Q2>100, Q1>200 and Q2>200, Q1>500 and Q2>500, or even Q1>1000 and Q2>1000. In some such embodiments, κ/sqrt(Γ12) may be greater than 0.2, greater than 0.5, greater than 1, greater than 2, or even greater than 5. In some such embodiments D/L2 may be greater than 1, greater than 2, greater than 3, or even greater than 5.

In some embodiments, the resonant field in the device is electromagnetic.

In some embodiments, the first resonator structure includes a dielectric sphere, where the characteristic size L1 is the radius of the sphere.

In some embodiments, the first resonator structure includes a metallic sphere, where the characteristic size L1 is the radius of the sphere.

In some embodiments, the first resonator structure includes a metallodielectric sphere, where the characteristic size L1 is the radius of the sphere.

In some embodiments, the first resonator structure includes a plasmonic sphere, where the characteristic size L1 is the radius of the sphere.

In some embodiments, the first resonator structure includes a polaritonic sphere, where the characteristic size L1 is the radius of the sphere.

In some embodiments, the first resonator structure includes a capacitively-loaded conducting-wire loop, where the characteristic size L1 is the radius of the loop.

In some embodiments, the second resonator structure includes a dielectric sphere, where the characteristic size L2 is the radius of the sphere.

In some embodiments, the second resonator structure includes a metallic sphere where the characteristic size L2 is the radius of the sphere.

In some embodiments, the second resonator structure includes a metallodielectric sphere where the characteristic size L2 is the radius of the sphere.

In some embodiments, the second resonator structure includes a plasmonic sphere where the characteristic size L2 is the radius of the sphere.

In some embodiments, the second resonator structure includes a polaritonic sphere where the characteristic size L2 is the radius of the sphere.

In some embodiments, the second resonator structure includes a capacitively-loaded conducting-wire loop where the characteristic size L2 is the radius of the loop.

In some embodiments, the resonant field in the device is acoustic.

It is to be understood that embodiments of the above described methods and devices may include any of the above listed features, alone or in combination.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram illustrating an exemplary embodiment of the invention;

FIG. 2A is a numerical FDTD result for a high-index disk cavity of radius r along with the electric field; FIG. 2B a numerical FDTD result for a medium-distance coupling between two resonant disk cavities: initially, all the energy is in one cavity (left panel); after some time both cavities are equally excited (right panel).

FIG. 3 is schematic diagram demonstrating two capacitively-loaded conducting-wire loops;

FIGS. 4A-4B are numerical FDTD results for reduction in radiation-Q of the resonant disk cavity due to scattering from extraneous objects;

FIG. 5 is a numerical FDTD result for medium-distance coupling between two resonant disk cavities in the presence of extraneous objects; and

FIGS. 6A-6B are graphs demonstrating efficiencies of converting the supplied power into useful work (ηw), radiation and ohmic loss at the device (ηd), and the source (ηs), and dissipation inside a human (ηh), as a function of the coupling-to-loss ratio κ/Γd; in panel (a) Γw is chosen so as to minimize the energy stored in the device, while in panel (b) Γw is chosen so as to maximize the efficiency ηw for each κ/Γd.

FIG. 7 is a schematic diagram of a feedback mechanism to correct the resonators exchanging wireless energy for detuning because of the effect of an extraneous object.

DETAILED DESCRIPTION OF THE INVENTION

In contrast to the currently existing schemes, the invention provides the feasibility of using long-lived oscillatory resonant electromagnetic modes, with localized slowly evanescent field patterns, for wireless non-radiative energy transfer. The basis of this technique is that two same-frequency resonant objects tend to couple, while interacting weakly with other off-resonant environmental objects. The purpose of the invention is to quantify this mechanism using specific examples, namely quantitatively address the following questions: up to which distances can such a scheme be efficient and how sensitive is it to external perturbations. Detailed theoretical and numerical analysis show that a mid-range (LTRANS≈few*LDEV) wireless energy-exchange can actually be achieved, while suffering only modest transfer and dissipation of energy into other off-resonant objects.

The omnidirectional by stationary (non-lossy) nature of the near field makes this mechanism suitable for mobile wireless receivers. It could therefore have a variety of possible applications including for example, placing a source connected to a wired electricity network on the ceiling of a factory room, while devices, such as robots, vehicles, computers, or similar are roaming freely within the room. Other possible applications include electric-engine buses, RFIDs, and perhaps even nano-robots. Similarly, in some embodiments multiple sources can transfer energy to one or more device objects. For example, as explained at in the paragraph bridging pages 4-5 of U.S. Provisional Application No. 60/698,442 to which the present application claims benefit and which is incorporated by reference above, for certain applications having uneven power transfer to the device object as the distance between the device and the source changes, multiple sources can be strategically placed to alleviate the problem, and/or the peak amplitude of the source can be dynamically adjusted.

The range and rate of the inventive wireless energy-transfer scheme are the first subjects of examination, without considering yet energy drainage from the system for use into work. An appropriate analytical framework for modeling the exchange of energy between resonant objects is a weak-coupling approach called “coupled-mode theory”. FIG. 1 is a schematic diagram illustrating a general description of the invention. The invention uses a source and device to perform energy transferring. Both the source 1 and device 2 are resonator structures, and are separated a distance D from each other. In this arrangement, the electromagnetic field of the system of source 1 and device 2 is approximated by F(r,t)≈a1(t)F1(r)+a2(t)F2(r), where F1,2(r)=[E1,2(r) H1,2(r)] are the eigenmodes of source 1 and device 2 alone, and then the field amplitudes a1(t) and a2(t) can be shown to satisfy the “coupled-mode theory”:

a 1 t = - ( ω 1 - Γ 1 ) a 1 + ⅈκ 11 a 1 + κ 12 a 2 a 2 t = - ( ω 2 - Γ 2 ) a 2 + ⅈκ 22 a 2 + κ 21 a 1 , ( 1 )
where ω1,2 are the individual eigen-frequencies, Γ1,2 are the resonance widths due to the objects' intrinsic (absorption, radiation etc.) losses, κ12,21 are the coupling coefficients, and κ11,22 model the shift in the complex frequency of each object due to the presence of the other.

The approach of Eq. 1 has been shown, on numerous occasions, to provide an excellent description of resonant phenomena for objects of similar complex eigen-frequencies (namely |ω1−ω2|<<|κ12,21| and Γ1≈Γ2), whose resonances are reasonably well defined (namely Γ1,2&Im{κ11,22}<<|κ12,21|) and in the weak coupling limit (namely |κ12,21|<<ω1,2). Coincidentally, these requirements also enable optimal operation for energy transfer. Also, Eq. (1) show that the energy exchange can be nearly perfect at exact resonance (ω12 and Γ12), and that the losses are minimal when the “coupling-time” is much shorter than all “loss-times”. Therefore, the invention requires resonant modes of high Q=ω)/(2Γ) for low intrinsic-loss rates Γ1,2, and with evanescent tails significantly longer than the characteristic sizes L1 and L2 of the two objects for strong coupling rate |κ12,21| over large distances D, where D is the closest distance between the two objects. This is a regime of operation that has not been studied extensively, since one usually prefers short tails, to minimize interference with nearby devices.

Objects of nearly infinite extent, such as dielectric waveguides, can support guided modes whose evanescent tails are decaying exponentially in the direction away from the object, slowly if tuned close to cutoff, and can have nearly infinite Q. To implement the inventive energy-transfer scheme, such geometries might be suitable for certain applications, but usually finite objects, namely ones that are topologically surrounded everywhere by air, are more appropriate.

Unfortunately, objects of finite extent cannot support electromagnetic states that are exponentially decaying in all directions in air, since in free space: {right arrow over (k)}22/c2. Because of this, one can show that they cannot support states of infinite Q. However, very long-lived (so-called “high-Q”) states can be found, whose tails display the needed exponential-like decay away from the resonant object over long enough distances before they turn oscillatory (radiative). The limiting surface, where this change in the field behavior happens, is called the “radiation caustic”, and, for the wireless energy-transfer scheme to be based on the near field rather than the far/radiation field, the distance between the coupled objects must be such that one lies within the radiation caustic of the other.

The invention is very general and any type of resonant structure satisfying the above requirements can be used for its implementation. As examples and for definiteness, one can choose to work with two well-known, but quite different electromagnetic resonant systems: dielectric disks and capacitively-loaded conducting-wire loops. Even without optimization, and despite their simplicity, both will be shown to exhibit fairly good performance. Their difference lies mostly in the frequency range of applicability due to practical considerations, for example, in the optical regime dielectrics prevail, since conductive materials are highly lossy.

Consider a 2D dielectric disk cavity of radius r and permittivity ∈ surrounded by air that supports high-Q whispering-gallery modes, as shown in FIG. 2A. Such a cavity is studied using both analytical modeling, such as separation of variables in cylindrical coordinates and application of boundary conditions, and detailed numerical finite-difference-time-domain (FDTD) simulations with a resolution of 30 pts/r. Note that the physics of the 3D case should not be significantly different, while the analytical complexity and numerical requirements would be immensely increased. The results of the two methods for the complex eigen-frequencies and the field patterns of the so-called “leaky” eigenmodes are in an excellent agreement with each other for a variety of geometries and parameters of interest.

The radial modal decay length, which determines the coupling strength κ≡|κ21|=|κ12|, is on the order of the wavelength, therefore, for near-field coupling to take place between cavities whose distance is much larger than their size, one needs subwavelength-sized resonant objects (r<<λ). High-radiation-Q and long-tailed subwavelength resonances can be achieved, when the dielectric permittivity ∈ is as large as practically possible and the azimuthal field variations (of principal number m) are slow (namely m is small).

One such TE-polarized dielectric-cavity mode, which has the favorable characteristics Qrad=1992 and λ/r=20 using ∈=147.7 and m=2, is shown in FIG. 2A, and will be the “test” cavity 18 for all subsequent calculations for this class of resonant objects. Another example of a suitable cavity has Qrad=9100 and λ/r=10 using ∈=65.61 and m=3. These values of ∈ might at first seem unrealistically large. However, not only are there in the microwave regime (appropriate for meter-range coupling applications) many materials that have both reasonably high enough dielectric constants and low losses, for example, Titania: ∈≈96, Im{∈}/∈≈10−3; Barium tetratitanate: ∈≈37, Im{∈}/∈≈10−4; Lithium tantalite: ∈≈40, Im{∈}/∈≈10−4; etc.), but also ∈ could instead signify the effective index of other known subwavelength (λ/r>>1) surface-wave systems, such as surface-plasmon modes on surfaces of metal-like (negative-∈) materials or metallodielectric photonic crystals.

With regards to material absorption, typical loss tangents in the microwave (e.g. those listed for the materials above) suggest that Qabs˜∈/Im{∈}˜10000. Combining the effects of radiation and absorption, the above analysis implies that for a properly designed resonant device-object d a value of Qd˜2000 should be achievable. Note though, that the resonant source s will in practice often be immobile, and the restrictions on its allowed geometry and size will typically be much less stringent than the restrictions on the design of the device; therefore, it is reasonable to assume that the radiative losses can be designed to be negligible allowing for Qs˜10000, limited only by absorption.

To calculate now the achievable rate of energy transfer, one can place two of the cavities 20, 22 at distance D between their centers, as shown in FIG. 2B. The normal modes of the combined system are then an even and an odd superposition of the initial modes and their frequencies are split by the coupling coefficient κ, which we want to calculate. Analytically, coupled-mode theory gives for dielectric objects κ122/2·∫d3rE1*(r)E2(r)∈1(r)/∫d3r|E1(r)|2∈(r), where ∈1,2(r) denote the dielectric functions of only object 1 alone or 2 alone excluding the background dielectric (free space) and ∈(r) the dielectric function of the entire space with both objects present. Numerically, one can find κ using FDTD simulations either by exciting one of the cavities and calculating the energy-transfer time to the other or by determining the split normal-mode frequencies. For the “test” disk cavity the radius rC of the radiation caustic is rC≈11 r, and for non-radiative coupling D<rC, therefore here one can choose D/r=10, 7, 5, 3. Then, for the mode of FIG. 3, which is odd with respect to the line that connects the two cavities, the analytical predictions are ω/2κ=1602, 771, 298, 48, while the numerical predictions are ω/2κ=1717, 770, 298, 47 respectively, so the two methods agree well. The radiation fields of the two initial cavity modes interfere constructively or destructively depending on their relative phases and amplitudes, leading to increased or decreased net radiation loss respectively, therefore for any cavity distance the even and odd normal modes have Qs that are one larger and one smaller than the initial single-cavity Q=1992 (a phenomenon not captured by coupled-mode theory), but in a way that the average Γ is always approximately Γ≈/2Q. Therefore, the corresponding coupling-to-loss ratios are κ/Γ=1.16, 2.59, 6.68, 42.49, and although they do not fall in the ideal operating regime θ/Γ>>1, the achieved values are still large enough to be useful for applications.

Consider a loop 10 or 12 of N coils of radius r of conducting wire with circular cross-section of radius a surrounded by air, as shown in FIG. 3. This wire has inductance L=μoN2r[ln(8r/a)−2], where μo is the magnetic permeability of free space, so connecting it to a capacitance C will make the loop resonant at frequency ω=1/√{square root over (LC)}. The nature of the resonance lies in the periodic exchange of energy from the electric field inside the capacitor due to the voltage across it to the magnetic field in free space due to the current in the wire. Losses in this resonant system consist of ohmic loss inside the wire and radiative loss into free space.

For non-radiative coupling one should use the near-field region, whose extent is set roughly by the wavelength λ, therefore the preferable operating regime is that where the loop is small (r<<λ). In this limit, the resistances associated with the two loss channels are respectively Rohm=√{square root over (μoρω/2)}·Nr/a and Rrad=π/6·ηoN2(ωr/c)4, where ρ is the resistivity of the wire material and ηo≈120πΩ is the impedance of free space. The quality factor of such a resonance is then Q=ωL/(Rohm+Rrad) and is highest for some frequency determined by the system parameters: at lower frequencies it is dominated by ohmic loss and at higher frequencies by radiation.

To get a rough estimate in the microwave, one can use one coil (N=1) of copper (ρ=1.69·10−8 Ωm) wire and then for r=1 cm and a=1 mm, appropriate for example for a cell phone, the quality factor peaks to Q=1225 at f=380 MHz, for r=30 cm and a=2 mm for a laptop or a household robot Q=1103 at f=17 MHz, while for r=1 m and a=4 mm (that could be a source loop on a room ceiling) Q=1315 at f=5 MHz. So in general, expected quality factors are Q≈1000-1500 at λ/r≈50-80, namely suitable for near-field coupling.

The rate for energy transfer between two loops 10 and 12 at distance D between their centers, as shown in FIG. 3, is given by κ12=ωM/2√{square root over (L1L2)}, where M is the mutual inductance of the two loops 10 and 12. In the limit r<<D<<λ one can use the quasi-static result M=π/4·μoN1N2(r1r2)2/D3, which means that ω/2κ˜(D/√{square root over (r1r2)})3. For example, by choosing again D/r=10, 8, 6 one can get for two loops of r=1 cm, same as used before, that ω/2κ=3033, 1553, 655 respectively, for the r=30 cm that ω/2κ=7131, 3651, 1540, and for the r=1 m that ω/2κ=6481, 3318, 1400. The corresponding coupling-to-loss ratios peak at the frequency where peaks the single-loop Q and are κ/Γ=0.4, 0.79, 1.97 and 0.15, 0.3, 0.72 and 0.2, 0.4, 0.94 for the three loop-kinds and distances. An example of dissimilar loops is that of a r=1 m (source on the ceiling) loop and a r=30 cm (household robot on the floor) loop at a distance D=3 m (room height) apart, for which κ/√{square root over (Γ1Γ2)}=0.88 peaks at f=6.4 MHz, in between the peaks of the individual Q's. Again, these values are not in the optimal regime κ/Γ>>1, but will be shown to be sufficient.

It is important to appreciate the difference between this inductive scheme and the already used close-range inductive schemes for energy transfer in that those schemes are non-resonant. Using coupled-mode theory it is easy to show that, keeping the geometry and the energy stored at the source fixed, the presently proposed resonant-coupling inductive mechanism allows for Q approximately 1000 times more power delivered for work at the device than the traditional non-resonant mechanism, and this is why mid-range energy transfer is now possible. Capacitively-loaded conductive loops are actually being widely used as resonant antennas (for example in cell phones), but those operate in the far-field regime with r/λ˜1, and the radiation Q's are intentionally designed to be small to make the antenna efficient, so they are not appropriate for energy transfer.

Clearly, the success of the inventive resonance-based wireless energy-transfer scheme depends strongly on the robustness of the objects' resonances. Therefore, their sensitivity to the near presence of random non-resonant extraneous objects is another aspect of the proposed scheme that requires analysis. The interaction of an extraneous object with a resonant object can be obtained by a modification of the coupled-mode-theory model in Eq. (1), since the extraneous object either does not have a well-defined resonance or is far-off-resonance, the energy exchange between the resonant and extraneous objects is minimal, so the term κ12 in Eq. (1) can be dropped. The appropriate analytical model for the field amplitude in the resonant object a1(t) becomes:

a 1 t = - ( ω 1 - Γ 1 ) a 1 + ⅈκ 11 a 1 ( 2 )

Namely, the effect of the extraneous object is just a perturbation on the resonance of the resonant object and it is twofold: First, it shifts its resonant frequency through the real part of κ11 thus detuning it from other resonant objects. As shown in FIG. 7, this is a problem that can be fixed rather easily by applying a feedback mechanism 710 to every device (e.g., device resonators 720 and 730) that corrects its frequency, such as through small changes in geometry, and matches it to that of the source resonator 740. Second, it forces the resonant object to lose modal energy due to scattering into radiation from the extraneous object through the induced polarization or currents in it, and due to material absorption in the extraneous object through the imaginary part of κ11. This reduction in Q can be a detrimental effect to the functionality of the energy-transfer scheme, because it cannot be remedied, so its magnitude must be quantified.

In the first example of resonant objects that have been considered, the class of dielectric disks, small, low-index, low-material-loss or far-away stray objects will induce small scattering and absorption. To examine realistic cases that are more dangerous for reduction in Q, one can therefore place the “test” dielectric disk cavity 40 close to: a) another off-resonance object 42, such as a human being, of large Re{∈}=49 and Im{∈}=16 and of same size but different shape, as shown in FIG. 4A; and b) a roughened surface 46, such as a wall, of large extent but of small Re{∈}=2.5 and Im{∈}=0.05, as shown in FIG. 4B.

Analytically, for objects that interact with a small perturbation the reduced value of radiation-Q due to scattering could be estimated using the polarization ∫d3r|PX1(r)|2∝∫d3r|E1(r)·Re{∈X(r)}|2 induced by the resonant cavity 1 inside the extraneous object X=42 or roughened surface X=46. Since in the examined cases either the refractive index or the size of the extraneous objects is large, these first-order perturbation-theory results would not be accurate enough, thus one can only rely on numerical FDTD simulations. The absorption-Q inside these objects can be estimated through Im{κ11}=ω1/2·∫d3r|E1(r)|2Im{∈X(r)}/∫d3r|E1(r)|2∈(r).

Using these methods, for distances D/r=10, 7, 5, 3 between the cavity and extraneous-object centers one can find that Qrad=1999 is respectively reduced to Qrad=1988, 1258, 702, 226, and that the absorption rate inside the object is Qabs=312530, 86980, 21864, 1662, namely the resonance of the cavity is not detrimentally disturbed from high-index and/or high-loss extraneous objects, unless the (possibly mobile) object comes very close to the cavity. For distances D/r=10, 7, 5, 3, 0 of the cavity to the roughened surface we find respectively Qrad=2101, 2257, 1760, 1110, 572, and Qabs>4000, namely the influence on the initial resonant mode is acceptably low, even in the extreme case when the cavity is embedded on the surface. Note that a close proximity of metallic objects could also significantly scatter the resonant field, but one can assume for simplicity that such objects are not present.

Imagine now a combined system where a resonant source-object s is used to wirelessly transfer energy to a resonant device-object d but there is an off-resonance extraneous-object e present. One can see that the strength of all extrinsic loss mechanisms from e is determined by |Es(re)|2, by the square of the small amplitude of the tails of the resonant source, evaluated at the position re of the extraneous object. In contrast, the coefficient of resonant coupling of energy from the source to the device is determined by the same-order tail amplitude |Es(rd)|, evaluated at the position rd of the device, but this time it is not squared! Therefore, for equal distances of the source to the device and to the extraneous object, the coupling time for energy exchange with the device is much shorter than the time needed for the losses inside the extraneous object to accumulate, especially if the amplitude of the resonant field has an exponential-like decay away from the source. One could actually optimize the performance by designing the system so that the desired coupling is achieved with smaller tails at the source and longer at the device, so that interference to the source from the other objects is minimal.

The above concepts can be verified in the case of dielectric disk cavities by a simulation that combines FIGS. 2A-2B and 4A-4B, namely that of two (source-device) “test” cavities 50 placed 10 r apart, in the presence of a same-size extraneous object 52 of ∈=49 between them, and at a distance 5 r from a large roughened surface 56 of ∈=2.5, as shown in FIG. 5. Then, the original values of Q=1992, ω/2κ=1717 (and thus κ/Γ=1.16) deteriorate to Q=765, ω/2κ=965 (and thus κ/Γ=0.79). This change is acceptably small, considering the extent of the considered external perturbation, and, since the system design has not been optimized, the final value of coupling-to-loss ratio is promising that this scheme can be useful for energy transfer.

In the second example of resonant objects being considered, the conducting-wire loops, the influence of extraneous objects on the resonances is nearly absent. The reason for this is that, in the quasi-static regime of operation (r<<λ) that is being considered, the near field in the air region surrounding the loop is predominantly magnetic, since the electric field is localized inside the capacitor. Therefore, extraneous objects that could interact with this field and act as a perturbation to the resonance are those having significant magnetic properties (magnetic permeability Re{μ}>1 or magnetic loss Im{μ}>0). Since almost all common materials are non-magnetic, they respond to magnetic fields in the same way as free space, and thus will not disturb the resonance of a conducting-wire loop. The only perturbation that is expected to affect these resonances is a close proximity of large metallic structures.

An extremely important implication of the above fact relates to safety considerations for human beings. Humans are also non-magnetic and can sustain strong magnetic fields without undergoing any risk. This is clearly an advantage of this class of resonant systems for many real-world applications. On the other hand, dielectric systems of high (effective) index have the advantages that their efficiencies seem to be higher, judging from the larger achieved values of ∈/Γ, and that they are also applicable to much smaller length-scales, as mentioned before.

Consider now again the combined system of resonant source s and device d in the presence of a human h and a wall, and now let us study the efficiency of this resonance-based energy-transfer scheme, when energy is being drained from the device for use into operational work. One can use the parameters found before: for dielectric disks, absorption-dominated loss at the source Qs˜104, radiation-dominated loss at the device Qd˜103 (which includes scattering from the human and the wall), absorption of the source- and device-energy at the human Qs-h, Qd-h˜104-105 depending on his/her not-very-close distance from the objects, and negligible absorption loss in the wall; for conducting-wire loops, Qs˜Qd˜103, and perturbations from the human and the wall are negligible. With corresponding loss-rates Γ=ω/2Q, distance-dependent coupling κ, and the rate at which working power is extracted Γw, the coupled-mode-theory equation for the device field-amplitude is

a d t = - ( ω - Γ d ) a d + ⅈκ a s - Γ d - h a d - Γ w a d . ( 3 )

Different temporal schemes can be used to extract power from the device and their efficiencies exhibit different dependence on the combined system parameters. Here, one can assume steady state, such that the field amplitude inside the source is maintained constant, namely as(t)=Ase−iωt, so then the field amplitude inside the device is ad(t)=Adeiωt with Ad=iκ/(Γdd-hw)As. Therefore, the power lost at the source is Ps=2Γs|As|2, at the device it is Pd=2Γd|Ad|2, the power absorbed at the human is Ph=2Γs-h|As|2+2Γd-h|Ad|2, and the useful extracted power is Pw=2Γw|Ad|2. From energy conservation, the total power entering the system is Ptotal=Ps+Pd+Ph+Pw. Denote the total loss-rates Γs totss-h and Γd totdd-h. Depending on the targeted application, the work-drainage rate should be chosen either Γwd tot to minimize the required energy stored in the resonant objects or Γwd tot√{square root over (1+κ2s totΓd tot)}>Γd tot such that the ratio of useful-to-lost powers, namely the efficiency ηw=Pw/Ptotal, is maximized for some value of κ. The efficiencies η for the two different choices are shown in FIGS. 6A and 6B respectively, as a function of the κ/Γd figure-of-merit which in turn depends on the source-device distance.

FIGS. 6A-6B show that for the system of dielectric disks and the choice of optimized efficiency, the efficiency can be large, e.g., at least 40%. The dissipation of energy inside the human is small enough, less than 5%, for values κ/Γd>1 and Qh>105, namely for medium-range source-device distances (Dd/r<10) and most human-source/device distances (Dh/r>8). For example, for Dd/r=10 and Dh/r=8, if 10 W must be delivered to the load, then, from FIG. 6B, ˜0.4 W will be dissipated inside the human, ˜4 W will be absorbed inside the source, and ˜2.6 W will be radiated to free space. For the system of conducting-wire loops, the achieved efficiency is smaller, ˜20% for κ/Γd≈1, but the significant advantage is that there is no dissipation of energy inside the human, as explained earlier.

Even better performance should be achievable through optimization of the resonant object designs. Also, by exploiting the earlier mentioned interference effects between the radiation fields of the coupled objects, such as continuous-wave operation at the frequency of the normal mode that has the larger radiation-Q, one could further improve the overall system functionality. Thus the inventive wireless energy-transfer scheme is promising for many modern applications. Although all considerations have been for a static geometry, all the results can be applied directly for the dynamic geometries of mobile objects, since the energy-transfer time κ−1˜1 μs, which is much shorter than any timescale associated with motions of macroscopic objects.

The invention provides a resonance-based scheme for mid-range wireless non-radiative energy transfer. Analyses of very simple implementation geometries provide encouraging performance characteristics for the potential applicability of the proposed mechanism. For example, in the macroscopic world, this scheme could be used to deliver power to robots and/or computers in a factory room, or electric buses on a highway (source-cavity would in this case be a “pipe” running above the highway). In the microscopic world, where much smaller wavelengths would be used and smaller powers are needed, one could use it to implement optical inter-connects for CMOS electronics or else to transfer energy to autonomous nano-objects, without worrying much about the relative alignment between the sources and the devices; energy-transfer distance could be even longer compared to the objects' size, since Im{∈(ω)} of dielectric materials can be much lower at the required optical frequencies than it is at microwave frequencies.

As a venue of future scientific research, different material systems should be investigated for enhanced performance or different range of applicability. For example, it might be possible to significantly improve performance by exploring plasmonic systems. These systems can often have spatial variations of fields on their surface that are much shorter than the free-space wavelength, and it is precisely this feature that enables the required decoupling of the scales: the resonant object can be significantly smaller than the exponential-like tails of its field. Furthermore, one should also investigate using acoustic resonances for applications in which source and device are connected via a common condensed-matter object.

Although the present invention has been shown and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US6455762 Sep 189720 Mar 1900Nikola TeslaSystem of transmission of electrical energy.
US64962119 Feb 190015 May 1900Nikola TeslaApparatus for transmission of electrical energy.
US78741216 May 190018 Apr 1905Nikola TeslaArt of transmitting electrical energy through the natural mediums.
US11197324 May 19071 Dec 1914Nikola TeslaApparatus for transmitting electrical energy.
US213349424 Oct 193618 Oct 1938Harry F WatersWirelessly energized electrical appliance
US35173507 Jul 196923 Jun 1970Bell Telephone Labor IncEnergy translating device
US35355431 May 196920 Oct 1970NasaMicrowave power receiving antenna
US378042525 Jan 197125 Dec 1973Atomic Energy Authority UkThermoelectric units
US38711768 Mar 197318 Mar 1975Combustion EngLarge sodium valve actuator
US408899921 May 19769 May 1978NasaRF beam center location method and apparatus for power transmission system
US409599830 Sep 197620 Jun 1978The United States Of America As Represented By The Secretary Of The ArmyThermoelectric voltage generator
US4180795 *12 Dec 197725 Dec 1979Bridgestone Tire Company, LimitedAlarm device for informing reduction of pneumatic pressure of tire
US428012910 Sep 197921 Jul 1981Wells Donald HVariable mutual transductance tuned antenna
US4450431 *26 May 198122 May 1984Hochstein Peter ACondition monitoring system (tire pressure)
US458897821 Jun 198413 May 1986Transensory Devices, Inc.Remote switch-sensing system
US502770913 Nov 19902 Jul 1991Slagle Glenn BMagnetic induction mine arming, disarming and simulation system
US50332954 Feb 198923 Jul 1991Robert Bosch GmbhDevice for transmission and evaluation of measurement signals for the tire pressure of motor vehicles
US503465812 Jan 199023 Jul 1991Roland HierigChristmas-tree, decorative, artistic and ornamental object illumination apparatus
US505377413 Feb 19911 Oct 1991Texas Instruments Deutschland GmbhTransponder arrangement
US50702932 Mar 19903 Dec 1991Nippon Soken, Inc.Electric power transmitting device with inductive coupling
US511899716 Aug 19912 Jun 1992General Electric CompanyDual feedback control for a high-efficiency class-d power amplifier circuit
US521640222 Jan 19921 Jun 1993Hughes Aircraft CompanySeparable inductive coupler
US522965220 Apr 199220 Jul 1993Hough Wayne ENon-contact data and power connector for computer based modules
US528711214 Apr 199315 Feb 1994Texas Instruments IncorporatedHigh speed read/write AVI system
US534108320 Oct 199223 Aug 1994Electric Power Research Institute, Inc.Contactless battery charging system
US536724218 Sep 199222 Nov 1994Ericsson Radio Systems B.V.System for charging a rechargeable battery of a portable unit in a rack
US5374930 *12 Nov 199320 Dec 1994Texas Instruments Deutschland GmbhHigh speed read/write AVI system
US54082092 Nov 199318 Apr 1995Hughes Aircraft CompanyCooled secondary coils of electric automobile charging transformer
US54370573 Dec 199225 Jul 1995Xerox CorporationWireless communications using near field coupling
US54554672 Mar 19943 Oct 1995Apple Computer, Inc.Power connection scheme
US549369123 Dec 199320 Feb 1996Barrett; Terence W.Oscillator-shuttle-circuit (OSC) networks for conditioning energy in higher-order symmetry algebraic topological forms and RF phase conjugation
US552285620 Sep 19944 Jun 1996Vitatron Medical, B.V.Pacemaker with improved shelf storage capacity
US552811321 Oct 199418 Jun 1996Boys; John T.Inductive power pick-up coils
US55416043 Sep 199330 Jul 1996Texas Instruments Deutschland GmbhTransponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement
US555045222 Jul 199427 Aug 1996Nintendo Co., Ltd.Induction charging apparatus
US556576319 Nov 199315 Oct 1996Lockheed Martin CorporationThermoelectric method and apparatus for charging superconducting magnets
US563083524 Jul 199520 May 1997Cardiac Control Systems, Inc.Method and apparatus for the suppression of far-field interference signals for implantable device data transmission systems
US56979562 Jun 199516 Dec 1997Pacesetter, Inc.Implantable stimulation device having means for optimizing current drain
US570346127 Jun 199630 Dec 1997Kabushiki Kaisha Toyoda Jidoshokki SeisakushoInductive coupler for electric vehicle charger
US5703573 *11 Jan 199630 Dec 1997Sony Chemicals Corp.Transmitter-receiver for non-contact IC card system
US571041329 Mar 199520 Jan 1998Minnesota Mining And Manufacturing CompanyH-field electromagnetic heating system for fusion bonding
US574247125 Nov 199621 Apr 1998The Regents Of The University Of CaliforniaNanostructure multilayer dielectric materials for capacitors and insulators
US582172822 Jul 199613 Oct 1998Schwind; John P.Armature induction charging of moving electric vehicle batteries
US582173130 Jan 199713 Oct 1998Sumitomo Wiring Systems, Ltd.Connection system and connection method for an electric automotive vehicle
US586432319 Dec 199626 Jan 1999Texas Instruments IncorporatedRing antennas for resonant circuits
US589857924 Nov 199727 Apr 1999Auckland Uniservices LimitedNon-contact power distribution system
US590313419 May 199811 May 1999Nippon Electric Industry Co., Ltd.Inductive battery charger
US592354421 Jul 199713 Jul 1999Tdk CorporationNoncontact power transmitting apparatus
US594050918 Nov 199717 Aug 1999Intermec Ip Corp.Method and apparatus for controlling country specific frequency allocation
US59579563 Nov 199728 Sep 1999Angeion CorpImplantable cardioverter defibrillator having a smaller mass
US595924529 May 199728 Sep 1999Commscope, Inc. Of North CarolinaCoaxial cable
US59868955 Jun 199816 Nov 1999Astec International LimitedAdaptive pulse width modulated resonant Class-D converter
US599399616 Sep 199730 Nov 1999Inorganic Specialists, Inc.Carbon supercapacitor electrode materials
US59993081 Apr 19987 Dec 1999Massachusetts Institute Of TechnologyMethods and systems for introducing electromagnetic radiation into photonic crystals
US601265914 Jun 199611 Jan 2000Daicel Chemical Industries, Ltd.Method for discriminating between used and unused gas generators for air bags during car scrapping process
US60472149 Jun 19984 Apr 2000North Carolina State UniversitySystem and method for powering, controlling, and communicating with multiple inductively-powered devices
US60661632 Feb 199623 May 2000John; Michael SashaAdaptive brain stimulation method and system
US606747331 Mar 199923 May 2000Medtronic, Inc.Implantable medical device using audible sound communication to provide warnings
US610857911 Apr 199722 Aug 2000Pacesetter, Inc.Battery monitoring apparatus and method for programmers of cardiac stimulating devices
US612779914 May 19993 Oct 2000Gte Internetworking IncorporatedMethod and apparatus for wireless powering and recharging
US617643315 May 199823 Jan 2001Hitachi, Ltd.Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance
US618465120 Mar 20006 Feb 2001Motorola, Inc.Contactless battery charger with wireless control link
US62078877 Jul 199927 Mar 2001Hi-2 Technology, Inc.Miniature milliwatt electric power generator
US62328411 Jul 199915 May 2001Rockwell Science Center, LlcIntegrated tunable high efficiency power amplifier
US623838716 Nov 199829 May 2001Team Medical, L.L.C.Electrosurgical generator
US625276221 Apr 199926 Jun 2001Telcordia Technologies, Inc.Rechargeable hybrid battery/supercapacitor system
US643629912 Jun 200020 Aug 2002Amway CorporationWater treatment system with an inductively coupled ballast
US645094611 Feb 200017 Sep 2002Obtech Medical AgFood intake restriction with wireless energy transfer
US645246527 Jun 200017 Sep 2002M-Squared Filters, LlcHigh quality-factor tunable resonator
US645921812 Feb 20011 Oct 2002Auckland Uniservices LimitedInductively powered lamp unit
US64730285 Apr 200029 Oct 2002Stmicroelectronics S.A.Detection of the distance between an electromagnetic transponder and a terminal
US648320216 Nov 199819 Nov 2002Auckland Uniservices LimitedControl of inductive power transfer pickups
US65158787 Aug 19984 Feb 2003Meins Juergen G.Method and apparatus for supplying contactless power
US653513315 Nov 200118 Mar 2003Yazaki CorporationVehicle slide door power supply apparatus and method of supplying power to vehicle slide door
US656197525 Oct 200013 May 2003Medtronic, Inc.Method and apparatus for communicating with medical device systems
US65634258 Aug 200113 May 2003Escort Memory SystemsRFID passive repeater system and apparatus
US659707611 Dec 200122 Jul 2003Abb Patent GmbhSystem for wirelessly supplying a large number of actuators of a machine with electrical power
US660902320 Sep 200219 Aug 2003Angel Medical Systems, Inc.System for the detection of cardiac events
US66310726 Dec 19997 Oct 2003Energy Storage Systems Pty LtdCharge storage device
US66502278 Dec 199918 Nov 2003Hid CorporationReader for a radio frequency identification system having automatic tuning capability
US666477023 Sep 200016 Dec 2003Iq- Mobil GmbhWireless power transmission system with increased output voltage
US667325018 Jun 20026 Jan 2004Access Business Group International LlcRadio frequency identification system for a fluid treatment system
US668325627 Mar 200227 Jan 2004Ta-San KaoStructure of signal transmission line
US669664723 May 200224 Feb 2004Hitachi Cable, Ltd.Coaxial cable and coaxial multicore cable
US67039215 Apr 20009 Mar 2004Stmicroelectronics S.A.Operation in very close coupling of an electromagnetic transponder system
US673107126 Apr 20024 May 2004Access Business Group International LlcInductively powered lamp assembly
US674911911 Dec 200115 Jun 2004Abb Research Ltd.System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose
US677201120 Aug 20023 Aug 2004Thoratec CorporationTransmission of information from an implanted medical device
US679871619 Jun 200328 Sep 2004Bc Systems, Inc.System and method for wireless electrical power transmission
US680374431 Oct 200012 Oct 2004Anthony SaboAlignment independent and self aligning inductive power transfer system
US680664918 Feb 200319 Oct 2004Access Business Group International LlcStarter assembly for a gas discharge lamp
US68126455 Jun 20032 Nov 2004Access Business Group International LlcInductively powered lamp assembly
US682562018 Sep 200230 Nov 2004Access Business Group International LlcInductively coupled ballast circuit
US68314175 Jun 200314 Dec 2004Access Business Group International LlcMethod of manufacturing a lamp assembly
US68390357 Oct 20034 Jan 2005A.C.C. SystemsMagnetically coupled antenna range extender
US684470216 May 200218 Jan 2005Koninklijke Philips Electronics N.V.System, method and apparatus for contact-less battery charging with dynamic control
US685629121 Jul 200315 Feb 2005University Of Pittsburgh- Of The Commonwealth System Of Higher EducationEnergy harvesting circuits and associated methods
US685897021 Oct 200222 Feb 2005The Boeing CompanyMulti-frequency piezoelectric energy harvester
US690649520 Dec 200214 Jun 2005Splashpower LimitedContact-less power transfer
US691716318 Feb 200412 Jul 2005Access Business Group International LlcInductively powered lamp assembly
US691743115 May 200212 Jul 2005Massachusetts Institute Of TechnologyMach-Zehnder interferometer using photonic band gap crystals
US693713016 Sep 200230 Aug 2005Abb Research Ltd.Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system
US696096826 Jun 20021 Nov 2005Koninklijke Philips Electronics N.V.Planar resonator for wireless power transfer
US69616198 Jul 20021 Nov 2005Casey Don ESubcutaneously implantable power supply
US69674625 Jun 200322 Nov 2005Nasa Glenn Research CenterCharging of devices by microwave power beaming
US697519827 Apr 200513 Dec 2005Access Business Group International LlcInductive coil assembly
US69880264 Nov 200317 Jan 2006Automotive Technologies International Inc.Wireless and powerless sensor and interrogator
US702731115 Oct 200411 Apr 2006Firefly Power Technologies, Inc.Method and apparatus for a wireless power supply
US703507615 Aug 200525 Apr 2006Greatbatch-Sierra, Inc.Feedthrough filter capacitor assembly with internally grounded hermetic insulator
US70421961 Dec 20049 May 2006Splashpower LimitedContact-less power transfer
US706906420 Feb 200427 Jun 2006Telefonaktiebolaget Lm Ericsson (Publ)Tunable ferroelectric resonator arrangement
US708460518 Oct 20041 Aug 2006University Of PittsburghEnergy harvesting circuit
US711620027 Apr 20053 Oct 2006Access Business Group International LlcInductive coil assembly
US711824014 Jan 200510 Oct 2006Access Business Group International LlcInductively powered apparatus
US71264504 Feb 200324 Oct 2006Access Business Group International LlcInductively powered apparatus
US712729328 Mar 200524 Oct 2006Biomed Solutions, LlcBiothermal power source for implantable devices
US713291820 Oct 20037 Nov 2006Access Business Group International LlcInductive coil assembly
US71476047 Aug 200212 Dec 2006Cardiomems, Inc.High Q factor sensor
US718024822 Oct 200420 Feb 2007Access Business Group International, LlcInductively coupled ballast circuit
US719100724 Jun 200413 Mar 2007Ethicon Endo-Surgery, IncSpatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics
US719341813 Jun 200520 Mar 2007Bruker Biospin AgResonator system
US721241420 Oct 20031 May 2007Access Business Group International, LlcAdaptive inductive power supply
US723313723 Sep 200419 Jun 2007Sharp Kabushiki KaishaPower supply system
US72391101 Dec 20043 Jul 2007Splashpower LimitedPrimary units, methods and systems for contact-less power transfer
US724801722 Nov 200524 Jul 2007Spashpower LimitedPortable contact-less power transfer devices and rechargeable batteries
US725152731 Jul 200331 Jul 2007Cardiac Pacemakers, Inc.Method for monitoring end of life for battery
US72889182 Mar 200430 Oct 2007Distefano Michael VincentWireless battery charger via carrier frequency signal
US737549212 Dec 200320 May 2008Microsoft CorporationInductively charged battery pack
US737549312 Dec 200320 May 2008Microsoft CorporationInductive battery charger
US737881712 Dec 200327 May 2008Microsoft CorporationInductive power adapter
US738263614 Oct 20053 Jun 2008Access Business Group International LlcSystem and method for powering a load
US738535728 Nov 200610 Jun 2008Access Business Group International LlcInductively coupled ballast circuit
US744313511 Apr 200528 Oct 2008Hanrim Postech Co., Ltd.No point of contact charging system
US746295111 Aug 20049 Dec 2008Access Business Group International LlcPortable inductive power station
US746621327 Sep 200416 Dec 2008Nxp B.V.Resonator structure and method of producing it
US747405810 Nov 20066 Jan 2009Access Business Group International LlcInductively powered secondary assembly
US749224720 Feb 200417 Feb 2009Sew-Eurodrive Gmbh & Co. KgTransmitter head and system for contactless energy transmission
US751481824 Oct 20067 Apr 2009Matsushita Electric Works, Ltd.Power supply system
US751826720 Oct 200314 Apr 2009Access Business Group International LlcPower adapter for a remote device
US752528328 Feb 200528 Apr 2009Access Business Group International LlcContact-less power transfer
US754533713 Nov 20069 Jun 2009Vacuumscmelze Gmbh & Co. KgAntenna arrangement for inductive power transmission and use of the antenna arrangement
US759974324 Jun 20046 Oct 2009Ethicon Endo-Surgery, Inc.Low frequency transcutaneous energy transfer to implanted medical device
US761593627 Apr 200710 Nov 2009Access Business Group International LlcInductively powered apparatus
US763951412 Mar 200729 Dec 2009Access Business Group International LlcAdaptive inductive power supply
US77417345 Jul 200622 Jun 2010Massachusetts Institute Of TechnologyWireless non-radiative energy transfer
US77957082 Jun 200614 Sep 2010Honeywell International Inc.Multilayer structures for magnetic shielding
US782554326 Mar 20082 Nov 2010Massachusetts Institute Of TechnologyWireless energy transfer
US784328830 Apr 200830 Nov 2010Samsung Electronics Co., Ltd.Apparatus and system for transmitting power wirelessly
US786385928 Jun 20064 Jan 2011Cynetic Designs Ltd.Contactless battery charging apparel
US802257631 Mar 200920 Sep 2011Massachusetts Institute Of TechnologyWireless non-radiative energy transfer
US807680031 Mar 200913 Dec 2011Massachusetts Institute Of TechnologyWireless non-radiative energy transfer
US807680114 May 200913 Dec 2011Massachusetts Institute Of TechnologyWireless energy transfer, including interference enhancement
US808488931 Mar 200927 Dec 2011Massachusetts Institute Of TechnologyWireless non-radiative energy transfer
US80979838 May 200917 Jan 2012Massachusetts Institute Of TechnologyWireless energy transfer
US813137828 Oct 20076 Mar 2012Second Sight Medical Products, Inc.Inductive repeater coil for an implantable device
US817899513 Oct 200915 May 2012Toyota Jidosha Kabushiki KaishaPower supply system and method of controlling power supply system
US83626511 Oct 200929 Jan 2013Massachusetts Institute Of TechnologyEfficient near-field wireless energy transfer using adiabatic system variations
US839528231 Mar 200912 Mar 2013Massachusetts Institute Of TechnologyWireless non-radiative energy transfer
US839528316 Dec 200912 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer over a distance at high efficiency
US840001816 Dec 200919 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer with high-Q at high efficiency
US840001916 Dec 200919 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer with high-Q from more than one source
US840002016 Dec 200919 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer with high-Q devices at variable distances
US840002116 Dec 200919 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer with high-Q sub-wavelength resonators
US840002223 Dec 200919 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer with high-Q similar resonant frequency resonators
US840002323 Dec 200919 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer with high-Q capacitively loaded conducting loops
US840002430 Dec 200919 Mar 2013Massachusetts Institute Of TechnologyWireless energy transfer across variable distances
US2002003247131 Aug 200114 Mar 2002Loftin Scott M.Low-power, high-modulation-index amplifier for use in battery-powered device
US2002010534311 Dec 20018 Aug 2002Guntram ScheibleSystem for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose
US2002011800411 Dec 200129 Aug 2002Guntram ScheibleSystem for wirelessly supplying a large number of actuators of a machine with electrical power
US2002013064227 Feb 200219 Sep 2002Ettes Wilhelmus Gerardus MariaInductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
US2002016729420 Mar 200214 Nov 2002International Business Machines CorporationRechargeable power supply system and method of protection against abnormal charging
US200300386413 Sep 200227 Feb 2003Guntram ScheibleProximity sensor
US2003006279416 Sep 20023 Apr 2003Guntram ScheibleMagnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system
US200300629809 Sep 20023 Apr 2003Guntram ScheibleConfiguration for producing electrical power from a magnetic field
US2003007103425 Nov 200217 Apr 2003Thompson Leslie L.Resonant frequency tracking system and method for use in a radio frequency (RF) power supply
US2003012405029 Mar 20023 Jul 2003Tapesh YadavPost-processed nanoscale powders and method for such post-processing
US2003012694810 Dec 200210 Jul 2003Tapesh YadavHigh purity fine metal powders and methods to produce such powders
US2003016059025 Feb 200328 Aug 2003Schaefer Martin A.Method and apparatus for charging sterilizable rechargeable batteries
US2003019977811 Jun 200323 Oct 2003Marlin MickleApparatus for energizing a remote station and related method
US200302142554 Feb 200320 Nov 2003Baarman David W.Inductively powered apparatus
US2004000097426 Jun 20021 Jan 2004Koninklijke Philips Electronics N.V.Planar resonator for wireless power transfer
US2004002699812 Jun 200312 Feb 2004Henriott Jay M.Low voltage electrified furniture unit
US2004010033813 Nov 200327 May 2004Clark Roger L.Oscillator module incorporating looped-stub resonator
US2004011384712 Dec 200217 Jun 2004Yihong QiAntenna with near-field radiation control
US2004013042512 Aug 20038 Jul 2004Tal DayanEnhanced RF wireless adaptive power provisioning system for small devices
US2004013091520 Oct 20038 Jul 2004Baarman David W.Adaptive inductive power supply with communication
US2004013091620 Oct 20038 Jul 2004Baarman David W.Adaptive inductive power supply
US2004014273329 Dec 200322 Jul 2004Parise Ronald J.Remote power recharge for electronic equipment
US2004015093420 Oct 20035 Aug 2004Baarman David W.Adapter
US2004018924616 Dec 200330 Sep 2004Claudiu BulaiSystem and method for inductive charging a wireless mouse
US2004020136114 Nov 200314 Oct 2004Samsung Electronics Co., Ltd.Charging system for robot
US2004022275120 May 200411 Nov 2004Mollema Scott A.Starter assembly for a gas discharge lamp
US200402270577 Apr 200418 Nov 2004Ailocom OyWireless power transmission
US2004023284520 Oct 200325 Nov 2004Baarman David W.Inductive coil assembly
US2004023304313 Nov 200325 Nov 2004Hitachi, Ltd.Communication system
US2004026750110 Jul 200430 Dec 2004Freed Mason L.Sensor apparatus management methods and apparatus
US2005000706718 Jun 200413 Jan 2005Baarman David W.Vehicle interface
US2005002113430 Jun 200427 Jan 2005Opie John C.Method of rendering a mechanical heart valve non-thrombogenic with an electrical device
US2005002719229 Jul 20033 Feb 2005Assaf GovariEnergy transfer amplification for intrabody devices
US200500333824 Aug 200410 Feb 2005Peter SingleTemperature regulated implant
US2005008587314 Oct 200421 Apr 2005Gord John C.Method and apparatus for efficient power/data transmission
US2005009347522 Oct 20045 May 2005Kuennen Roy W.Inductively coupled ballast circuit
US200501040643 Mar 200319 May 2005John HegartySemiconductor photodetector
US2005010445315 Oct 200419 May 2005Firefly Power Technologies, Inc.Method and apparatus for a wireless power supply
US2005011665029 Oct 20042 Jun 2005Baarman David W.Method of manufacturing a lamp assembly
US2005011668313 May 20032 Jun 2005Splashpower LimitedContact-less power transfer
US2005012205814 Jan 20059 Jun 2005Baarman David W.Inductively powered apparatus
US2005012205914 Jan 20059 Jun 2005Baarman David W.Inductively powered apparatus
US2005012509321 Sep 20049 Jun 2005Sony CorporationRelaying apparatus and communication system
US2005012784914 Jan 200516 Jun 2005Baarman David W.Inductively powered apparatus
US2005012785014 Jan 200516 Jun 2005Baarman David W.Inductively powered apparatus
US2005012786611 Dec 200316 Jun 2005Alistair HamiltonOpportunistic power supply charge system for portable unit
US200501351221 Dec 200423 Jun 2005Cheng Lily K.Contact-less power transfer
US200501404821 Dec 200430 Jun 2005Cheng Lily K.Contact-less power transfer
US2005015151114 Jan 200414 Jul 2005Intel CorporationTransferring power between devices in a personal area network
US200501565604 Apr 200321 Jul 2005Motohiro ShimaokaCharging apparatus by non-contact dielectric feeding
US2005018994518 Jan 20051 Sep 2005Arcady ReidermanMethod and apparatus of using magnetic material with residual magnetization in transient electromagnetic measurement
US200501949262 Mar 20048 Sep 2005Di Stefano Michael V.Wireless battery charger via carrier frequency signal
US2005025315211 May 200417 Nov 2005Klimov Victor INon-contact pumping of light emitters via non-radiative energy transfer
US2005028873924 Jun 200429 Dec 2005Ethicon, Inc.Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry
US2005028874024 Jun 200429 Dec 2005Ethicon Endo-Surgery, Inc.Low frequency transcutaneous telemetry to implanted medical device
US2005028874124 Jun 200429 Dec 2005Ethicon Endo-Surgery, Inc.Low frequency transcutaneous energy transfer to implanted medical device
US2005028874224 Jun 200429 Dec 2005Ethicon Endo-Surgery, Inc.Transcutaneous energy transfer primary coil with a high aspect ferrite core
US2006000150929 Jun 20055 Jan 2006Gibbs Phillip RSystems and methods for automated resonant circuit tuning
US2006002263630 Jul 20042 Feb 2006Kye Systems CorporationPulse frequency modulation for induction charge device
US2006005329623 May 20039 Mar 2006Axel BusboomMethod for authenticating a user to a service of a service provider
US2006006132328 Oct 200323 Mar 2006Cheng Lily KContact-less power transfer
US2006006644313 Sep 200530 Mar 2006Tagsys SaSelf-adjusting RF assembly
US20060090956 *4 Nov 20044 May 2006Advanced Ultrasonic Solutions, Inc.Ultrasonic rod waveguide-radiator
US2006013204517 Dec 200422 Jun 2006Baarman David WHeating system and heater
US2006016486617 Feb 200627 Jul 2006Vanderelli Timm AMethod and apparatus for a wireless power supply
US200601812421 Mar 200617 Aug 2006Freed Mason LSensor apparatus management methods and apparatus
US200601842092 Sep 200517 Aug 2006John Constance MDevice for brain stimulation using RF energy harvesting
US2006018421013 Apr 200617 Aug 2006Medtronic, Inc.Explantation of implantable medical device
US2006018580923 Feb 200524 Aug 2006Abb.Actuator system for use in control of a sheet or web forming process
US2006019962016 Feb 20067 Sep 2006Firefly Power Technologies, Inc.Method, apparatus and system for power transmission
US2006020266513 May 200514 Sep 2006Microsoft CorporationInductive powering surface for powering portable devices
US2006020538116 Dec 200314 Sep 2006Beart Pilgrim GAdapting portable electrical devices to receive power wirelessly
US2006021462625 Mar 200528 Sep 2006Nilson Lee ABattery charging assembly for use on a locomotive
US200602194488 Mar 20065 Oct 2006Grieve Malcolm JElectric vehicle having multiple-use APU system
US2006023836512 Sep 200526 Oct 2006Elio VecchioneShort-range wireless power transmission and reception
US2006027044022 May 200630 Nov 2006Firefly Power Technologies, Inc.Power transmission network
US200602814356 Jun 200614 Dec 2006Firefly Power Technologies, Inc.Powering devices using RF energy harvesting
US200700102956 Jul 200611 Jan 2007Firefly Power Technologies, Inc.Power transmission system, apparatus and method with communication
US2007001348329 Jun 200618 Jan 2007Allflex U.S.A. Inc.Passive dynamic antenna tuning circuit for a radio frequency identification reader
US2007001608915 Jul 200518 Jan 2007Fischell David RImplantable device for vital signs monitoring
US2007002114022 Jul 200525 Jan 2007Keyes Marion A IvWireless power transmission systems and methods
US2007002424627 Jul 20061 Feb 2007Flaugher David JBattery Chargers and Methods for Extended Battery Life
US200700644068 Sep 200422 Mar 2007Beart Pilgrim G WInductive power transfer units having flux shields
US200700696879 Aug 200629 Mar 2007Sony Ericsson Mobile Communications Japan, Inc.Charging apparatus and charging system
US2007009687522 May 20063 May 2007Paul WaterhouseRadio tag and system
US200701054296 Nov 200610 May 2007Georgia Tech Research CorporationHigh performance interconnect devices & structures
US2007011759617 Nov 200624 May 2007Powercast, LlcRadio-frequency (RF) power portal
US2007012665013 Nov 20067 Jun 2007Wulf GuentherAntenna Arrangement For Inductive Power Transmission And Use Of The Antenna Arrangement
US2007014583027 Dec 200528 Jun 2007Mobilewise, Inc.System and method for contact free transfer of power
US2007017168112 Mar 200726 Jul 2007Access Business Group International LlcAdaptive inductive power supply
US200701768406 Feb 20032 Aug 2007James PristasMulti-receiver communication system with distributed aperture antenna
US2007017894521 Apr 20062 Aug 2007Cook Nigel PMethod and system for powering an electronic device via a wireless link
US2007018236730 Jan 20079 Aug 2007Afshin PartoviInductive power source and charging system
US2007020826327 Feb 20076 Sep 2007Michael Sasha JohnSystems and methods of medical monitoring according to patient state
US200702225425 Jul 200627 Sep 2007Joannopoulos John DWireless non-radiative energy transfer
US2007026791829 Apr 200522 Nov 2007Gyland Geir ODevice and Method of Non-Contact Energy Transmission
US200702765386 Apr 200429 Nov 2007Abb Research Ltd.Tool for an Industrial Robot
US2008001256925 Sep 200717 Jan 2008Hall David RDownhole Coils
US2008001489717 Jan 200717 Jan 2008Cook Nigel PMethod and apparatus for delivering energy to an electrical or electronic device via a wireless link
US200800304152 Aug 20067 Feb 2008Schlumberger Technology CorporationFlexible Circuit for Downhole Antenna
US2008006787414 Sep 200720 Mar 2008Ryan TsengMethod and apparatus for wireless power transmission
US2008019163825 Feb 200814 Aug 2008Access Business Group International LlcInductively coupled ballast circuit
US2008019771030 Nov 200521 Aug 2008Abb Research Ltd.Transmission Of Power Supply For Robot Applications Between A First Member And A Second Member Arranged Rotatable Relative To One Another
US2008021132022 Jan 20084 Sep 2008Nigelpower, LlcWireless power apparatus and methods
US2008026568425 Oct 200730 Oct 2008Laszlo FarkasHigh power wireless resonant energy transfer system
US2008026674829 Jul 200530 Oct 2008Hyung-Joo LeeAmplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device
US2008027826426 Mar 200813 Nov 2008Aristeidis KaralisWireless energy transfer
US2009001002825 Sep 20088 Jan 2009Access Business Group International LlcInductive power supply, remote device powered by inductive power supply and method for operating same
US200900150759 Jul 200715 Jan 2009Nigel Power, LlcWireless Energy Transfer Using Coupled Antennas
US200900335642 Aug 20075 Feb 2009Nigel Power, LlcDeployable Antennas for Wireless Power
US2009004577210 Jun 200819 Feb 2009Nigelpower, LlcWireless Power System and Proximity Effects
US2009005122411 Aug 200826 Feb 2009Nigelpower, LlcIncreasing the q factor of a resonator
US2009005818911 Aug 20085 Mar 2009Nigelpower, LlcLong range low frequency resonator and materials
US2009006719828 Aug 200812 Mar 2009David Jeffrey GrahamContactless power supply
US2009007262714 Sep 200819 Mar 2009Nigelpower, LlcMaximizing Power Yield from Wireless Power Magnetic Resonators
US2009007262814 Sep 200819 Mar 2009Nigel Power, LlcAntennas for Wireless Power applications
US2009007262916 Sep 200819 Mar 2009Nigel Power, LlcHigh Efficiency and Power Transfer in Wireless Power Magnetic Resonators
US2009007926816 Sep 200826 Mar 2009Nigel Power, LlcTransmitters and receivers for wireless energy transfer
US2009008540829 Aug 20082 Apr 2009Maquet Gmbh & Co. KgApparatus and method for wireless energy and/or data transmission between a source device and at least one target device
US2009008570624 Sep 20082 Apr 2009Access Business Group International LlcPrinted circuit board coil
US200900964137 May 200816 Apr 2009Mojo Mobility, Inc.System and method for inductive charging of portable devices
US2009010229218 Sep 200823 Apr 2009Nigel Power, LlcBiological Effects of Magnetic Power Transfer
US2009010867930 Oct 200730 Apr 2009Ati Technologies UlcWireless energy transfer
US2009010899731 Oct 200730 Apr 2009Intermec Ip Corp.System, devices, and method for energizing passive wireless data communication devices
US2009012793729 Feb 200821 May 2009Nigelpower, LlcWireless Power Bridge
US2009013471226 Nov 200828 May 2009Nigel Power LlcWireless Power Range Increase Using Parasitic Antennas
US2009014689214 Nov 200811 Jun 2009Sony Ericsson Mobile Communications Japan, Inc.Non-contact wireless communication apparatus, method of adjusting resonance frequency of non-contact wireless communication antenna, and mobile terminal apparatus
US2009015327319 Jun 200818 Jun 2009Darfon Electronics Corp.Energy transferring system and method thereof
US2009016026119 Dec 200725 Jun 2009Nokia CorporationWireless energy transfer
US2009016744913 Oct 20082 Jul 2009Nigel Power, LlcWireless Power Transfer using Magneto Mechanical Systems
US200901742637 Jan 20099 Jul 2009Access Business Group International LlcInductive power supply with duty cycle control
US2009017950214 Jan 200916 Jul 2009Nigelpower, LlcWireless powering and charging station
US2009018945821 Jan 200930 Jul 2009Toyota Jidosha Kabushiki KaishaVehicle power supply apparatus and vehicle window member
US2009019533231 Mar 20096 Aug 2009John D JoannopoulosWireless non-radiative energy transfer
US2009019533331 Mar 20096 Aug 2009John D JoannopoulosWireless non-radiative energy transfer
US2009021263611 Jan 200927 Aug 2009Nigel Power LlcWireless desktop IT environment
US2009021302826 Feb 200927 Aug 2009Nigel Power, LlcAntennas and Their Coupling Characteristics for Wireless Power Transfer via Magnetic Coupling
US2009022460823 Feb 200910 Sep 2009Nigel Power, LlcFerrite Antennas for Wireless Power Transfer
US200902246099 Mar 200910 Sep 2009Nigel Power, LlcPackaging and Details of a Wireless Power device
US200902248568 May 200910 Sep 2009Aristeidis KaralisWireless energy transfer
US2009023077712 Mar 200917 Sep 2009Access Business Group International LlcInductive power supply system with multiple coil primary
US2009023719411 Sep 200724 Sep 2009Koninklijke Philips Electronics N. V.Apparatus, a system and a method for enabling electromagnetic energy transfer
US2009024339428 Mar 20081 Oct 2009Nigelpower, LlcTuning and Gain Control in Electro-Magnetic power systems
US200902433974 Mar 20091 Oct 2009Nigel Power, LlcPackaging and Details of a Wireless Power device
US200902510081 Apr 20098 Oct 2009Shigeru SugayaPower Exchange Device, Power Exchange Method, Program, and Power Exchange System
US2009026755826 Jun 200829 Oct 2009Chun-Kil JungWireless Power Charging System
US2009026770931 Mar 200929 Oct 2009Joannopoulos John DWireless non-radiative energy transfer
US2009026771031 Mar 200929 Oct 2009Joannopoulos John DWireless non-radiative energy transfer
US2009027104723 Apr 200929 Oct 2009Masataka WakamatsuPower transmitting apparatus, power receiving apparatus, power transmission method, program, and power transmission system
US2009027104827 Apr 200929 Oct 2009Masataka WakamatsuPower Transmitting Apparatus, Power Transmission Method, Program, and Power Transmission System
US200902732425 May 20085 Nov 2009Nigelpower, LlcWireless Delivery of power to a Fixed-Geometry power part
US200902816786 May 200912 Nov 2009Masataka WakamatsuPower Transmission Device, Power Transmission Method, Program, Power Receiving Device and Power Transfer System
US200902840826 Nov 200819 Nov 2009Qualcomm IncorporatedMethod and apparatus with negative resistance in wireless power transfers
US2009028408314 May 200919 Nov 2009Aristeidis KaralisWireless energy transfer, including interference enhancement
US2009028421810 Oct 200819 Nov 2009Qualcomm IncorporatedMethod and apparatus for an enlarged wireless charging area
US200902842206 Nov 200819 Nov 2009Qualcomm IncorporatedMethod and apparatus for adaptive tuning of wireless power transfer
US2009028422710 Oct 200819 Nov 2009Qualcomm IncorporatedReceive antenna for wireless power transfer
US200902842457 Nov 200819 Nov 2009Qualcomm IncorporatedWireless power transfer for appliances and equipments
US2009028436910 Oct 200819 Nov 2009Qualcomm IncorporatedTransmit power control for a wireless charging system
US200902864706 Nov 200819 Nov 2009Qualcomm IncorporatedRepeaters for enhancement of wireless power transfer
US2009028647510 Oct 200819 Nov 2009Qualcomm IncorporatedSignaling charging in wireless power environment
US2009028647610 Oct 200819 Nov 2009Qualcomm IncorporatedReverse link signaling via receive antenna impedance modulation
US200902895959 Oct 200826 Nov 2009Darfon Electronics Corp.Wireless charging module and electronic apparatus
US2009029991828 May 20083 Dec 2009Nigelpower, LlcWireless delivery of power to a mobile powered device
US2010003897021 Apr 200918 Feb 2010Nigel Power, LlcShort Range Efficient Wireless Power Transfer
US2010009693423 Dec 200922 Apr 2010Joannopoulos John DWireless energy transfer with high-q similar resonant frequency resonators
US201001026393 Sep 200929 Apr 2010Joannopoulos John DWireless non-radiative energy transfer
US2010010264130 Dec 200929 Apr 2010Joannopoulos John DWireless energy transfer across variable distances
US2010011745515 Jan 201013 May 2010Joannopoulos John DWireless energy transfer using coupled resonators
US2010011745615 Jan 201013 May 2010Aristeidis KaralisApplications of wireless energy transfer using coupled antennas
US2010012335316 Dec 200920 May 2010Joannopoulos John DWireless energy transfer with high-q from more than one source
US2010012335416 Dec 200920 May 2010Joannopoulos John DWireless energy transfer with high-q devices at variable distances
US2010012335516 Dec 200920 May 2010Joannopoulos John DWireless energy transfer with high-q sub-wavelength resonators
US2010012757316 Dec 200927 May 2010Joannopoulos John DWireless energy transfer over a distance at high efficiency
US2010012757416 Dec 200927 May 2010Joannopoulos John DWireless energy transfer with high-q at high efficiency
US2010012757516 Dec 200927 May 2010Joannopoulos John DWireless energy transfer with high-q to more than one device
US2010013391830 Dec 20093 Jun 2010Joannopoulos John DWireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US2010013391930 Dec 20093 Jun 2010Joannopoulos John DWireless energy transfer across variable distances with high-q capacitively-loaded conducting-wire loops
US2010013392030 Dec 20093 Jun 2010Joannopoulos John DWireless energy transfer across a distance to a moving device
US201001485891 Oct 200917 Jun 2010Hamam Rafif EEfficient near-field wireless energy transfer using adiabatic system variations
US2010017137018 Mar 20108 Jul 2010Aristeidis KaralisMaximizing power yield from wireless power magnetic resonators
US2010018184418 Mar 201022 Jul 2010Aristeidis KaralisHigh efficiency and power transfer in wireless power magnetic resonators
US2010018791130 Dec 200929 Jul 2010Joannopoulos John DWireless energy transfer over distances to a moving device
US2010020120523 Apr 201012 Aug 2010Aristeidis KaralisBiological effects of magnetic power transfer
US2010020745816 Dec 200919 Aug 2010Joannopoulos John DWireless energy transfer over a distance with devices at variable distances
US2010022517521 May 20109 Sep 2010Aristeidis KaralisWireless power bridge
US2010023105326 May 201016 Sep 2010Aristeidis KaralisWireless power range increase using parasitic resonators
US2010023116326 Sep 200816 Sep 2010Governing Dynamics, LlcSelf-Charging Electric Vehicles and Aircraft, and Wireless Energy Distribution System
US2010023770619 Feb 201023 Sep 2010Aristeidis KaralisWireless power system and proximity effects
US2010023770726 Feb 201023 Sep 2010Aristeidis KaralisIncreasing the q factor of a resonator
US2010023770826 Mar 201023 Sep 2010Aristeidis KaralisTransmitters and receivers for wireless energy transfer
US201002531524 Mar 20107 Oct 2010Aristeidis KaralisLong range low frequency resonator
US2010026474518 Mar 201021 Oct 2010Aristeidis KaralisResonators for wireless power applications
US2010027700516 Jul 20104 Nov 2010Aristeidis KaralisWireless powering and charging station
US2010028944918 Dec 200818 Nov 2010Harri Heikki EloWireless energy transfer
US2010032766026 Aug 201030 Dec 2010Aristeidis KaralisResonators and their coupling characteristics for wireless power transfer via magnetic coupling
US2010032766110 Sep 201030 Dec 2010Aristeidis KaralisPackaging and details of a wireless power device
US2011001243110 Sep 201020 Jan 2011Aristeidis KaralisResonators for wireless power transfer
US201100183611 Oct 201027 Jan 2011Aristeidis KaralisTuning and gain control in electro-magnetic power systems
US201100251311 Oct 20103 Feb 2011Aristeidis KaralisPackaging and details of a wireless power device
US2011004304623 Dec 200924 Feb 2011Joannopoulos John DWireless energy transfer with high-q capacitively loaded conducting loops
US2011004999625 Aug 20103 Mar 2011Aristeidis KaralisWireless desktop it environment
US201100499984 Nov 20103 Mar 2011Aristeidis KaralisWireless delivery of power to a fixed-geometry power part
US2011007421818 Nov 201031 Mar 2011Aristedis KaralisWireless energy transfer
US2011007434718 Nov 201031 Mar 2011Aristeidis KaralisWireless energy transfer
US2011008989518 Nov 201021 Apr 2011Aristeidis KaralisWireless energy transfer
US2011014054418 Feb 201116 Jun 2011Aristeidis KaralisAdaptive wireless power transfer apparatus and method thereof
US2011014821918 Feb 201123 Jun 2011Aristeidis KaralisShort range efficient wireless power transfer
US2011016289518 Mar 20117 Jul 2011Aristeidis KaralisNoncontact electric power receiving device, noncontact electric power transmitting device, noncontact electric power feeding system, and electrically powered vehicle
US2011016933918 Mar 201114 Jul 2011Aristeidis KaralisMethod and apparatus of load detection for a planar wireless power system
US201101811221 Apr 201128 Jul 2011Aristeidis KaralisWirelessly powered speaker
US2011019341928 Feb 201111 Aug 2011Aristeidis KaralisWireless energy transfer
US201101989394 Mar 201118 Aug 2011Aristeidis KaralisFlat, asymmetric, and e-field confined wireless power transfer apparatus and method thereof
US2011022127820 May 201115 Sep 2011Aristeidis KaralisPower supply system and method of controlling power supply system
US2011022752813 May 201122 Sep 2011Aristeidis KaralisAdaptive matching, tuning, and power transfer of wireless power
US2011022753026 May 201122 Sep 2011Aristeidis KaralisWireless power transmission for portable wireless power charging
US2011024161817 Jun 20116 Oct 2011Aristeidis KaralisMethods and systems for wireless power transmission
US201200685493 Nov 201122 Mar 2012Aristeidis KaralisWireless energy transfer, including interference enhancement
CA142352A17 Apr 190613 Aug 1912Nikola TeslaElectrical energy transmission
DE3824972A122 Jul 198812 Jan 1989Roland HieringIllumination of christmas trees, decorations and artwork
DE10029147A114 Jun 200020 Dec 2001Ulf TiemensInstallation for supplying toys with electrical energy, preferably for production of light, comprises a sender of electromagnetic waves which is located at a small distance above a play area with the toys
DE10221484B415 May 200211 Oct 2012Hans-Joachim HolmVorrichtung zur Energieversorgung einer Datenerfassungs- und Datenübertragungseinheit sowie Datenerfassungs- und Übertragungseinheit
DE10304584A15 Feb 200319 Aug 2004Abb Research Ltd.Communication of power and data to sensors and actuators in a process uses field transmission and avoids wiring
DE20016655U125 Sep 200014 Feb 2002Ic Haus GmbhSystem zur drahtlosen Energie- und Datenübertragung
DE102005036290B42 Aug 200530 Apr 2009Gebrüder Frei GmbH & Co. KGBedienungssystem
DE102006044057A120 Sep 200610 Apr 2008Abb Patent GmbhWireless power supply system for multiple electronic devices e.g. sensors, actuators has at least one field reinforcement or deflection unit that is brought into magnetic field such that resonance is adjusted
EP1335477B111 Jul 199522 Oct 2008Auckland Uniservices LimitedInductively powered lighting
EP1521206B129 Sep 20041 Jul 2009Sony CorporationRelaying apparatus and communication system
EP1524010A115 Oct 200420 Apr 2005Alfred E. Mann Foundation for Scientific ResearchMethod and apparatus for efficient power/data transmission
SG112842A1 Title not available
WO2004015885A1 *12 Aug 200319 Feb 2004Mobilewise, Inc.Wireless power supply system for small devices
Non-Patent Citations
Reference
1"‘Evanescent coupling’ could power gadgets wirelessly" by Celeste Biever, NewScientistsTech.com, (see http://www.newscientisttech.com/article.ns?id=dn10575&print=true) (Nov. 15, 2006).
2"Air Power—Wireless data connections are common—now scientists are working on wireless power", by Stephen Cass, Sponsored by Spectrum, (See http://spectrum.ieee.org/computing/hardware/air-power) (Nov. 2006).
3"Automatic Recharging, From a Distance" by Anne Eisenberg, The New York Times, (see www.nytimes.com/2012/03/11/business/built-in-wireless-chargeing-for-electronic-devices.html?-r=0) (published on Mar. 10, 2012).
4"Automatic Recharging, From a Distance" by Anne Eisenberg, The New York Times, (see www.nytimes.com/2012/03/11/business/built-in-wireless-chargeing-for-electronic-devices.html?—r=0) (published on Mar. 10, 2012).
5"Electro-nirvana? Not so fast", by Alan Boyle, MSNBC, (Jun. 8, 2007).
6"How Wireless Charging Will Make Life Simpler (and Greener)" by David Ferris, Forbes (See forbes.com/sites/davidferris/2012/07/24/how-wireless-charging-will-make-life-simpler-and-greener/print/) (dated Jul. 24, 2012).
7"In pictures: A year in technology", BBC News, (Dec. 28, 2007).
8"Intel CTO Says Gap between Humans, Machines Will Close by 2050", Intel News Release, (See intel.com/.../20080821comp.htm?iid=S . . . ) (Printed Nov. 6, 2009).
9"Intel Moves to Free Gadgets of Their Recharging Cords", by John Markoff, The New York Times—nytimes.com, Aug. 21, 2008.
10"Lab report: Pull the plug for a positive charge", by James Morgan, The Herald, Web Issue 2680 (Nov. 16, 2006).
11"Look, Ma—no wires!—Electricity broadcast through the air may someday run your home", by Gregory M. Lamb, Staff writer, The Christian Science Monitor, (See http://www.csmonitor.com/2006/1116/p14s01-stct.html) (Nov. 15, 2006).
12"Man tries wirelessly boosting batteries", by Seth Borenstein, AP Science Writer, Boston.com, (See http://www.boston.com/business/technology/articles/2006/11/15/man—tries—wirelessly—b...) (Nov. 15, 2006).
13"Man tries wirelessly boosting batteries", by Seth Borenstein, The Associated Press, USA Today, (Nov. 16, 2006).
14"MIT discovery could unplug your iPod forever", by Chris Reidy, Globe staff, Boston.com, (See http://www.boston.com/business/ticker/2007/06/mit—discovery—c.html) (Jun. 7, 2007).
15"MIT Scientists Pave the Way For Wireless Battery Charging", by William M. Bulkeley, The Wall Street Journal, (See http://online.wsj.com/article/SB118123955549228045.html?mod=googlenews—wsj) (Jun. 8, 2007).
16"MIT's wireless electricity for mobile phones", by Miebi Senge, Vanguard, (See http://www.vangarudngr.com/articles/2002/features/gsm/gsm211062007.htm) (Jun. 11, 2007).
17"Next Little Thing 2010 Electricity without wires", CNN Money (See money.cnn.com/galleries/2009/smallbusiness/0911/gallery.nextlittle-thing-2010.smb/) (dated Nov. 30, 2009).
18"Next Little Thing 2010 Electricity without wires", CNN Money (See money.cnn.com/galleries/2009/smallbusiness/0911/gallery.nextlittle—thing—2010.smb/) (dated Nov. 30, 2009).
19"Outlets Are Out", by Phil Berardelli, ScienceNOW Daily News, Science Now, (See http://sciencenow.sciencemag.org/cgi/content/full/2006/1114/2) (Nov. 14, 2006).
20"Physics Promises Wireless Power" by Jonathan Fildes, Science and Technology Reporter, BBC News, (Nov. 15, 2006).
21"Physics Update, Unwired Energy", Physics Today, pp. 26, (Jan. 2007) (See http://arxiv.org/abs/physics/0611063.).
22"Recharging gadgets without cables", Infotech Online, Printed from infotech.indiatimes.com (Nov. 17, 2006).
23"Recharging, The Wireless Way—Even physicists forget to recharge their cell phones sometimes." by Angela Chang—PC Magazine, ABC News Internet Ventures, (2006).
24"Scientists light bulb with ‘wireless electricity’ ", www.Chinaview.cn, (See http://news.xinhuanet.com/english/2007-06/08/content—6215681.htm) (Jun. 2007).
25"The Big Story for CES 2007: The public debut of eCoupled Intelligent Wireless Power" Press Release, Fulton Innovation LLC, Las Vegas, NV, Dec. 27, 2006.
26"The end of the plug? Scientists invent wireless device that beams electricity through your home", by David Derbyshire, Daily Mail, (See http://www.dailymail.co.uk/pages/live/articles/technology/technology.html?in—article—id=4...) (Jun. 7, 2007).
27"The Power of Induction—Cutting the last cord could resonate with our increasingly gadget-dependent lives", by Davide Castelvecchi, Science News Online, vol. 172, No. 3, (Week of Jul. 21, 2007).
28"The technology with impact 2007", by Jonathan Fildes, BBC News, (Dec. 27, 2007).
29"The vision of an MIT physicist: Getting rid of pesky rechargers" by Gareth Cooks, Globe Staff, Boston.com, (Dec. 11, 2006).
30"The world's first sheet-type wireless power transmission system: Will a socket be replaced by e-wall?" Press Release, Tokyo, Japan, Dec. 12, 2006.
31"Unwired energy questions asked, answered", Physics Today, pp. 16-17 (Sep. 2007).
32"Wireless charging-the future for electric cars?" by Katia Moskvitch, BBC News Technology (See www.bbc.co.uk/news/technology-14183409) (dated Jul. 21, 2011).
33"Wireless charging—the future for electric cars?" by Katia Moskvitch, BBC News Technology (See www.bbc.co.uk/news/technology-14183409) (dated Jul. 21, 2011).
34"Wireless Energy Lights Bulb from Seven Feet Awav—Physicists vow to cut the cord between your laptop battery and the wall socket—with iust a simple loop of wire", by JR Minkel, ScientificAmerican.com, (See http://www.sciam.com/article.cfm?articleid=07511C52-E7F2-99DF-3FA6ED2D7DC9AA2...) (Jun. 7, 2007).
35"Wireless energy promise powers up" by Jonathan Fildes, Science and Technology Report, BBC News, (See http://news.bbc.co.uk/2/hi/technology/6725955.stm) (Jun. 7, 2007).
36"Wireless Energy Transfer Can Potentially Recharge Laptops, Cell Phones Without Cords", by Marin Soljacic of Massachusetts Institute of Technology and Davide Castelvecchi of American Institute of Physics (Nov. 14, 2006).
37"Wireless Energy Transfer May Power Devices at a Distance", ScientificAmerican.com, (Nov. 14, 2006).
38"Wireless Energy", by Clay Risen, The New York Times, (Dec. 9, 2007).
39"Wireless power transfer possible", PressTV, (See http://www.presstv.ir/detail.aspx?id=127548,sectionid=3510208) (Jun. 11, 2007).
40"Wireless revolution could spell end of plugs", by Roger Highfield, Science Editor, Telegraph.co.uk, (See http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2007/06/07/nwireless107.xml) (Jun. 7. 2007).
41A. Mediano et al. "Design of class E amplifier with nonlinear and linear shunt capacitances for any duty cycle", IEEE Trans. Microwave Theor. Tech., vol. 55, No. 3, pp. 484-492, (2007).
42Abe et al. "A Noncontact Charger Using a Resonant Converter with Parallel Capacitor of the Secondary Coil". IEEE, 36(2):444-451, Mar./Apr. 2000.
43Ahmadian et al., "Miniature Transmitter for Implantable Micro Systems", Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, Mexico, pp. 3028-3031, Sep. 17-21, 2003.
44Altchev et al. "Efficient Resonant Inductive Coupling Energy Transfer Using New Magnetic and Design Criteria". IEEE, pp. 1293-1298, 2005.
45Amnon Yariv et al., "Coupled-resonator optical waveguide: a proposal and analysis", Optics Letters, vol. 24, No. 11, pp. 711-713 (Jun. 1, 1999).
46Andre Kurs et al., "Simultaneous mid-range power transfer to multiple devices", Applied Physics Letters, vol. 96, No. 044102 (2010).
47Andre Kurs et al., "Wireless Power Transfer via Strongly Coupled Magnetic Resonances", Science vol. 317, pp. 83-86 (Jul. 6, 2007).
48Apneseth et al. "Introducing wireless proximity switches" ABB Review Apr. 2002.
49Aristeidis Karalis et al., "Efficient Wireless non-radiative mid-range energy transfer", Annals of Physics, vol. 323, pp. 34-48 (2008).
50Australian Office Action, Application No. 2006269374; mailed Sep. 18, 2008; Applicant: Massachusetts Institute of Technology; 3 pages.
51Australian Office Action, Application No. 2007349874; mailed Apr. 27, 2011; Applicant: Massachusetts Institute of Technology; 3 pages.
52Australian Office Action, Application No. 2009246310; mailed Jun. 13, 2013; Applicant: Massachusetts Institute of Technology; 2 pages.
53Australian Office Action, Application No. 2010200044; mailed May 16, 2011; Applicant: Massachusetts Institute of Technology; 2 pages.
54Australian Office Action, Application No. 2011203137; mailed Apr. 18, 2013; Applicant: Massachusetts Institute of Technology; 3 pages.
55Australian Office Action, Application No. 2011232776; mailed Dec. 2, 2011; Applicant: Massachusetts Institute of Technology; 2 pages.
56Australian Office Action, Application No. 2011232776; mailed Feb. 15, 2013; Applicant: Massachusetts Institute of Technology; 3 pages.
57Baker et al., "Feedback Analysis and Design of RF Power Links for Low-Power Bionic Systems," IEEE Transactions on Biomedical Circuits and Systems, 1(1):28-38 (Mar. 2007).
58Balanis, C.A., "Antenna Theory: Analysis and Design," 3rd Edition, Sections 4.2, 4.3, 5.2, 5.3 (Wiley, New Jersey, 2005).
59Burri et al. "Invention Description" Feb. 5, 2008.
60C. Fernandez et al., "A simple dc-dc converter for the power supply of a cochlear implant", IEEE, pp. 1965-1970 (2003).
61Canadian Office Action, Application No. 2,615,123; mailed Nov. 15, 2012; Applicant: Massachusetts Institute of Technology; 4 pages.
62Canadian Office Action, Application No. 2,682,284; mailed Nov. 25, 2013; Applicant: Massachusetts Institute of Technology; 3 pages.
63Chinese Office Action, Application No. 200680032299.2; mailed Jan. 22, 2010; Applicant: Massachusetts Institute of Technology; 5 pages.
64Chinese Office Action, Application No. 200680032299.2; mailed Jun. 4, 2012; Applicant: Massachusetts Institute of Technology; 5 pages.
65Chinese Office Action, Application No. 200680032299.2; mailed Oct. 17, 2011; Applicant: Massachusetts Institute of Technology; 9 pages.
66Chinese Office Action, Application No. 200780053126.3; mailed Aug. 6, 2012; Applicant: Massachusetts Institute of Technology; 11 pages.
67Chinese Office Action, Application No. 200780053126.3; mailed Dec. 19, 2012; Applicant: Massachusetts Institute of Technology; 8 pages.
68Chinese Office Action, Application No. 200780053126.3; mailed Oct. 27, 2011; Applicant: Massachusetts Institute of Technology; 6 pages.
69Chinese Office Action, Application No. 200980127634.0; mailed Apr. 2, 2013; Applicant: Massachusetts Institute of Technology; 11 pages.
70Chinese Office Action, Application No. 201010214681.3; mailed Feb. 13, 2012; Applicant: Massachusetts Institute of Technology; 4 pages.
71Chinese Office Action, Application No. 201010214681.3; mailed Jan. 26, 2011; Applicant: Massachusetts Institute of Technology; 7 pages.
72Chinese Office Action, Application No. 201010214681.3; mailed May 29, 2012; Applicant: Massachusetts Institute of Technology; 4 pages.
73Chinese Office Action, Application No. 201010214681.3; mailed Nov. 2, 2011; Applicant: Massachusetts Institute of Technology; 7 pages.
74Chinese Office Action, Application No. 201010214681.3; mailed Oct. 10, 2012; Applicant: Massachusetts Institute of Technology; 3 pages.
75Chinese Office Action, Application No. 201110185992.6; mailed Apr. 11, 2012; Applicant: Massachusetts Institute of Technology; 5 pages.
76Chinese Office Action, Application No. 201110185992.6; mailed Jan. 4, 2013; Applicant: Massachusetts Institute of Technology; 10 pages.
77Chinese Office Action, Application No. 201110311000.X; mailed Dec. 6, 2013; Applicant: Massachusetts Institute of Technology; 20 pages.
78Chinese Office Action, Application No. 201110311000.X; mailed Jun. 18, 2013; Applicant: Massachusetts Institute of Technology; 20 pages.
79Clemens M. Zierhofer et al., "High-Efficiency Coupling-Insensitive Transcutaneous Power and Data Transmission Via an Inductive Link", IEEE Transactions on Biomedical Engineering, vol. 37, No.7, pp. 716-722 (Jul. 1990).
80D.H.Freedman. "Power on a Chip". MIT Technology Review, Nov. 2004.
81David H. Staelin et al., Electromagnetic Waves, Chapters 2, 3, 4, and 8, pp. 46-176 and 336-405 (Prentice Hall Upper Saddle River, New Jersey 1998).
82David Schneider, "A Critical Look at Wireless Power", IEEE Spectrum, (May 2010).
83David Vilkomerson et al., "Implantable Doppler System for Self-Monitoring Vascular Grafts", IEEE Ultrasonics Symposium, pp. 461-465 (2004).
84Electricity Unplugged, Feature: Wireless Energy, Physics World, pp. 23-25 (Feb. 2009).
85Esser et al. "A New Approach to Power Supplies for Robots". IEEE, 27(5):872-875, Sep./Oct. 1991.
86European Examination Report dated Jan. 15, 2009 in connection with Application No. 06 786 588.1-1242.
87European Office Action, Application No. 06 786 588.1; mailed Apr. 24, 2013; Applicant: Massachusetts Institute of Technology; 4 pages.
88European Office Action, Application No. 06 786 588.1; mailed Dec. 3, 2013; Applicant: Massachusetts Institute of Technology; 6 pages.
89European Office Action, Application No. 06 786 588.1; mailed Jan. 15, 2009; Applicant: Massachusetts Institute of Technology; 5 pages.
90European Office Action, Application No. 11 184 066.6; mailed Dec. 3, 2013; Applicant: Massachusetts Institute of Technology; 5 pages.
91European Search Report with regard to U.S. Appl. No. 11184066.6 dated Mar. 20, 2013.
92Examination Report for Australia Application No. 2006269374, dated Sep. 18, 2008.
93Fenske et al. "Dielectric Materials at Microwave Frequencies". Applied Microwave & Wireless, pp. 92-100, 2000.
94Final Office Action with regard to U.S. Appl. No. 12/639,958 dated Jun. 6, 2013 (18 pages).
95Final Office Action with regard to U.S. Appl. No. 12/639,963 dated Jun. 18, 2013 (16 pages).
96Final Office Action with regard to U.S. Appl. No. 12/639,966 dated Oct. 9, 2012 (20 pages).
97Final Office Action with regard to U.S. Appl. No. 12/639,967 dated Oct. 5, 2012 (21 pages).
98Final Office Action with regard to U.S. Appl. No. 12/649,777 dated Jun. 26, 2013 (17 pages).
99Final Office Action with regard to U.S. Appl. No. 12/649,813 dated Jun. 24, 2013 (17 pages).
100Final Office Action with regard to U.S. Appl. No. 12/649,852 dated Jun. 27, 2013 (19 pages).
101Final Office Action with regard to U.S. Appl. No. 12/649,904 dated Sep. 26, 2013 (23 pages).
102G. Scheible et al., "Novel Wireless Power Supply System for Wireless Communication Devices in Industrial Automation Systems", IEEE, (2002).
103Gary Peterson, "MIT WiTricity Not So Original After All", Feed Line No. 9, (See http://www.tfcbooks.com/articles/witricity.htm) printed Nov. 12, 2009.
104Geyi, Wen. A Method for the Evaluation of Small Antenna Q. IEEE Transactions on Antennas and Propagation, vol. 51, No. 8, Aug. 2003.
105H. Sekiya et al. "FM/PWM control scheme in class DE inverter", IEEE Trans. Circuits Syst. I, vol. 51, No. 7 (Jul. 2004).
106Haus, H.A., "Waves and Fields in Optoelectronics," Chapter 7 "Coupling of Modes—Reasonators and Couplers" (Prentice-Hall, New Jersey, 1984).
107Heikkinen et al. "Performance and Efficiency of Planar Rectennas for Short-Range Wireless Power Transfer at 2.45 GHz". Microwave Optical Technology Letters, 31(2):86-91, Oct. 20, 2001.
108Hirai et al. "Integral Motor with Driver and Wireless Transmission of Power and Information for Autonomous Subspindle Drive". IEEE, 15(1):13-20, Jan. 2000.
109Hirai et al. "Practical Study on Wireless Transmission of Power and Information for Autonomous Decentralized Manufacturing System". IEEE, 46(2):349-359, Apr. 1999.
110Hirai et al. "Study on Intelligent Battery Charging Using Inductive Transmission of Power and Information". IEEE, 15(2):335-345, Mar. 2000.
111Hirai et al. "Wireless Transmission of Power and Information and Information for Cableless Linear Motor Drive". IEEE 15(1):21-27, Jan. 2000.
112International Preliminary Report on Patentability for International Application No. PCT/US2006/026480, dated Jan. 29, 2008.
113International Preliminary Report on Patentability with regard to International Application No. PCT/US2007/070892 dated Sep. 29, 2009.
114International Search Report and Written Opinion for International Application No. PCT/US09/43970, dated Jul. 14, 2009.
115International Search Report and Written Opinion for International Application No. PCT/US2006/026480, dated Dec. 21, 2007.
116International Search Report and Written Opinion for International Application No. PCT/US2007/070892, dated Mar. 3, 2008.
117International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/027868 dated Jul. 5, 2011.
118International Search Report for International Application No. PCT/US09/58499 dated Dec. 10, 2009.
119J. B, Pendry. "A Chiral Route to Negative Refraction". Science 306:1353-1355 (2004).
120J. C. Schuder et al., "Energy Transport Into the Closed Chest From a Set of Very-Large Mutually Orthogonal Coils", Communication Electronics, vol. 64, pp. 527-534 (Jan. 1963).
121J. Schutz et al., "Load Adaptive Medium Frequency Resonant Power Supply", IEEE, (2002).
122Jackson, J. D. ,"Classical Electrodynamics",3rd Edition, Wiley, New York,1999,pp. 201-203.
123Jackson, J.D., "Classical Electrodynamics," 3rd Edition, Sections 1.11, 5.5, 5.17, 6.9, 8.1, 8.8, 9.2, 9.3 (Wiley, New York, 1999).
124Japanese Office Action, Application No. 2008-521453; mailed Jan. 4, 2011; Applicant: Massachusetts Institute of Technology; 3 pages.
125Japanese Office Action, Application No. 2010-500897; mailed May 29, 2012; Applicant: Massachusetts Institute of Technology; 7 pages.
126Japanese Office Action, Application No. 2011-083009; mailed Jul. 2, 2013; Applicant: Massachusetts Institute of Technology; 5 pages.
127Japanese Office Action, Application No. 2011-256729; mailed May 28, 2013; Applicant: Massachusetts Institute of Technology; 7 pages.
128Japanese Office Action, Application No. 2011-509705; mailed Jul. 16, 2013; Applicant: Massachusetts Institute of Technology; 10 pages.
129John C. Schuder "Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960", Artificial Organs, vol. 26, No. 11, pp. 909-915 (2002).
130John C. Schuder et al., "An Inductively Coupled RF System for the Transmission of 1 kW of Power Through the Skin", IEEE Transactions on Bio-Medical Engineering, vol. BME-18, No. 4 (Jul. 1971).
131 *John C. Schuder, Powering an Artificial Heart: Birth of the Inductively Coupled-Radio Frequency System in 1960, Artificial Organ, 2002.
132Jonathan Fildes, "Wireless Energy Promise Powers Up", BBC News, Jun. 7, 2007 (See http://news.bbc.co.uk/2/hi/6725955.stm ).
133Joseph C. Stark III, "Wireless Power Transmission Utilizing a Phased Array of Tesla Coils", Master Thesis, Massachusetts Institute of Technology (2004).
134Kawamura et al. "Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications". IEEE, 32(3):503-508, May/Jun. 1996.
135Klaus Finkenzeller, "RFID Handbook (2nd Edition)", The Nikkan Kogyo Shimbun, Ltd., pp. 19, 20, 38, 39, 43, 44, 62, 63, 67, 68, 87, 88, 291, 292 (Published on May 31, 2004).
136Klaus Finkenzeller, RFID Handbook-Fundamentals and Applications in Contactless Smart Cards-, Nikkan Kohgyo-sya, Kanno Taihei, first version, pp. 32-37, 253 (Aug. 21, 2001).
137Klaus Finkenzeller, RFID Handbook—Fundamentals and Applications in Contactless Smart Cards-, Nikkan Kohgyo-sya, Kanno Taihei, first version, pp. 32-37, 253 (Aug. 21, 2001).
138Korean Office Action, Application No. 10-2008-7003376; mailed Mar. 7, 2011; Applicant: Massachusetts Institute of Technology; 3 pages.
139Korean Office Action, Application No. 10-2009-7022442; mailed Jan. 31, 2013; Applicant: Massachusetts Institute of Technology; 6 pages.
140Korean Office Action, Application No. 10-2009-7022442; mailed Oct. 18, 2012; Applicant: Massachusetts Institute of Technology; 5 pages.
141Korean Office Action, Application No. 10-2011-7013029; mailed Aug. 9, 2011; Applicant: Massachusetts Institute of Technology; 4 pages.
142Korean Office Action, Application No. 10-2011-7023643; mailed Jan. 31, 2013; Applicant: Massachusetts Institute of Technology; 3 pages.
143Korean Office Action, Application No. 10-2011-7023643; mailed Oct. 23, 2012; Applicant: Massachusetts Institute of Technology; 5 pages.
144Korean Office Action, Application No. 10-2013-7013521; mailed Aug. 8, 2013; Applicant: Massachusetts Institute of Technology; 2 pages.
145Lee, "Antenna Circuit Design for RFID Applications," Microchip Technology Inc., AN710, 50 pages (2003).
146Lee, "RFID Coil Design," Microchip Technology Inc., AN678, 21 pages (1998).
147Liang et al., "Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements," Applied Physics Letters, 81(7):1323-1325 (Aug. 12, 2002).
148M. V. Jacob et al. "Lithium Tantalate—A High Permittivity Dielectric Material for Microwave Communication Systems". Proceedings of IEEE TENCON—Poster Papers, pp. 1362-1366, 2003.
149Marin Soljacic et al., "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity", J. Opt. Soc. Am B, vol. 19, No. 9, pp. 2052-2059 (Sep. 2002).
150Marin Soljacic, "Wireless nonradiative energy transfer", Visions of Discovery New Light on Physics, Cosmology, and Consciousness, Cambridge University Press, New York, NY pp. 530-542 (2011).
151Microchip Technology Inc., "microID 13.56 MHz Design Guide—MCRF355/360 Reader Reference Design," 24 pages. (2001).
152MIT Team Experimentally Demonstrates Wireless Power Transfer, Potentially Useful for Power Laptops, Cell-Phones Without Cords—Goodbye Wires . . . , by Franklin Hadley, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology (Jun. 7, 2007).
153Nikola Tesla, "High Frequency Oscillators for Electro-Therapeutic and Other Purposes", Proceedings of the IEEE, vol. 87, No. 7, pp. 1282-1292 (Jul. 1999).
154Nikola Tesla, "High Frequency Oscillators for Electro-Therapeutic and Other Purposes", The Electrical Engineer, vol. XXVI, No. 50 (Nov. 17, 1898).
155Non-Final Office Action for U.S. Appl. No. 12/639,963 dated Feb. 27, 2014 (19 pages).
156Non-Final Office Action for U.S. Appl. No. 12/648,604 dated Dec. 5, 2011.
157Non-Final Office Action for U.S. Appl. No. 12/649,777 dated Feb. 26, 2014 (16 pages).
158Non-Final Office Action for U.S. Appl. No. 12/649,813 dated Feb. 27, 2014 (16 pages).
159Non-Final Office Action for U.S. Appl. No. 12/649,852 dated Feb. 27, 2014 (17 pages).
160Non-Final Office Action for U.S. Appl. No. 12/726,742 dated May 11, 2012.
161Non-Final Office Action for U.S. Appl. No. 13/030,395 dated May 17, 2012.
162Non-Final Office Action for U.S. Appl. No. 13/036,177 dated May 15, 2012.
163Non-Final Office Action for U.S. Appl. No. 13/040,810 dated May 17, 2012.
164Non-Final Office Action for U.S. Appl. No. 13/078,511 dated May 15, 2012.
165Non-Final Office Action with regard to U.S. Appl. No. 12/415,667 dated Oct. 5, 2012 (20 pages).
166Non-Final Office Action with regard to U.S. Appl. No. 12/639,958 dated Aug. 16, 2012 (21 pages).
167Non-Final Office Action with regard to U.S. Appl. No. 12/639,963 dated Aug. 31, 2012 (20 pages).
168Non-Final Office Action with regard to U.S. Appl. No. 12/646,524 dated Oct. 1, 2012 (11 pages).
169Non-Final Office Action with regard to U.S. Appl. No. 12/649,777 dated Dec. 24, 2012 (43 pages).
170Non-Final Office Action with regard to U.S. Appl. No. 12/649,813 dated Dec. 21, 2012 (40 pages).
171Non-Final Office Action with regard to U.S. Appl. No. 12/649,852 dated Dec. 21, 2012 (41 pages).
172Non-Final Office Action with regard to U.S. Appl. No. 12/649,904 dated Dec. 28, 2012 (43 pages).
173Non-Final Office Action with regard to U.S. Appl. No. 12/868,852 dated Oct. 10, 2012 (26 pages).
174Non-Final Office Action with regard to U.S. Appl. No. 12/949,544 dated Sep. 5, 2012 (41 pages).
175Non-Final Office Action with regard to U.S. Appl. No. 12/949,580 dated Jun. 17, 2013 (55 pages).
176O'Brien et al. "Analysis of Wireless Power Supplies for Industrial Automation Systems". IEEE, pp. 367-372, 2003.
177O'Brien et al. "Design of Large Air-Gap Transformers for Wireless Power Supplies". IEEE, pp. 1557-1562, 2003.
178PCT International Search Report and Written Opinion for PCT/US09/59244, Dec. 7, 2009, 12 pages.
179Powercast LLC. "White Paper" Powercast simply wire free, 2003.
180Provisional U.S. Appl. No. 60/908,383, filed Mar. 27, 2007.
181S. L. Ho et al., "A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging", IEEE Transactions on Magnetics, vol. 47, No. 5, pp. 1522-1525 (May 2011).
182S. Sensiper. Electromagnetic wave propogation on helical conductors. PhD Thesis, Massachusetts Institute of Technology, 1951.
183Sakamoto et al. "A Novel Circuit for Non-Contact Charging Through Electro-Magnetic Coupling". IEEE, pp. 168-174, 1992.
184Sekitani et al. "A large-area flexible wireless power transmission sheet using printed plastic MEMS switches and organic field-effect transistors". [Publication Unknown].
185Sekitani et al. "A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches" www.nature.com/naturematerials. Published online Apr. 29, 2007.
186Shanhui Fan et al., "Rate-Equation Analysis of Output Efficiency and Modulation Rate of Photomic-Crystal Light Emitting Diodes", IEEE Journal of Quantum Electronics, vol. 36, No. 10, pp. 1123-1130 (Oct. 2000).
187Soljacic. "Wireless Non-Radiative Energy Transfer—PowerPoint presentation". Massachusetts Institute of Technology, Oct. 6, 2005.
188Someya, Takao. "The world's first sheet-type wireless power transmission system". University of Tokyo, Dec. 12, 2006.
189Splashpower, "Splashpower—World Leaders in Wireless Power," PowerPoint presentation, 30 pages (Sep. 3, 2007).
190Submission of Publication to the Japanese Patent Office for Japanese Application No. 2011-256,729, translation received on May 2, 2013.
191Submission of Publication to the Japanese Patent Office for Japanese Application No. 2011-509,705, translation received on May 2, 2013.
192T. Aoki et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443:671-674 (2006).
193Tang, S.C et al.,"Evaluation of the Shielding Effects on Printed-Circuit-Board Transformers Using Ferrite Plates and Copper Sheets",IEEE Transactions on Power Electronics,vol. 17, No. 6,Nov. 2002.,pp. 1080-1088.
194Texas Instruments, "HF Antenna Design Notes—Technical Application Report," Literature No. 11-08-26-003, 47 pages (Sep. 2003).
195Thomsen et al., "Ultrahigh speed all-optical demultiplexing based on two-photon absorption in a laser diode," Electronics Letters, 34(19):1871-1872 (Sep. 17, 1998).
196Translation of Information Statement by Third Party submitted to the Japanese Patent Office for Japanese Application No. 2011-83009, translation received on May 15, 2013.
197UPM Rafsec, "Tutorial overview of inductively coupled RFID Systems," 7 pages (May 2003).
198Vandevoorde et al. "Wireless energy transfer for stand-alone systems: a comparison between low and high power applicability". Sensors and Actuators, A 92:305-311, 2001.
199Villeneuve, Pierre R. et al.,"Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency",Physical Review B, vol. 54, No. 11 , Sep. 15, 1996,pp. 7837-7842.
200Will Stewart, "The Power to Set you Free", Science, vol. 317, pp. 55-56 (Jul. 6, 2007).
201Yoshihiro Konishi, Microwave Electronic Circuit Technology, Chapter 4, pp. 145-197 (Marcel Dekker, Inc., New York, NY 1998)
202Ziaie, Babak et al., "A Low-Power Miniature Transmitter Using a Low-Loss Silicon Platform for Biotelemetry", Proceedings-19th International Conference IEEE/EMBS, pp. 2221-2224; Oct. 30-Nov. 2, 1997 (4 pages).
203Ziaie, Babak et al., "A Low-Power Miniature Transmitter Using a Low-Loss Silicon Platform for Biotelemetry", Proceedings—19th International Conference IEEE/EMBS, pp. 2221-2224; Oct. 30-Nov. 2, 1997 (4 pages).
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US906528612 Jun 201423 Jun 2015Massachusetts Institute Of TechnologyWireless non-radiative energy transfer
US944426522 May 201213 Sep 2016Massachusetts Institute Of TechnologyWireless energy transfer
US945042124 Feb 201520 Sep 2016Massachusetts Institute Of TechnologyWireless non-radiative energy transfer
US945042224 Mar 201520 Sep 2016Massachusetts Institute Of TechnologyWireless energy transfer
US95091478 Mar 201329 Nov 2016Massachusetts Institute Of TechnologyWireless energy transfer
US968514831 Dec 201520 Jun 2017Fishman Transducers, Inc.Method and device for wireless power source for an instrument
Classifications
U.S. Classification307/104
International ClassificationH03H9/00, B60L11/18, H02J17/00, H02J5/00, H01Q9/04
Cooperative ClassificationH02J5/005, H02J50/12, H01F38/14, Y10T307/25, Y02T10/7072, B60L11/18, H02J17/00, Y02T10/7088, B60L11/182, Y02T10/7005, Y02T90/14, Y02T90/122, H01Q9/04
Legal Events
DateCodeEventDescription
22 Apr 2010ASAssignment
Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY,MASSACHUSETT
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOANNOPOULOS, JOHN D.;KARALIS, ARISTEIDIS;SOLJACIC, MARIN;SIGNING DATES FROM 20060927 TO 20061003;REEL/FRAME:024271/0854
Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSET
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOANNOPOULOS, JOHN D.;KARALIS, ARISTEIDIS;SOLJACIC, MARIN;SIGNING DATES FROM 20060927 TO 20061003;REEL/FRAME:024271/0854
10 Feb 2012ASAssignment
Owner name: WITRICITY CORPORATION, MASSACHUSETTS
Free format text: LICENSE;ASSIGNOR:MASSACHUSETTS INSTITUTE OF TECHNOLOGY;REEL/FRAME:027689/0003
Effective date: 20081101
16 Dec 2014CCCertificate of correction
8 Apr 2015ASAssignment
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA
Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS INSTITUTE OF TECHNOLOGY;REEL/FRAME:035387/0001
Effective date: 20120918