US3706176A - Closure member and method for closing containers - Google Patents

Closure member and method for closing containers Download PDF

Info

Publication number
US3706176A
US3706176A US3706176DA US3706176A US 3706176 A US3706176 A US 3706176A US 3706176D A US3706176D A US 3706176DA US 3706176 A US3706176 A US 3706176A
Authority
US
United States
Prior art keywords
cap
container
affixing portion
affixing
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Alfred F Leatherman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heller
Original Assignee
Heller
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heller filed Critical Heller
Application granted granted Critical
Publication of US3706176A publication Critical patent/US3706176A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3612Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3668Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special induction coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/567Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using a tamping or a swaging operation, i.e. at least partially deforming the edge or the rim of a first part to be joined to clamp a second part to be joined
    • B29C65/568Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using a tamping or a swaging operation, i.e. at least partially deforming the edge or the rim of a first part to be joined to clamp a second part to be joined using a swaging operation, i.e. totally deforming the edge or the rim of a first part to be joined to clamp a second part to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/003Protecting areas of the parts to be joined from overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/118Single monotone curved joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81422General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • B29C66/81811General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B51/22Applying or generating heat or pressure or combinations thereof by friction or ultrasonic or high-frequency electrical means, i.e. by friction or ultrasonic or induction welding
    • B65B51/227Applying or generating heat or pressure or combinations thereof by friction or ultrasonic or high-frequency electrical means, i.e. by friction or ultrasonic or induction welding by induction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B3/00Closing bottles, jars or similar containers by applying caps
    • B67B3/02Closing bottles, jars or similar containers by applying caps by applying flanged caps, e.g. crown caps, and securing by deformation of flanges
    • B67B3/026Closing bottles, jars or similar containers by applying caps by applying flanged caps, e.g. crown caps, and securing by deformation of flanges the caps being made of thermoplastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/56Stoppers or lids for bottles, jars, or the like, e.g. closures
    • B29L2031/565Stoppers or lids for bottles, jars, or the like, e.g. closures for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/107Punching and bonding pressure application by punch
    • Y10T156/1072Closure cap liner applying type

Definitions

  • the steps of he method include placing the cap [58] new of Search 329; 272; on the container, subjecting the heatable portions of 219/1053 the cap to a high frequency magnetic field to soften these portions, bringing the softened portions of the [56] References cued cap into engagement with the container, and cooling UNlTED STATES PATENTS the cap to removably affix the cap to the container.
  • the present invention relates to a method for effecting closure of a container, such as a bottle or jar, and more particularly to a method and means utilizing induction heating.
  • crown closures are usually formed of a ferrous material, such as sheet steel, which has a tendency to rust over a period of time unless coated with a protective finish, resulting in a breaking of the seal and/or contamination of the contents of the bottle.
  • a plastic liner or a cork and foil liner inside the metal cap.
  • the crimping force applied to the cap skirt may be of a magnitude sufficient to cause damage to the plastic bottle and make formation of a seal impossible. The damage may or may not be immediately evidenced, with the result that subsequent failure of the seal may occur at a time later in the use of the sealed container. It is difficult to strengthen the opening of a plastic bottle because the outer dimension is fixed by he size of conventional bottle handling and capping machines and the inner dimension must be sufficiently large as to permit removal of the contents.
  • thermoformable closures As a result of the faults of shrinkable caps, attention has turned to the development of thermoformable closures.
  • One such technique completely heats a plastic blank and then forms it around the lip of the closure. See US. Pat. No. 2,447,690 to Ekstedt et al.
  • the high strength plastic necessary as a material for bottle closures invariably has a high softening temperature so that such a process tends to be inefficient in terms of processing speed because of the long heating time required. Further. close control of the process is rendered difficult and degradation and decomposition of the cap material may result.
  • a further object of the present invention is to provide a container sealing process which reduces the loss of gas pressure in the container contents to a minimum.
  • Another object of the present invention is to provide a container closure which is openable, not subject to deterioration such as rusting, non-contaminating to the container contents, capable of effecting a seal without a liner or other similar means, low in cost, and suitable for receiving indicia.
  • the present invention comprises a technique for capping a container opening with a thermoplastic cap.
  • the cap has a sealing portion for spanning the container opening to seal the same, and a skirt for engaging the opening lip or threads on the container for removably affixing the cap across the opening.
  • the skirt of the cap includes a susceptor, typically iron oxide particles, which is inductively heatable responsive to exposure to a high frequency magnetic field.
  • the method may include the initial steps of forming a cap, as described above, and further comprises the steps of placing the cap so formed on the container with the sealing portion of the cap spanning the opening, applying pressure to the sealing portion to effect a seal of the container opening, subjecting the skirt of the cap, which defines a preformed retaining means of a substantially continuous full density thermoplastic material to a high frequency magnetic field to heat the susceptor by magnetic hysteresis effect and soften only the skirt of the thermoplastic cap to a deformable state and maintaining the integrity of the softened affixing portion, bringing the softened skirt of the cap by deflection thereof into engagement with the lip on the container to mechanically seal the container, and cooling the skirt to removably affix the cap to the container.
  • FIG. 1 is a perspective view of an unsealed container which may be sealed by the means and method of the present invention
  • FIG. 2 is a perspective view of a container cap constructed in accordance with the present invention.
  • FIG. 3 is a cross sectional view of the cap shown in FIG. 2 taken along lines 3-3 of FIG. 2;
  • FIG. 4 is a somewhat schematic perspective view showing an initial step in the process of the present invention.
  • FIG. 5 is a somewhat schematic perspective view of a subsequent step in the process of the present invention.
  • FIG. 6 is a perspective view showing a container capped in accordance with the present invention, the cap being broken away to reveal a modification thereof;
  • FIG. 7 is a partially broken away perspective view of the container cap of the present invention in use with a different type of container.
  • FIG. 8 is a perspective view showing a container capped in accordance with the present invention, the cap being modified to include a frangible portion.
  • Bottle 10 contains neck 12 which terminates in opening 14 scalable by the means and method of the present invention. Opening 14 is surrounded by bead or lip 16, formed in part by recess 18. Bottle 10 may be formed of glass, plastic or other suitable substances.
  • cap includes a central flat disc portion 22 suitable for spanning neck 12 and opening 14 to close or seal the latter.
  • Sealing means such as ridges, or grooves, may be placed on the underside of central portion 22 for coaction with the portion of lip 16 adjacent opening 14.
  • a conventional plastic or cork and foil liner may be attached to the un derside of central portion 22. In many cases, and depending on the type of thermoplastic material utilized for cap 20, such grooves or other sealing means are not needed.
  • a skirt 24 depends from the periphery of central portion 22. The length of skirt 24 is such that the lower or terminal portion 26 of skirt 24 is generally opposite groove 18 of bottle 10 when cap 20 is placed on the bottle.
  • cap 20 It has been found preferable to utilize a high strength, high softening temperature plastic in the formation of cap 20, thereby to resist gas pressure generated in bottle 10 and to permit pasteurization of the bottle contents.
  • Polycarbonate, nylon, and high softening temperature polyethylene and polypropylene have been found to be both suitable for forming cap 20 and low in cost.
  • the caps may be formed in numerous ways, as by molding, or stamping a circular blank and hot or cold forming skirt 24. Embossed and other indicia may be easily placed on top of cap 20 during the forming process and the caps may be colored by adding colored particles and dies to the plastic material and by other techniques, such as coextrusion.
  • At least the terminal portion 26 of skirt 24 contains a susceptor suitable for generating heat upon exposure to a high frequency magnetic field. This is preferably accomplished by pigmenting or loading certain particles 28 into the terminal portions 26 of skirt 24, or into the entire cap. Uniformly dispersing the particles in terminal portion 26 has been found desirable. Because of the submicron size possible, it is preferable to introduce ferromagnetic oxide particles of a class consisting of Fe,0,, Pe o and CrO into terminal portion 26. Gamma Fe O and Cr0 have been found to be particularly useful. The aforesaid particles may typically range in size from submicron to about 20 microns. Particles having a size range of from 0.01 to 0.5 microns have been found to be highly satisfactory for use in the present invention.
  • the amount of such particles necessary to produce a desired heating in terminal portion 26 depends to some extent on both the type of plastic and the type of particle utilized. However. rarely has it been found necessary to use more than 30 percent pigment by weight with respect to the thermoplastic material associated therewith and heatable thereby and the use of 10 percent by weight is common.
  • the particles may be introduced into the cap during the molding process in the case of molded caps or during formation of the blanks in the case of stamped caps.
  • coil 30 is energized by a high frequency alternating current power supply 32 so as to generate a high frequency magnetic field in the interior of the coil.
  • Magnetic fields having frequencies from as low as 0.45 megahertz on up into the microwave range have been found useful. A frequency range from 0.5 to 5 megahertz has produced highly desirable results.
  • Coil 30 may be mounted in a plurality of coil sup ports 34 which also serve as molding dies for cap 20.
  • coil 30 is positioned in slots 36 in coil supports 34 so as to permit the coil supports to be reciprocated in a radial direction toward and away from the center of coil 30.
  • Either or both of coil 30 and coil supports 34 may be cooled by coolant circulated by coolant supply 38. Coolant supply 38 is shown as connected to channels 40 in coil supports 34 for this purpose in FIG. 5.
  • cap 20 is placed across opening 14 of neck l2 so that the disc portion 22 of cap 20 seals bottle 10. See FIG. 4.
  • Cap 20 is preferably held over opening 14 by downwardly exerted pressure, as shown by the arrow 29, to retain bottle in the sealed state throughout the entire capping process, thereby to prevent contamination and retain the carbonation of the container contents.
  • the treated terminal portion 26 of skirt 24 is positioned opposite recess 18.
  • Induction heating coil 30 is placed around the terminal portion 26 of skirt 24 and energized by high frequency alternating current source 32.
  • the energization of coil 30 creates a high frequency magnetic field which generates heat in susceptor particles 28 causing the thermoplastic material in the terminal portion 26 of skirt 24 to soften.
  • the unifonn dispersion of particles 28 causes uniform heating of terminal portion 26.
  • magnetic coil 30 may be disconnected from high frequency source 32 to stop heat generation in terminal portion 26. Because of the efficiencies obtainable with the technique of the present invention, only a short period of time is required to obtain the necessary softening of skirt 24. Times on the order of 0.l second are common.
  • the temperature of terminal portion 26 may remain below the sealing temperature of the plastic bottle in order to permit removal of cap 20.
  • the close control of temperature which may be obtained by the selection, amount, and size of particles 28 and the strength and duration of the magnetic field created by magnetic coil 30 insures that no degradation or decomposition of the thermoplastic material of cap 20 will occur.
  • Coil supports 34 are then moved inwardly, as shown by arrows 35, to laterally press the now deformable skirt 24 into contact and mechanical abutting interengagement with neck 12 at recess 18.
  • the inner surfaces of coil supports 34 may be formed so as to develop a bead in terminal portion 26 which engages recess 18 to secure cap 20 on bottle 10. Because of the readily deformable condition of skirt 24, only a slight amount of pressure is necessary to secure cap 20 on bottle 10, thereby permitting the use of the process on plastic containers. Skirt 24 may be simultaneously subjected to heating and pressure if desired. Coolant may be circulated through channels 40 from coolant supply 38 to cool coil supports 34 and cap 20.
  • FIG. 6 which also shows cork gasket and foil liner l7.
  • Cap may be removed by removing terminal portion 26 from recess 18, with or without rupturing skirt 24.
  • a conventional crown seal bottle opener may be used for this purpose.
  • the cap may be used to reclose container 10.
  • a resilient plastic may be used in cap 20 so that the cap may be replaced across opening 14 and terminal portion 26 reinserted in recess 18 by a downwardly exerted force such as 29.
  • FIG. 8 shows a modification of cap 20 in which a groove 48 is formed in skirt 24 immediately above terminal portion 26.
  • Coil supports 34 may be formed with a suitable projection for forming groove 48 as skirt 24 is pressed onto neck 12.
  • groove 48 may be preformed in cap 20.
  • Groove 48 may be located such that skirt 24 can be broken by inserting a bottle opener in the groove, thereby permitting removal of cap 20.
  • the depth of groove 48 may be made such that skirt 24 may be broken by grasping disc portion 22 and raising or twisting it with respect to terminal portion 26.
  • Terminal portion 26 may be sealed to container 10 to facilitate removal of disc portion 22. In the case of a plastic container, this may be accomplished by heating terminal portion 26 to heat sealing temperatures during the capping operation. Other types of break open seals may, of course, be designed.
  • the present invention is suitable for use with containers having other types of retaining means besides recess 18.
  • the retaining means may simply comprise the portions of the container ad jacent opening 14.
  • the invention may also be used with containers having threads 42 adjacent opening 14, as shown in FIG. 7.
  • Cap 20a of FIG. 7 is formed in the same manner as cap 20 in FIGS. 2 and 3.
  • the steps of the capping process proceed in the same manner as the steps of the capping process described above, with the heated and deformable portion 26 of skirt 24 being pressed onto threads 42 of container to form threads on the interior of skirt 24.
  • Cap 20a may be removed by unscrewing it off neck 12 of container 10a.
  • the container may be reclosed by replacing cap 20a. If desired. interruptions 44 may be placed in threads 42 so that skirt 24 is pressed into the interruptions during the capping process to form lugs which engage in the interruptions. These lugs prevent accidental loosening or removal of cap 20a from container 10a.
  • Iclaim 1. A method of closing a container opening with a thermoplastic cap, said cap having a sealing portion for spanning the opening to seal the same and an affixing portion for engaging a preformed retaining means on said container opening for removably affixing the cap across said opening, at least the affixing portion of the cap being of a substantially continuous full density thermoplastic material having means incorporated therein for heating said affixing portion by magnetic hysteresis effect of a high frequency magnetic field, said method comprising the steps of:
  • the affixing portion of the cap subjecting the affixing portion of the cap to a high frequency magnetic field by magnetic hysteresis heating to soften only the affixing portion of the thermoplastic cap to a deformable state and maintaining the integrity of the softened affixing portion, said temperature essentially corresponding to the temperature sufficient to soften the affixing portion and permit the deflection of the affixing portion;
  • thermoplastic container having a predetermined heat sealing temperature
  • step of heating the affixing portion of the cap is further defined as subjecting the affixing portion of the cap to a high frequency magnetic field to heat the affixing portion of the thermoplastic cap to a temperature less than the heat sealing temperature of the container.
  • a cap of thermoplastic material to include a sealing portion for spanning the container opening to seal the same and an affixing portion for engaging the retaining means on the container opening;
  • particulate means heatable as a result of magnetic hysteresis upon exposure to a high frequency magnetic field.
  • thermoplastic container having a predetermined heat sealing temperature including the step of selecting a thermoplastic material for the cap having a heat softening temperature below the heat sealing temperature of the thermoplastic container and wherein the step of heating the affixing portion of the cap is to a temperature less than the heat sealing temperature of the container.
  • the method of claim 3. further defined as subjecting the affixing portion of the cap to a magnetic field having a frequency of from 0.5 to 5 megahertz.
  • particulate means having a particle size ranging from submicron to 20 microns.
  • thermoplastic container suitable for closing a thermoplastic container further defined as further subjecting the affixing portion of the cap to a high frequency magnetic field to heat the affixing portion of the thermoplastic cap to a heat sealing temperature to seal the affixing portion to the container.
  • thermoplastic container having a predetermined heat sealing temperature, further defined as forming the frangible portion of the cap intermediate the sealing portion and the affixing portion and as subjecting the affixing portion of the cap to a high frequency magnetic field to further heat the affixing portion of the thermoplastic cap to a temperature greater than the heat sealing temperature of the container to seal the affixing portion to the container.

Abstract

A technique for capping a container utilizes a thermoplastic cap having integral means for heating portions thereof by means of a high frequency magnetic field. The steps of the method include placing the cap on the container, subjecting the heatable portions of the cap to a high frequency magnetic field to soften these portions, bringing the softened portions of the cap into engagement with the container, and cooling the cap to removably affix the cap to the container.

Description

v United States Patent 1151 3,706,176
Leatherman 1 Dec. 19, 1972 [541 CLOSURE MEMBER AND METHOD 3,504,817 4/1970 Heider ..s3/42 x FOR CLOSING CONTAINERS 3.460510 8/1969 Adcock et al. ..s3/329 x 3,548,140 l2/l970 O'Neill ..$3/329 X [72] lnvemo" 322: columbus' 3,620,875 11/1971 Guglielmo et al. ..l$6/272 [73] Assignee: said Heller, by said Leatherman Primary Examiner-Travis S. McGehee [22] Fned: March 10, 971 Att0mey-Andrus, Sceales, Starke & Sawall [21] Appl. No.: 122,762 [57] ABSTRACT A technique for capping a container utilizes a ther- US. Clmoplastic cap haying integral means for heating per- |56/272- 219/1053 tions thereof by means of a high frequency magnetic [5 [1 Int. Cl. "865!) 7/28 field The steps of he method include placing the cap [58] new of Search 329; 272; on the container, subjecting the heatable portions of 219/1053 the cap to a high frequency magnetic field to soften these portions, bringing the softened portions of the [56] References cued cap into engagement with the container, and cooling UNlTED STATES PATENTS the cap to removably affix the cap to the container.
3,367,808 2/1968 Edwards ..53/42 X 16 Claims, 8 Drawing Figures CLOSURE MEMBER AND METHOD FOR CLOSING CONTAINERS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for effecting closure of a container, such as a bottle or jar, and more particularly to a method and means utilizing induction heating.
2. Description of the Prior Art It has been a general practice for many years to close or cap bottles, such as soft drink or beer bottles, with a crimpable or deformable metal cap, commonly termed a crown seal or closure. These metal caps include a central sealing portion which spans the opening of the bottle and from which depends a deformable skirt for engaging a bead around the opening of the bottle to affix the cap to the bottle.
While the general use of crown seals indicates the satisfactory nature of such sealing techniques, several problems and disadvantages are attendant crown closure capping methods. Some of these drawbacks reside in the closure itself. Crown closures are usually formed of a ferrous material, such as sheet steel, which has a tendency to rust over a period of time unless coated with a protective finish, resulting in a breaking of the seal and/or contamination of the contents of the bottle. In order to insure a satisfactory. gas-tight seal, it is necessary to utilize a plastic liner or a cork and foil liner inside the metal cap. In order to place information on the top of the cap, it is necessary to first print and then varnish the cap top. These last two considerations substantially increase the cost of the common crimped metal closure.
The advent of plastic bottles renders more critical another shortcoming of the conventional crown closure. With plastic bottles, the crimping force applied to the cap skirt may be of a magnitude sufficient to cause damage to the plastic bottle and make formation of a seal impossible. The damage may or may not be immediately evidenced, with the result that subsequent failure of the seal may occur at a time later in the use of the sealed container. It is difficult to strengthen the opening of a plastic bottle because the outer dimension is fixed by he size of conventional bottle handling and capping machines and the inner dimension must be sufficiently large as to permit removal of the contents.
Even with glass bottles, the force needed to effect the crimping of the crown seal skirt has, on occasion, resulted in chipping along the lip of the bottle.
Because of the shortcomings of crimped metal caps, attempts have been made to utilize other materials, notably plastic, in closure devices. Many of these attempts have involved the use of plastic materials which are shrinkable by the application of moisture or heat. See, for example, US. Pat. No. 2,608,334 to Knocke, and US. Pat. No. 2,885,l05 to Heyl et al. However, when sealed, internal stresses are present in shrinkable caps which are undesirable and may, in time, result in the destruction of the cap. These stresses are, in addition to the other stresses placed on the cap when in use, such as the gas pressure in carbonated beverage containers.
As a result of the faults of shrinkable caps, attention has turned to the development of thermoformable closures. One such technique completely heats a plastic blank and then forms it around the lip of the closure. See US. Pat. No. 2,447,690 to Ekstedt et al. However, the high strength plastic necessary as a material for bottle closures invariably has a high softening temperature so that such a process tends to be inefficient in terms of processing speed because of the long heating time required. Further. close control of the process is rendered difficult and degradation and decomposition of the cap material may result.
US. Pat. No. 2,451,273 to Bright, shows a capping process in which a preformed cap is utilized and in which only the edges of the cap skirt are heated by infrared means. Such a method lessens the heating interval to some extent. However, the possibility of degradation and decomposition of the cap is increased because of the small area exposed to the infrared source. Further, quality control is difficult to maintain because the point of heating is removed from the point of appli cation of the cap to the bottle.
Similar problems attend the use of other closure devices, such as threaded caps.
SUMMARY OF THE PRESENT INVENTION It is therefore the object of the present invention to provide an improved means and method of closing containers which obtain high quality, high strength, rapid sealing of containers of conventional construction.
It is a further object of the present invention to provide an improved method of closing containers which provides close, selective control of temperature conditions occurring during the processing, which avoids degradation and decomposition of the closure material, and which avoids the necessity of preheating the closure member.
It is another object of the present invention to provide an improved thermal closing method which is suitable for use with high strength, high softening temperature plastics.
A further object of the present invention is to provide a container sealing process which reduces the loss of gas pressure in the container contents to a minimum.
It is yet another object of the present invention to provide a container sealing process which is adaptable to automatic operation and suitable for use in connection with existing bottling machinery.
It is a still further object of the present invention to provide a container sealing process which exerts a minimum of pressure on the container, thereby permitting use of the process with low strength plastic containers.
Another object of the present invention is to provide a container closure which is openable, not subject to deterioration such as rusting, non-contaminating to the container contents, capable of effecting a seal without a liner or other similar means, low in cost, and suitable for receiving indicia.
Briefly, the present invention comprises a technique for capping a container opening with a thermoplastic cap. The cap has a sealing portion for spanning the container opening to seal the same, and a skirt for engaging the opening lip or threads on the container for removably affixing the cap across the opening. The skirt of the cap includes a susceptor, typically iron oxide particles, which is inductively heatable responsive to exposure to a high frequency magnetic field.
The method may include the initial steps of forming a cap, as described above, and further comprises the steps of placing the cap so formed on the container with the sealing portion of the cap spanning the opening, applying pressure to the sealing portion to effect a seal of the container opening, subjecting the skirt of the cap, which defines a preformed retaining means of a substantially continuous full density thermoplastic material to a high frequency magnetic field to heat the susceptor by magnetic hysteresis effect and soften only the skirt of the thermoplastic cap to a deformable state and maintaining the integrity of the softened affixing portion, bringing the softened skirt of the cap by deflection thereof into engagement with the lip on the container to mechanically seal the container, and cooling the skirt to removably affix the cap to the container.
BRIEF DESCRIPTION OF THE DRAWING For a more complete understanding of the nature and objects of the invention, reference may be had to the accompanying drawing in which:
FIG. 1 is a perspective view of an unsealed container which may be sealed by the means and method of the present invention;
FIG. 2 is a perspective view of a container cap constructed in accordance with the present invention;
FIG. 3 is a cross sectional view of the cap shown in FIG. 2 taken along lines 3-3 of FIG. 2;
FIG. 4 is a somewhat schematic perspective view showing an initial step in the process of the present invention;
FIG. 5 is a somewhat schematic perspective view of a subsequent step in the process of the present invention;
FIG. 6 is a perspective view showing a container capped in accordance with the present invention, the cap being broken away to reveal a modification thereof;
FIG. 7 is a partially broken away perspective view of the container cap of the present invention in use with a different type of container; and
FIG. 8 is a perspective view showing a container capped in accordance with the present invention, the cap being modified to include a frangible portion.
DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is suitable for the closing and sealing of containers of many different types. Thus, while not limited thereto, the process is illustratively shown in connection with bottle 10 of the type commonly used in the beverage industry. Bottle 10 contains neck 12 which terminates in opening 14 scalable by the means and method of the present invention. Opening 14 is surrounded by bead or lip 16, formed in part by recess 18. Bottle 10 may be formed of glass, plastic or other suitable substances.
As shown in FIGS. 2 and 3, cap includes a central flat disc portion 22 suitable for spanning neck 12 and opening 14 to close or seal the latter. Sealing means, such as ridges, or grooves, may be placed on the underside of central portion 22 for coaction with the portion of lip 16 adjacent opening 14. If desired, a conventional plastic or cork and foil liner may be attached to the un derside of central portion 22. In many cases, and depending on the type of thermoplastic material utilized for cap 20, such grooves or other sealing means are not needed.
A skirt 24 depends from the periphery of central portion 22. The length of skirt 24 is such that the lower or terminal portion 26 of skirt 24 is generally opposite groove 18 of bottle 10 when cap 20 is placed on the bottle.
It has been found preferable to utilize a high strength, high softening temperature plastic in the formation of cap 20, thereby to resist gas pressure generated in bottle 10 and to permit pasteurization of the bottle contents. Polycarbonate, nylon, and high softening temperature polyethylene and polypropylene have been found to be both suitable for forming cap 20 and low in cost. The caps may be formed in numerous ways, as by molding, or stamping a circular blank and hot or cold forming skirt 24. Embossed and other indicia may be easily placed on top of cap 20 during the forming process and the caps may be colored by adding colored particles and dies to the plastic material and by other techniques, such as coextrusion.
At least the terminal portion 26 of skirt 24 contains a susceptor suitable for generating heat upon exposure to a high frequency magnetic field. This is preferably accomplished by pigmenting or loading certain particles 28 into the terminal portions 26 of skirt 24, or into the entire cap. Uniformly dispersing the particles in terminal portion 26 has been found desirable. Because of the submicron size possible, it is preferable to introduce ferromagnetic oxide particles of a class consisting of Fe,0,, Pe o and CrO into terminal portion 26. Gamma Fe O and Cr0 have been found to be particularly useful. The aforesaid particles may typically range in size from submicron to about 20 microns. Particles having a size range of from 0.01 to 0.5 microns have been found to be highly satisfactory for use in the present invention.
The amount of such particles necessary to produce a desired heating in terminal portion 26 depends to some extent on both the type of plastic and the type of particle utilized. However. rarely has it been found necessary to use more than 30 percent pigment by weight with respect to the thermoplastic material associated therewith and heatable thereby and the use of 10 percent by weight is common.
The particles may be introduced into the cap during the molding process in the case of molded caps or during formation of the blanks in the case of stamped caps.
The high frequency magnetic field necessary to obtain heat in particles 28 is generated by coil 30, commonly termed an induction heating coil. Coil 30 is energized by a high frequency alternating current power supply 32 so as to generate a high frequency magnetic field in the interior of the coil. Magnetic fields having frequencies from as low as 0.45 megahertz on up into the microwave range have been found useful. A frequency range from 0.5 to 5 megahertz has produced highly desirable results.
Coil 30 may be mounted in a plurality of coil sup ports 34 which also serve as molding dies for cap 20. For this purpose, coil 30 is positioned in slots 36 in coil supports 34 so as to permit the coil supports to be reciprocated in a radial direction toward and away from the center of coil 30. Either or both of coil 30 and coil supports 34 may be cooled by coolant circulated by coolant supply 38. Coolant supply 38 is shown as connected to channels 40 in coil supports 34 for this purpose in FIG. 5.
In the performance of the process of the present invention, cap 20 is placed across opening 14 of neck l2 so that the disc portion 22 of cap 20 seals bottle 10. See FIG. 4. Cap 20 is preferably held over opening 14 by downwardly exerted pressure, as shown by the arrow 29, to retain bottle in the sealed state throughout the entire capping process, thereby to prevent contamination and retain the carbonation of the container contents. With the disc portion so located, the treated terminal portion 26 of skirt 24 is positioned opposite recess 18.
Induction heating coil 30 is placed around the terminal portion 26 of skirt 24 and energized by high frequency alternating current source 32. The energization of coil 30 creates a high frequency magnetic field which generates heat in susceptor particles 28 causing the thermoplastic material in the terminal portion 26 of skirt 24 to soften. The unifonn dispersion of particles 28 causes uniform heating of terminal portion 26. When skirt 24 has softened to the desired degree, magnetic coil 30 may be disconnected from high frequency source 32 to stop heat generation in terminal portion 26. Because of the efficiencies obtainable with the technique of the present invention, only a short period of time is required to obtain the necessary softening of skirt 24. Times on the order of 0.l second are common. when cap 20 is used on plastic bottles, the temperature of terminal portion 26 may remain below the sealing temperature of the plastic bottle in order to permit removal of cap 20. The close control of temperature which may be obtained by the selection, amount, and size of particles 28 and the strength and duration of the magnetic field created by magnetic coil 30 insures that no degradation or decomposition of the thermoplastic material of cap 20 will occur.
Coil supports 34 are then moved inwardly, as shown by arrows 35, to laterally press the now deformable skirt 24 into contact and mechanical abutting interengagement with neck 12 at recess 18. The inner surfaces of coil supports 34 may be formed so as to develop a bead in terminal portion 26 which engages recess 18 to secure cap 20 on bottle 10. Because of the readily deformable condition of skirt 24, only a slight amount of pressure is necessary to secure cap 20 on bottle 10, thereby permitting the use of the process on plastic containers. Skirt 24 may be simultaneously subjected to heating and pressure if desired. Coolant may be circulated through channels 40 from coolant supply 38 to cool coil supports 34 and cap 20. When skirt 24 ofcap 20 has been cooled to the rigid state to set the affixing portion in the deflected position, coil supports 34 are retracted. the pressure indicated by 29 is removed, and the capping operation is complete. The capped bottle is shown in FIG. 6 which also shows cork gasket and foil liner l7.
Cap may be removed by removing terminal portion 26 from recess 18, with or without rupturing skirt 24. A conventional crown seal bottle opener may be used for this purpose. Depending on the properties of the plastic used to form cap 20, the capmay be used to reclose container 10. For this purpose, a resilient plastic may be used in cap 20 so that the cap may be replaced across opening 14 and terminal portion 26 reinserted in recess 18 by a downwardly exerted force such as 29.
FIG. 8 shows a modification of cap 20 in which a groove 48 is formed in skirt 24 immediately above terminal portion 26. Coil supports 34 may be formed with a suitable projection for forming groove 48 as skirt 24 is pressed onto neck 12. In the alternative, groove 48 may be preformed in cap 20. Groove 48 may be located such that skirt 24 can be broken by inserting a bottle opener in the groove, thereby permitting removal of cap 20. Or, the depth of groove 48 may be made such that skirt 24 may be broken by grasping disc portion 22 and raising or twisting it with respect to terminal portion 26. Terminal portion 26 may be sealed to container 10 to facilitate removal of disc portion 22. In the case of a plastic container, this may be accomplished by heating terminal portion 26 to heat sealing temperatures during the capping operation. Other types of break open seals may, of course, be designed.
It will be appreciated that the present invention is suitable for use with containers having other types of retaining means besides recess 18. As noted immediately above, in the case in which terminal portion 26 is heat sealed to the container, the retaining means may simply comprise the portions of the container ad jacent opening 14. The invention may also be used with containers having threads 42 adjacent opening 14, as shown in FIG. 7. Cap 20a of FIG. 7 is formed in the same manner as cap 20 in FIGS. 2 and 3. The steps of the capping process proceed in the same manner as the steps of the capping process described above, with the heated and deformable portion 26 of skirt 24 being pressed onto threads 42 of container to form threads on the interior of skirt 24. Cap 20a may be removed by unscrewing it off neck 12 of container 10a. The container may be reclosed by replacing cap 20a. If desired. interruptions 44 may be placed in threads 42 so that skirt 24 is pressed into the interruptions during the capping process to form lugs which engage in the interruptions. These lugs prevent accidental loosening or removal of cap 20a from container 10a.
Various modes of carrying out the invention are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter which is regarded as the invention.
Iclaim: 1. A method of closing a container opening with a thermoplastic cap, said cap having a sealing portion for spanning the opening to seal the same and an affixing portion for engaging a preformed retaining means on said container opening for removably affixing the cap across said opening, at least the affixing portion of the cap being of a substantially continuous full density thermoplastic material having means incorporated therein for heating said affixing portion by magnetic hysteresis effect of a high frequency magnetic field, said method comprising the steps of:
placing the cap on the container with the sealing portion spanning the opening and the affixing portion in spaced relation to said retaining means;
applying pressure to said closure to mechanically seal the container;
subjecting the affixing portion of the cap to a high frequency magnetic field by magnetic hysteresis heating to soften only the affixing portion of the thermoplastic cap to a deformable state and maintaining the integrity of the softened affixing portion, said temperature essentially corresponding to the temperature sufficient to soften the affixing portion and permit the deflection of the affixing portion;
pressing the softened affixing portion of the cap laterally by an outer force applied to the full density affixing portion and thereby deflecting the sof tened affixing portion toward and into mechanical abutting interengagement with the preformed retaining means on the container; and
cooling the affixing portion to set the affixing portion in the deflected position and removably affix the cap to the container.
2. The method of claim 1, suitable for closing a thermoplastic container having a predetermined heat sealing temperature wherein the step of heating the affixing portion of the cap is further defined as subjecting the affixing portion of the cap to a high frequency magnetic field to heat the affixing portion of the thermoplastic cap to a temperature less than the heat sealing temperature of the container.
3. The method of claim 1, further comprising the initial steps of:
forming a cap of thermoplastic material to include a sealing portion for spanning the container opening to seal the same and an affixing portion for engaging the retaining means on the container opening; and
dispersing, in at least the affixing portion of the cap,
particulate means heatable as a result of magnetic hysteresis upon exposure to a high frequency magnetic field.
4. The method of claim 3, suitable for closing a thermoplastic container having a predetermined heat sealing temperature including the step of selecting a thermoplastic material for the cap having a heat softening temperature below the heat sealing temperature of the thermoplastic container and wherein the step of heating the affixing portion of the cap is to a temperature less than the heat sealing temperature of the container.
5. The method of claim 1, including the step of placing a gasket means between the sealing portion of the cap and the opening of the container, said gasket means defining a mechanical pressure seal.
6. The method of claim 1, further defined as subjecting the affixing portion of the cap to a magnetic field having a frequency of from 0.5 to 5 megahertz.
7. The method of claim 3. further defined as subjecting the affixing portion of the cap to a magnetic field having a frequency of from 0.5 to 5 megahertz.
8. The method of claim 3, further defined as dispersing in at least the affixing portion of the cap, ferromagnetic particles selected from a class consisting of Fegoa, F6304 and 9. The method of claim 8, further defined as dispersing in at least the affixing portion of the cap, ferromagnetic particles selected from a class consisting of Fe O, and Cr0,.
10. The method of claim 3, further defined as dispersing in at least the affixing portion of the cap, particulate means having a particle size ranging from submicron to 20 microns.
l he method of claim 3, further defined as uniformly dispersing the particulate means in at least the affixing portion of the cap.
12. The method of claim 3, further defined as forming the cap from polycarbonate material.
13. The method of claim 3, further defined as forming the cap from a resilient material so as to permit reclosure of the container with the cap subsequent to initial removal of the cap.
14. The method of claim 3, further defined as forming the cap with a frangible portion permitting removal of the cap from the container.
15. The method of claim 14, suitable for closing a thermoplastic container further defined as further subjecting the affixing portion of the cap to a high frequency magnetic field to heat the affixing portion of the thermoplastic cap to a heat sealing temperature to seal the affixing portion to the container.
16. The method of claim 14, suitable for closing a thermoplastic container having a predetermined heat sealing temperature, further defined as forming the frangible portion of the cap intermediate the sealing portion and the affixing portion and as subjecting the affixing portion of the cap to a high frequency magnetic field to further heat the affixing portion of the thermoplastic cap to a temperature greater than the heat sealing temperature of the container to seal the affixing portion to the container.
UNITED STATES PATENT OFFICE CERTIFICATE OF CUREUNGN Patent No. 3,706,176 Dated December 19, 1972 Inventor) ALFRED F. LEATHERMAN It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Cover Page Column 1, at [73] Assignee: after "said" delete "Heller" and insert William C.
Heller, Jr.
Signed and sealed this 29th day of May 1973.,
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents FORM powso USCOMM-DC 60376-P69 9 U.$. GOVERNMENT FIUN'HKG OFFICE I is" Dl6-3!lv

Claims (16)

1. A method of closing a container opening with a thermoplastic cap, said cap having a sealing portion for spanning the opening to seal the same and an affixing portion for engaging a preformed retaining means on said container opening for removably affixing the cap across said opening, at least the affixing portion of the cap being of a substantially continuous full density thermoplastic material having means incorporated therein for heating said affixing portion by magnetic hysteresis effect of a high frequency magnetic field, said method comprising the steps of: placing the cap on the container with the sealing portion spanning the opening and the affixing portion in spaced relation to said retaining means; applying pressure to said closure to mechanically seal the container; subjecting the affixing portion of the cap to a high frequency magnetic field by magnetic hysteresis heating to soften only the affixing portion of the thermoplastic cap to a deformable state and maintaining the integrity of the softened affixing portion, said temperature essentially corresponding to the temperature sufficient to soften the affixing portion and permit the deflection of the affixing portion; pressing the softened affixing portion of the cap laterally by an outer force applied to the full density affixing portion and thereby deflecting the softened affixing portion toward and into mechanical abutting interengagement with the preformed retaining means on the container; and cooling the affixing portion to set the affixing portion in the deflected position and removably affix the cap to the container.
2. The method of claim 1, suitable for closing a thermoplastic container having a predetermined heat sealing temperature wherein the step of heating the affixing portion of the cap is further defined as subjecting the affixing portion of the cap to a high frequency magnetic field to heat the affixing portion of the thermoplastic cap to a temperature less than the heat sealing temperature of the container.
3. The method of claim 1, further comprising the initial steps of: forming a cap of thermoplastic material to include a sealing portion for spanning the container opening to seal the same and an affixing portion for engaging the retaining means on the container opening; and dispersing, in at least the affixing portion of the cap, particulate means heatable as a result of magnetic hysteresis upon exposure to a high frequency magnetic field.
4. The method of claim 3, suitable for closing a thermoplastic container having a predetermined heat sealing temperature including the step of selecting a thermoplastic material for the cap having a heat softening temperature below the heat sealing temperature of the thermoplastic container and wherein the step of heating the affixing portion of the cap is to a temperature less than the heat sealing temperature of the container.
5. The method of claim 1, including the step of placing a gasket means between the sealing portion of the cap and the opening of the container, said gasket means defining a mechanical pressure seal.
6. The method of claim 1, further defined as subjecting the affixing portion of the cap to a magnetic field having a frequency of from 0.5 to 5 megahertz.
7. The method of claim 3, further defined as subjecting the affixing portion of the cap to a magnetic field having a frequency of from 0.5 to 5 megahertz.
8. The method of claim 3, further defined as dispersing in at least the affixing portion of the cap, ferromagnetic particles selected from a class consisting of Fe2O3, Fe3O4 and CrO2.
9. The method of claim 8, further defined as dispersing in at least the affixing portion of the cap, ferromagnetic particles selected from a class consisting of Fe2O3 and CrO2.
10. The method of claim 3, further defineD as dispersing in at least the affixing portion of the cap, particulate means having a particle size ranging from submicron to 20 microns.
11. The method of claim 3, further defined as uniformly dispersing the particulate means in at least the affixing portion of the cap.
12. The method of claim 3, further defined as forming the cap from polycarbonate material.
13. The method of claim 3, further defined as forming the cap from a resilient material so as to permit reclosure of the container with the cap subsequent to initial removal of the cap.
14. The method of claim 3, further defined as forming the cap with a frangible portion permitting removal of the cap from the container.
15. The method of claim 14, suitable for closing a thermoplastic container further defined as further subjecting the affixing portion of the cap to a high frequency magnetic field to heat the affixing portion of the thermoplastic cap to a heat sealing temperature to seal the affixing portion to the container.
16. The method of claim 14, suitable for closing a thermoplastic container having a predetermined heat sealing temperature, further defined as forming the frangible portion of the cap intermediate the sealing portion and the affixing portion and as subjecting the affixing portion of the cap to a high frequency magnetic field to further heat the affixing portion of the thermoplastic cap to a temperature greater than the heat sealing temperature of the container to seal the affixing portion to the container.
US3706176D 1971-03-10 1971-03-10 Closure member and method for closing containers Expired - Lifetime US3706176A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12276271A 1971-03-10 1971-03-10

Publications (1)

Publication Number Publication Date
US3706176A true US3706176A (en) 1972-12-19

Family

ID=22404617

Family Applications (1)

Application Number Title Priority Date Filing Date
US3706176D Expired - Lifetime US3706176A (en) 1971-03-10 1971-03-10 Closure member and method for closing containers

Country Status (1)

Country Link
US (1) US3706176A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808074A (en) * 1970-11-06 1974-04-30 United Glass Ltd Induction heat sealing of a container
US3845544A (en) * 1972-09-20 1974-11-05 M Nurminen Method of producing a light room element
US3963845A (en) * 1972-02-01 1976-06-15 Joseph Dukess High frequency heat sealing container closure
US4201306A (en) * 1978-10-27 1980-05-06 Greif Bros. Corporation Variable capacity all-plastic drum
US4237360A (en) * 1978-11-06 1980-12-02 Aluminum Company Of America Induction heat sealing
US4454402A (en) * 1980-08-26 1984-06-12 Automation Industrielle Sa Induction welding apparatus for laminated tubes
US4771151A (en) * 1984-10-05 1988-09-13 Metcal, Inc. Self-heating lid for soldering to a box
US4938820A (en) * 1987-06-11 1990-07-03 Raychem Corporation Joining of sheets
US5182424A (en) * 1989-10-31 1993-01-26 Vlastimil Frank Module encapsulation by induction heating
US5286952A (en) * 1987-06-11 1994-02-15 Raychem Corporation Methods and devices which make use of conductive polymers to join articles
US5444963A (en) * 1993-03-11 1995-08-29 Magnet-Physik Dr. Steingroever Gmbh Process and equipment for shaping container seals
US5452506A (en) * 1992-11-05 1995-09-26 Magnet-Physik Dr. Steingroever Gmbh Process for removing container seals
US6179131B1 (en) 1998-06-25 2001-01-30 Pti Technologies, Inc. Fusion-welded thermoplastic filter assembly and a method of fabricating the same
US6552312B2 (en) * 2000-03-01 2003-04-22 Enercon Industries Corporation Adjustable cap sealer head
US20050096855A1 (en) * 1999-12-10 2005-05-05 Teller David M. Service transaction monitoring system, method and device
US20060130429A1 (en) * 2002-11-29 2006-06-22 Dirk Auer Device for sealing a cover element into a casing part of a packaging body made of composite material
US20080147211A1 (en) * 1999-12-10 2008-06-19 David Teller Monitoring beverage dispensing using pour event data and ring up data
US20100064751A1 (en) * 2006-07-12 2010-03-18 Anthenat Alan S Method and apparatus for high velocity electromagnetic sealing of containers
US20100107568A1 (en) * 2007-04-11 2010-05-06 Toyo Seikan Kaisha Ltd. Method and apparatus for heat-sealing container
US20110072762A1 (en) * 2008-06-04 2011-03-31 Khs Gmbh Closing machine
US8164454B2 (en) 2006-10-24 2012-04-24 Beverage Metrics Holding Ltd. ID proximity monitoring of inventory objects
US20120255945A1 (en) * 2011-04-05 2012-10-11 Dey Subir K Induction Seal Coil and Method
US20130134154A1 (en) * 2011-11-28 2013-05-30 The Boeing Company System and method of adjusting the equilibrium temperature of an inductively-heated susceptor
US20170081087A1 (en) * 2014-03-27 2017-03-23 Heinz HILLMANN Crown cap closure and closure method
US20180281999A1 (en) * 2015-10-05 2018-10-04 Tetra Laval Holdings & Finance S.A. Apparatus for capping a container
US10532517B2 (en) 2015-07-29 2020-01-14 Woodwelding Ag Method for joining a device to an object with the aid of ultrasonic vibration energy and device and installation suitable for the method
US20220212820A1 (en) * 2019-05-24 2022-07-07 G.D Societa' Per Azioni Bottle capping station, in particular for products of the pharmaceutical industry
EP4000876A4 (en) * 2019-12-24 2022-11-09 Mitsubishi Heavy Industries, Ltd. Fusion device and fusion method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367808A (en) * 1964-09-28 1968-02-06 Illinois Tool Works Method and apparatus for uniting articles
US3460310A (en) * 1964-12-09 1969-08-12 United Glass Ltd Container closures
US3504817A (en) * 1968-05-14 1970-04-07 Owens Illinois Inc Closure and method of applying same
US3548140A (en) * 1967-07-25 1970-12-15 Continental Can Co Method and apparatus for sealing containers using heat activated magnetic sealing compound
US3620875A (en) * 1964-12-11 1971-11-16 Ema Corp Electromagnetic adhesive and method of joining material thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367808A (en) * 1964-09-28 1968-02-06 Illinois Tool Works Method and apparatus for uniting articles
US3460310A (en) * 1964-12-09 1969-08-12 United Glass Ltd Container closures
US3620875A (en) * 1964-12-11 1971-11-16 Ema Corp Electromagnetic adhesive and method of joining material thereby
US3548140A (en) * 1967-07-25 1970-12-15 Continental Can Co Method and apparatus for sealing containers using heat activated magnetic sealing compound
US3504817A (en) * 1968-05-14 1970-04-07 Owens Illinois Inc Closure and method of applying same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3808074A (en) * 1970-11-06 1974-04-30 United Glass Ltd Induction heat sealing of a container
US3963845A (en) * 1972-02-01 1976-06-15 Joseph Dukess High frequency heat sealing container closure
US3845544A (en) * 1972-09-20 1974-11-05 M Nurminen Method of producing a light room element
US4201306A (en) * 1978-10-27 1980-05-06 Greif Bros. Corporation Variable capacity all-plastic drum
US4237360A (en) * 1978-11-06 1980-12-02 Aluminum Company Of America Induction heat sealing
US4454402A (en) * 1980-08-26 1984-06-12 Automation Industrielle Sa Induction welding apparatus for laminated tubes
US4771151A (en) * 1984-10-05 1988-09-13 Metcal, Inc. Self-heating lid for soldering to a box
US4938820A (en) * 1987-06-11 1990-07-03 Raychem Corporation Joining of sheets
US5286952A (en) * 1987-06-11 1994-02-15 Raychem Corporation Methods and devices which make use of conductive polymers to join articles
US5182424A (en) * 1989-10-31 1993-01-26 Vlastimil Frank Module encapsulation by induction heating
US5558795A (en) * 1989-10-31 1996-09-24 International Business Machines Corporation Module encapsulation by induction heating
US5452506A (en) * 1992-11-05 1995-09-26 Magnet-Physik Dr. Steingroever Gmbh Process for removing container seals
US5444963A (en) * 1993-03-11 1995-08-29 Magnet-Physik Dr. Steingroever Gmbh Process and equipment for shaping container seals
US6179131B1 (en) 1998-06-25 2001-01-30 Pti Technologies, Inc. Fusion-welded thermoplastic filter assembly and a method of fabricating the same
US20080147211A1 (en) * 1999-12-10 2008-06-19 David Teller Monitoring beverage dispensing using pour event data and ring up data
US7265673B2 (en) * 1999-12-10 2007-09-04 Beverage Metrics Holding Ltd. Service transaction monitoring system, method and device
US20050096855A1 (en) * 1999-12-10 2005-05-05 Teller David M. Service transaction monitoring system, method and device
US7768396B2 (en) 1999-12-10 2010-08-03 Beverage Metrics Holding Ltd Monitoring beverage dispensing using pour event data and ring up data
US6552312B2 (en) * 2000-03-01 2003-04-22 Enercon Industries Corporation Adjustable cap sealer head
US20060130429A1 (en) * 2002-11-29 2006-06-22 Dirk Auer Device for sealing a cover element into a casing part of a packaging body made of composite material
US20100064751A1 (en) * 2006-07-12 2010-03-18 Anthenat Alan S Method and apparatus for high velocity electromagnetic sealing of containers
US8316677B2 (en) * 2006-07-12 2012-11-27 Anthenat Alan S Method and apparatus for high velocity electromagnetic sealing of containers
US8164454B2 (en) 2006-10-24 2012-04-24 Beverage Metrics Holding Ltd. ID proximity monitoring of inventory objects
US20100107568A1 (en) * 2007-04-11 2010-05-06 Toyo Seikan Kaisha Ltd. Method and apparatus for heat-sealing container
US20110072762A1 (en) * 2008-06-04 2011-03-31 Khs Gmbh Closing machine
US9745183B2 (en) * 2008-06-04 2017-08-29 Khs Gmbh Closing machine
US20120255945A1 (en) * 2011-04-05 2012-10-11 Dey Subir K Induction Seal Coil and Method
US20130134154A1 (en) * 2011-11-28 2013-05-30 The Boeing Company System and method of adjusting the equilibrium temperature of an inductively-heated susceptor
US8963058B2 (en) * 2011-11-28 2015-02-24 The Boeing Company System and method of adjusting the equilibrium temperature of an inductively-heated susceptor
US20170081087A1 (en) * 2014-03-27 2017-03-23 Heinz HILLMANN Crown cap closure and closure method
US10343822B2 (en) * 2014-03-27 2019-07-09 Khs Gmbh Crown cap closure and closure method
US10532517B2 (en) 2015-07-29 2020-01-14 Woodwelding Ag Method for joining a device to an object with the aid of ultrasonic vibration energy and device and installation suitable for the method
US20180281999A1 (en) * 2015-10-05 2018-10-04 Tetra Laval Holdings & Finance S.A. Apparatus for capping a container
US10815017B2 (en) * 2015-10-05 2020-10-27 Tetra Laval Holdings & Finance S.A. Apparatus for capping a container
US20220212820A1 (en) * 2019-05-24 2022-07-07 G.D Societa' Per Azioni Bottle capping station, in particular for products of the pharmaceutical industry
EP4000876A4 (en) * 2019-12-24 2022-11-09 Mitsubishi Heavy Industries, Ltd. Fusion device and fusion method

Similar Documents

Publication Publication Date Title
US3706176A (en) Closure member and method for closing containers
US3460310A (en) Container closures
US3773205A (en) Thermoformed closures which are sealed to containers by the use of sonic energy and the method of sealing the same
US3928109A (en) Method of assembling and bonding a laminated liner within a closure member
US4345692A (en) Closure cap for a container
US4856667A (en) Container and cap
US4607757A (en) Anti-spin interference fit of press-seal insert and method of assembly
ES279823U (en) Tamper evident closure
US2387439A (en) Method of sealing containers
WO1995019918A1 (en) Heat bondable container closure
US6179139B1 (en) Tamper-indicating closure
US3920503A (en) Apparatus for sealing plastic closures to plastic containers
US4369889A (en) Tamperproof closure
US3788509A (en) Method and apparatus for sealing plastic closures to plastic containers
US3904061A (en) Tamper-proof bottle closure
US4813557A (en) Pasteurizable container closure
US2431114A (en) Device and method for applying thermoplastic caps to containers
CA1117475A (en) Metal cap and its method of manufacture
EP1444135B1 (en) Method for induction sealing a plastic part to a composite container
US3504817A (en) Closure and method of applying same
US3581456A (en) Applying a threaded closure by magnetic impulse
US2726001A (en) Container closures
EP0219265A2 (en) Plastic container closure with moulded liner
US4688367A (en) Heat printed carrier and method
US3460951A (en) Method for forming a closure for bottles and other containers