Search Images Maps Play YouTube Gmail Drive Calendar More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS7110255 B2
Publication typeGrant
Application numberUS 10/626,267
Publication date19 Sep 2006
Filing date23 Jul 2003
Priority date11 Apr 2003
Fee statusPaid
Also published asDE10333544A1, US7391611, US20040201961, US20060285295
Publication number10626267, 626267, US 7110255 B2, US 7110255B2, US-B2-7110255, US7110255 B2, US7110255B2
InventorsHao-Wen Ko, Tsung-Yu Lei, Kuo-Cheng Lin, Hsiou-chen Chang
Original AssigneeDelta Electronics, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heat-dissipating device and a housing thereof
US 7110255 B2
Abstract
A heat-dissipating device and a housing thereof. The housing includes a passage for guiding an air stream flowing from an opening to another opening, wherein an inner wall of the passage at at least one of the opening sides extends radially outwards with a rotational axis of the heat-dissipating device or the passage so as to enlarge intake or discharge area for the air streams. Accordingly, the intake airflow rate may be greatly increased and the heat-dissipating efficiency of the heat-dissipating device may be greatly enhanced without changing assembling conditions with other elements.
Images(12)
Previous page
Next page
Claims(19)
1. A housing for a heat-dissipating device, comprising:
an outer frame having a passage for guiding air streams from one opening toward another opening, wherein an inner wall of the passage of one of the openings radially outwardly extends, and the inner wall of the passage at one of the openings is partially cut off to form a notch in order to increase an intake/discharge area for the air streams.
2. A housing for a heat-dissipating device, comprising:
an outer frame having an air inlet, an air outlet, and a passage for guiding air streams from the air inlet to the air outlet, wherein an inner wall of the passage at the air inlet13 radially extends beyond the outer frame in a symmetrical manner so as to increase an intake area of the air streams.
3. The housing according to claim 2, wherein the inner wall of the passage at the air inlet radially outwardly extends with respect to a longitudinal axis of the passage and beyond a peripheral edge of the outer frame.
4. The housing according to claim 2, wherein the inner wall of the passage at the air inlet radially outwardly extends with respect to a longitudinal axis of the passage in a frustum-conical or a frustum-elliptically conical manner.
5. The housing according to claim 2, wherein the inner wall of the passage at the air inlet or outlet is formed with an inclined portion or a beveled edge therearound.
6. The housing according to claim 2, wherein the inner wall of the passage at the air outlet radially outwardly extends with respect to a central axis of the passage in a symmetrical manner.
7. The housing according to claim 2, wherein the inner wall of the passage at the air outlet radially outwardly extends with respect to a longitudinal axis of the passage and beyond a peripheral edge of the outer frame.
8. The housing according to claim 2, wherein the inner wall of the passage is provided with an inclined portion extending from the air inlet to the air outlet.
9. The housing according to claim 2, wherein an radially outward extension of the inner wall of the passage at the air inlet is partially cut off to form a notch in order to increase an intake area for the air streams coming from a lateral side thereof.
10. A heat-dissipating device, comprising:
an impeller having a plurality of blades; and
a housing for receiving the impeller, wherein the housing includes a passage for guiding air streams from one opening toward another opening, and an inner wall of the passage at at least one of the openings radially13 outwardly extends, and the inner wall of the passage at one of the openings is partially cut off to form a notch in order to increase an intake/discharge area for the air streams.
11. A heat-dissipating device, comprising:
an impeller; and
a housing for receiving the impeller, wherein the housing includes an air inlet, an air outlet, and a passage for guiding air streams from the air inlet to the air outlet, wherein an inner wall of the passage at the air inlet extends radially beyond the outer frame in a symmetrical manner so as to increase an intake area of the air streams.
12. The heat-dissipating device according to claim 11, wherein the inner wall of the passage at the air inlet radially outwardly extends with respect to a longitudinal axis of the passage and beyond a peripheral edge of an outer frame of the housing.
13. The heat-dissipating device according to claim 11, wherein the inner wall of the passage at the air inlet or outlet is formed with an inclined portion or a beveled edge therearound.
14. The heat-dissipating device according to claim 11, wherein the inner wall of the passage at the air outlet radially outwardly extends with respect to a central axis of the passage in a symmetrical manner.
15. The heat-dissipating device according to claim 11, wherein the inner wall of the passage at the air outlet radially outwardly extends with respect to a longitudinal axis of the passage and beyond a peripheral edge of an outer frame.
16. The heat-dissipating device according to claim 11, wherein the inner wall of the passage at the air outlet radially outwardly extends with respect to a longitudinal axis of the passage in a frustum-conical or a frustum-elliptically conical manner.
17. The heat-dissipating device according to claim 11, wherein the inner wall of the passage is formed with an inclined portion extending from the air inlet to the air outlet.
18. The heat-dissipating device according to claim 11, wherein an radially outward extension of the inner wall of the passage at the air inlet is partially cut off to form a notch in order to increase an intake area for the air streams coming from a lateral side thereof.
19. The heat-dissipating device according to claim 11, wherein a dimension of a blade of the impeller increases along with the radially outwardly extending direction of the inner wall of the passage.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to a heat-dissipating device and a housing thereof, and more particularly to an axial fan having an increased intake airflow rate without modifying the assembling conditions with other elements so as to greatly enhance the heat-dissipating performance of the fan, and a housing for the fan.

2. Description of the Related Art

A typical electrical product usually includes electrical elements positioned in a closed housing in order to prevent the electrical elements from being contaminated with particles in the air. However, since the electrical element (such as a central processing unit (CPU) or circuit board) raises its temperature during operation, the element tends to be consumed and the lifetime thereof tends to be shortened if the element is continuously kept at the high-temperature condition. Thus, a fan is typically disposed in the housing to dissipate heat to the outside in order to prevent the electrical element from failing.

As shown in FIG. 1, a conventional fan 1 is mainly composed of a fan housing 11 and an impeller 12. When the fan is operating, a motor may be used to drive the impeller 12 to rotate and to produce air streams flowing toward the electrical element in order to dissipate the heat generated from the electrical element. The fan housing includes an air inlet and an air outlet in communication with the air inlet via a central, cylindrical air passage 11 a. The air streams caused by the impeller 12 may freely flow into and out of the fan housing via the air passage. Furthermore, a plurality of tapered portions 13, through which the air streams may smoothly flow into the air inlet side, are provided at the corners on the air inlet side of the air passage. In addition, a plurality of screw holes 14 is formed at four corners of the fan housing such that the fan may be mounted to a frame of an electrical apparatus (i.e., a computer) via the screw holes 14.

However, due to the restriction in the dimension of the rectangular fan housing of the conventional fan, the air passage at the lateral side has to be reduced. The optimized design in the shape of the blade based on the curve of the air passage is also restricted, and the space and material of the fan housing are also wasted. Besides, due to the restriction in the construction of the fan housing, air may be taken into the fan only in the axial direction. However, it only can achieve very limited improvement effect in the increased intake airflow rate by doing so.

SUMMARY OF THE INVENTION

An object of the invention is to provide a heat-dissipating fan and a housing thereof, wherein an inner wall of the housing extends outwards to enlarge the intake airflow area thereof without modifying the assembling conditions between the existing fan and other heat dissipation elements, and the shape of the housing at the air outlet side is kept unchanged in order to enhance the heat-dissipating efficiency of the fan. The fan may be mounted to a system or other heat dissipation elements without changing the assembling conditions with the system and the heat dissipation elements.

Another object of the invention is to provide a heat-dissipating device and a housing thereof, wherein an inner wall of the housing extends outwards to enlarge its intake airflow area so that the impeller of the heat-dissipating device may increase its dimension with the outward extension of the housing. Thus, the airflow rate may be increased and the heat-dissipating efficiency may be enhanced.

Still another object of the invention is to provide a heat-dissipating fan and a housing thereof, wherein the air passage formed by the inner wall of the passage of the housing reduces gradually and evenly in its cross-sectional area. Thus, the air streams produced by the rotation of blades of the impeller of the heat-dissipating device can be effectively concentrated to the center and then blow to the center portion of the heat sink having the highest temperature when the heat sink is assembled with the heat-dissipating device so as to enhance its heat-dissipating efficiency.

According to the first aspect of the invention, the housing includes an outer frame having a passage for guiding air streams to flow from an opening to another opening, wherein an inner wall of the passage of one of the opening sides extends radially outwards so as to enlarge intake or discharge area for the air streams.

The inner wall of the passage extends radially outwardly with respect to a central axis of the passage in a symmetrical manner. In addition, the inner wall of the passage extends radially outwardly with respect to a longitudinal axis of the passage and beyond the peripheral edge of the outer frame. Alternatively, the inner wall of the passage extends radially outwardly with respect to a longitudinal axis of the passage in a frustum-conical or a frustum-elliptically conical manner.

Preferably, the inner wall of the passage is formed with an inclined portion or a beveled edge therearound.

According to the second aspect of the invention, the housing includes an outer frame including an air inlet, an air outlet, and a passage for guiding air streams from the air inlet to the air outlet, wherein an inner wall of the passage at the air inlet side extends radially outwardly so as to enlarge an intake area of the air streams.

Preferably, the inner wall of the passage at the air inlet side extends radially outwardly with respect to a central axis of the passage in a symmetrical manner. Alternatively, the inner wall of the passage at the air inlet side extends radially outwardly with respect to a longitudinal axis of the passage and beyond the peripheral edge of the outer frame. Furthermore, the inner wall of the passage at the air inlet side extends radially outwardly with respect to a longitudinal axis of the passage in a frustum-conical or a frustum-elliptically conical manner.

Preferably, the inner wall of the passage is formed with an inclined portion extending from the air inlet to the air outlet.

Preferably, the radially outward extension of the inner wall of the passage at the air inlet side is partially cut off to form a notch in order to enlarge an intake area for lateral side air streams.

According to the third aspect of the invention, the heat-dissipating device includes an impeller and a housing for receiving the impeller, wherein the housing includes a passage for guiding air streams to flow from an opening to another opening, an inner wall of the passage at at least one of the opening sides extends radially outwards so as to enlarge an intake/discharge area for the air streams. A dimension of a blade of the impeller increases along with the radially outwardly extending direction of the inner wall of the passage.

According to the fourth aspect of the invention, the heat-dissipating device includes an impeller and a housing for receiving the impeller, wherein the housing includes an air inlet, an air outlet, and a passage for guiding air streams from the air inlet to the air outlet, and an inner wall of the passage at the air inlet side extends radially outwards so as to enlarge an intake area of the air streams.

According to the fifth aspect of the invention, the heat-dissipating system includes a casing, at least one electrical element mounted within the casing, and a heat-dissipating device mounted on the casing for dissipating heat generated from the at least one electrical element when it operates, wherein the heat-dissipating device includes an impeller and a housing for receiving the impeller. Further, the housing includes a passage for guiding air streams to flow from an opening of the housing to another opening, and an inner wall of the passage at one of the openings extends radially outwardly with respect to a rotational axis of the heat-dissipating device so as to enlarge an intake/discharge area for the air streams.

Preferably, the heat-dissipating device is an axial fan.

Further, the heat-dissipating device includes a heat sink assembled with the housing.

According to the sixth aspect of the invention, the heat-dissipating system includes a casing, at least one electrical element mounted within the casing, and a heat-dissipating device mounted on the casing for dissipating heat generated from the at least one electrical element when it operates, wherein the heat-dissipating device includes an impeller and a housing for receiving the impeller. Further, the housing includes an air inlet, an air outlet, and a passage for guiding air streams to flow from the air inlet to the air outlet, wherein the inner wall of the passage at the air inlet side extends radially outwardly with respect to a rotational axis of the heat-dissipating device so as to enlarge an intake area for the air streams.

Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a top view showing a conventional fan.

FIG. 2A is a perspective view showing a heat-dissipating device according to a first preferred embodiment of the invention.

FIG. 2B is a top view showing the heat-dissipating device of FIG. 2A.

FIG. 2C is a cross-sectional view showing the heat-dissipating device taken along a line AA′ of FIG. 2B.

FIG. 2D is a cross-sectional view showing the heat-dissipating device taken along a line BB′ of FIG. 2B.

FIGS. 3A and 3B are cross-sectional views showing several modified structures of the housing for the heat-dissipating device of the invention, wherein FIG. 3A also shows the direction of the flow field.

FIG. 4A is a top view showing the housing for the heat-dissipating device according to another preferred embodiment of the invention.

FIG. 4B is a cross-sectional view showing the heat-dissipating device taken along a line CC′ of FIG. 4A.

FIG. 5 is a top view showing a housing for the heat-dissipating device according to still another preferred embodiment of the invention.

FIG. 6 is a perspective view showing the heat-dissipating device according to another preferred embodiment of the invention.

FIG. 7 is a schematic illustration showing the heat-dissipating device of the invention mounted in a system frame having with electrical elements disposed therein.

FIG. 8A is an exploded, cross-sectional view showing the assembly of the heat-dissipating device of the invention and the heat sink.

FIG. 8B is a cross-sectional view showing the combination of the heat-dissipating device and the heat sink of FIG. 8A.

FIG. 8C is a perspective view showing the combination of the heat-dissipating device and the heat sink of FIG. 8A.

FIG. 9 is a schematic illustration showing the assembly of the heat-dissipating device of the invention and the heat sink, which is disposed in the framework with electrical elements.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 2A to 2D, which show a heat-dissipating device according to a first preferred embodiment of the invention. The heat-dissipating device 2 is mainly composed of a housing and an impeller 22. The housing includes a rectangular outer frame 21 having an air inlet, an air outlet, and a passage 23 connecting the air inlet to the air outlet. An inner wall 23 a of the passage extends radially outwards with respect to a rotational axis of the fan motor of the heat-dissipating device or an axis of passage, or even protrudes over the rectangular outer frame 21. Since the air inlet side of the housing has a circular shape extending outwards, the bottom part of the housing is still kept as a rectangular shape, and screw holes 24 and their positions are kept unchanged, the way of assembling the housing with other elements is also kept unchanged. The dimension of the blade of the impeller can be enlarged along with the outward extension of the inner wall of the housing, and an inclined portion 231 can be formed at the inner wall of the housing, as shown in FIG. 2C. The inclined portion 231 can greatly enlarge the intake airflow area and reduce noises of the turbulent flow produced owing to uneven intake airflow area of the conventional fan. In addition, an inclined portion 232 can also be designed at the inner wall of the air outlet side of the housing, as shown in FIG. 2D, wherein the inclined portion 232 can significantly increase the heat-dissipating area of the air outlet side.

In addition to the designs of inclined portions towards different directions at the inner wall from the air inlet side to the air outlet side, the inner wall may be formed with an inwardly inclined portion from the air inlet side to the air outlet side of the housing, as shown in FIGS. 3A and 3B. In this case, the air streams can be concentrated toward the center to provide better heat-dissipating performance for the heat-dissipating device that requires concentrated air streams. In addition, the fan housing assembly housing may be formed with a beveled edge at the air inlet side around the screw holes so that the intake airflow area can also be enlarged.

Furthermore, in addition to the inner wall of the passage at the air inlet side extending radially outwards and protruding over the rectangular outer frame 21, the same designs may be configured at the air outlet side. In other words, the inner wall of the passage at the air outlet side also extends radially outwards and protrudes over the rectangular outer frame 21, as shown in FIGS. 4A and 4B, such that the inner walls at the air inlet side and the air outlet side have a symmetrical structure with respect to a longitudinal axis L of the air passage including the same axis or a horizontal median plane H of the heat-dissipating device.

In addition that the inner wall of the passage at the air inlet side of the housing as shown in FIG. 2A evenly radially extends outwards in a circular manner, it can also be designed into an elliptic shape extending outwards in a symmetrical manner, as shown in FIG. 5. In other words, the inner wall of the passage at the air inlet side of the housing can extend radially outwards in a symmetrical manner with respect to the longitudinal axis L of the air passage, that is, in a right-and-left or upper-and-lower symmetry from the top view of the housing.

In addition to the outward extension of the inner wall of the housing, when the lateral side of the housing cannot be extended owing to the dimensional limitation, a part of the side wall of the housing may be cut off to form a notch or notches, as shown in FIG. 6. In this case, the intake airflow area at the lateral side can be enlarged, the air can be smoothly introduced, and the noise can also be reduced.

In practice, the heat-dissipating device 2 may be disposed within a system casing 3 in which electrical elements are mounted, as shown in FIG. 7. Several heat sources or electrical elements, which will generate a lot of heat during operation, are mounted on a circuit board 4. The heat-dissipating device 2 of the invention is mounted to a proper position (close to the heat sources) to discharge air streams toward the heat sources or electrical elements. Thus, the heat-dissipating efficiency can be enhanced, and it is possible to prevent the electrical elements from being damaged owing to high-temperature conditions.

In addition, the heat-dissipating device 2 of the invention may also be used with a heat sink 31, which may be mounted to the heat-dissipating device 2 by screws 32, as shown in FIGS. 8A to 8C. The assembly may be mounted to a central processing unit (CPU) 5, as shown in FIG. 9. That is, the bottom surface of the heat sink 31 is in close contact with the surface of the CPU 5, and the heat generated by the CPU 5 during operation may be quickly conducted to the heat sink 31. Then, the heat-dissipating device 2 produces cooling air streams to dissipate the generated heat. Moreover, the design of the inclined portion of the inner wall of the passage of the heat-dissipating device 2 of the invention may further be utilized to guide air streams toward the central portion of the heat sink having the highest temperature, and the heat-dissipating effects may be effectively achieved accordingly.

In summary, according to the aspect of the invention, the outward extension of the inner wall of the housing can greatly enlarge the air inlet area or air outlet area so as to enhance the heat-dissipating efficiency of the fan. In addition, the dimensions of the blades of the heat-dissipating fan can be enlarged along with the outward extension of the housing so that the airflow can be greatly increased and the heat-dissipating efficiency can be enhanced. Furthermore, the passage formed by the inner wall of the housing of the invention has a gradually reduced inner diameter formed from the inlet side to the outlet side (i.e., the formed passage has the inclined portion), and the air streams produced when the impeller rotates may be effectively concentrated to the central portion. Then, the air streams can directly flow toward the central portion of the heat sink having the highest temperature, and the heat-dissipating effects of the fan may be further enhanced.

While the invention has been described by way of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4221546 *14 Nov 19779 Sep 1980Pabst-Motoren KgAxial fan
US4225285 *18 Sep 197830 Sep 1980Ebm Elektrobau Mulfingen Gmbh & Co.Axial-flow fan
US4373861 *16 Apr 198015 Feb 1983Papst-Motoren KgAxial-flow fan
US4618315 *28 Jan 198521 Oct 1986Papst-Motoren Gmbh & Co.Small fan
US4734015 *26 Jun 198729 Mar 1988Papst-Motoren Gmbh & Co. KgAxial-flow fan
US4992029 *21 Feb 198912 Feb 1991Papst Motoren Gmbh & Co.Miniature axial fan
US5475562 *5 Jul 199412 Dec 1995At&T Global Information Solutions CompanyStructure for cooling an equipment enclosure
US5572403 *18 Jan 19955 Nov 1996Dell Usa, L.P.Plenum bypass serial fan cooling subsystem for computer systems
US5695318 *26 Apr 19969 Dec 1997Papst-Motoren Gmbh & Co KgDiagonal fan
US6186889 *8 Jan 199913 Feb 2001Lucent Technologies Inc.Fan assembly module
US6254343 *6 Dec 19993 Jul 2001Motorola, Inc.Low-noise cooling fan for electronic components and method of making the same
US6386276 *26 Feb 200114 May 2002Delta Electronics, Inc.Heat-dissipating device
US6386843 *29 Jun 200014 May 2002Nidec CorporationHousing for fan units, and electrical apparatus using a fan unit
US6538888 *28 Sep 200125 Mar 2003Intel CorporationRadial base heatsink
US6547276 *4 Jan 200115 Apr 2003Trw Occupant Restraint Systems Gmbh & Co. KgVehicle occupant restraint system
US6561762 *14 Nov 200113 May 2003Sunonwealth Electric Machine Industry Co., Ltd.Housing structure of a fan
US6565334 *23 Jul 200120 May 2003Phillip James BradburyAxial flow fan having counter-rotating dual impeller blade arrangement
US6814542 *15 Mar 20019 Nov 2004Verax Ventilatoren GmbhBlower especially for ventilating electronic devices
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7304844 *26 Sep 20054 Dec 2007Foxconn Technology Co., Ltd.Cooling fan assembly
US7399085 *27 Dec 200415 Jul 2008Lg Electronics Inc.Cooling fan
US7416386 *29 Jan 200726 Aug 2008Delta Electronics, Inc.Heat dissipation apparatus
US794682431 Oct 200724 May 2011Nidec Servo Co., Ltd.Electric axial flow fan
US8231343 *10 Mar 200831 Jul 2012Sony CorporationAxial fan apparatus, axial-flow impeller, and electronic apparatus
US20110070081 *2 Nov 200924 Mar 2011Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.Cooling fan with internally tapered housing
Classifications
U.S. Classification361/695, 417/354, 361/694, 257/E23.099, 361/696, 415/218.1
International ClassificationF04D25/08, H01L23/467, H05K7/20, F04D29/54, F04D29/58
Cooperative ClassificationF04D29/545, H05K7/20172, H01L23/467, F04D29/582
European ClassificationF04D29/54C3, H01L23/467, F04D29/58C, H05K7/20B10F
Legal Events
DateCodeEventDescription
19 Mar 2014FPAYFee payment
Year of fee payment: 8
19 Mar 2010FPAYFee payment
Year of fee payment: 4
23 Jul 2003ASAssignment
Owner name: DELTA ELECTRONICS, INC., TAIWAN
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KO, HAO-WEN;LEI, TSUNG-YU;LIN, KUO-CHENG;AND OTHERS;REEL/FRAME:014325/0204
Effective date: 20030505