US3701157A - Helicopter uhf antenna system for satellite communications - Google Patents

Helicopter uhf antenna system for satellite communications Download PDF

Info

Publication number
US3701157A
US3701157A US149495A US3701157DA US3701157A US 3701157 A US3701157 A US 3701157A US 149495 A US149495 A US 149495A US 3701157D A US3701157D A US 3701157DA US 3701157 A US3701157 A US 3701157A
Authority
US
United States
Prior art keywords
antenna
mast
helicopter
rotor mast
radiating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US149495A
Inventor
Jerome W Uhrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Air Force
Original Assignee
US Air Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Air Force filed Critical US Air Force
Application granted granted Critical
Publication of US3701157A publication Critical patent/US3701157A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/282Modifying the aerodynamic properties of the vehicle, e.g. projecting type aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the field of the invention is in high frequency antennas for helicopters.
  • the use of the propeller blades as an antenna was to obviate the use of a trailing or fixed antenna and not to achieve UI-IF electromagnetic radiation from, or to, the aircraft in the direction through the propeller, as in the present invention.
  • the similarity of this prior patent and the present invention is that the rotation of the antenna is ancillary of collateral to'the function of the antenna.
  • the invention provides for helicopters an antenna system for UHF communications via satellite link in which the antenna is not shadowed by the rotating blade of the helicopters.
  • FIG. 1 is a pictorial view of the antenna structure that is placed on top of the helicopter mast;
  • FIG. 2 is a pictorial view showing the location of the bow ties inside the insulating and protecting cover
  • FIG. 3 is a pictorial view of the base plate assembly showing the elements connecting with the bow ties;
  • FIG. 4 is a thin section view out diametrically through two opposite elements with the details back of the cut omitted for clarity;
  • FIG. 5 is a developed view of one element of a bow tie
  • FIG. 6 is a view of a mast nut for supporting the antenna
  • no. 7 is a pictorial-view of the electrical coaxial cable connections to the antenna elements.
  • FIG. 8 is a schematic view of the electrical circuit of the antenna system.
  • the antenna radiating elements are positioned on the inside of a protective insulating cover which is mounted on the top of a conventional hollow helicopter mast. (Radiating and radiation as used herein is to be construed in the broad sense covering both transmitting and reception.) This places the antenna above the helicopter blade, or blades, and the antenna rotates with the rotor of the helicopter. By the radiation elements of the antenna being above the rotor no chopping of the signal going to or coming from an overhead satellite occurs as with a conventional fuselage mounted antenna.
  • the specific embodiment set forth in detail is an antenna and system for the UHF portion of the communication band for a narrow band transmission frequency of approximately 303 MHz and a narrow band reception frequency of approximately 249 MHz.
  • the standard practice is to use right circular polarization in the UHF band, thus the described embodiment is so connected.
  • Left circular polarization is conventionally used for communication in, the VHF band.
  • right circular polarization is used going up (transmitting) and left circular polarization is used coming down (receiving) as a general practice.
  • the disclosed system may readily be used for either right orleft circular polarization or other frequency bands as will be described later.
  • FIG. 1 a pictorial view is shown of the antenna structure that mounts at the top of the helicopter mast.
  • a polyester fiberglasslaminated frustrum of a right circular cone 11 supports, protects, and insulates the enclosed drooped bow tie radiating elements.
  • the preferred included conical angle is approximately
  • An internally threaded ring 12 couples the structure to a modified mast lock nut as shown in FIG. 6.
  • the conventional mast lock nut is removed and the modified mast lock nut shown in cross section in FIG. 6 is threaded onto the top of the mast in place of the conventional mast lock nut.
  • the internal threads 61 engage the conventional external threads of the top of the mast.
  • a hexagonal flange 62 provides a surface for engaging a wrench to tighten the modified mast nut to the required torque for safety.
  • the modified mast nut locks to the helicopter mast in the conventional manner by a key stop meshing with the teeth 65.
  • the hollow tube 13 (FIG. 1) slides into the modified mast nut along interior surface 63 and the antenna is fastened to the modified mast nut by tightening the internally threaded rotatable ring 12 on threads 64. Ring 12 may also be locked by a set screwthrough the ring 12 engaging the modified mast nut.
  • FIG. 5 An individual bow tie element is shown in FIG. 5. For the frequencies previous enumerated a lower base length 55 of approximately 6 inches, an upper base length 56 of approximately 1 13/ l 6 inches, and a height between bases of approximately 6% inches has been found to be preferred. These dimensions may be scaled up or downfor other frequencies as is well known in the art.
  • the bow tie elements may be fabricated from brass or any other high conductivity material as is commonly used in antenna structures; Four bow tie elements are formed to and symmetrically fastened on the inside surface of the cover 11 as shown at 51, 52, 53, and 54 in FIG. 2. The cover with the bow tie elements in place fits over the base structure shown in FIG. 3.
  • the metallic (typically brass or aluminum) base plate 30 is fastened to the cover by machine screws located in the holes around the periphery of each, and by additional screws through the cover, the small ends of the bow ties, and the brackets 71, 72, 73, and 74. These brackets in addition make electrical contact with the bow ties 51,.52, 53, and 54 respectively.
  • FIG. 4 A no-depth section view of the complete structure, less wiring, taken diametrically through the centers of bow tie elements 51 and 53 is shown in FIG. 4.
  • a full half section showing all elements back of the section cut becomes confusing due to the multiplicity of lines, and since the structure is completely symetrical a no-depth section as is shown in FIG. 4 is much simpler and easier to readily comprehend.
  • the metallic base plate 30 is at'ground potential since it is rivited to aluminum bottom ring flange 40 which is welded to the shaft 13.
  • the shaft 13 is mechanically coupled to the steel modified mast nut shown in FIG. 6 which is threaded onto the steel helicopter mast.
  • each impedance balancing tube 41, 42, 43, and 44 one connected to each bow tie radiating element, are connected together and to ground at their lower ends by metallic plate 45 which is soldered or brazed to the shaft 13.
  • the tubes are further supported by teflon insulators 46 and 47.
  • the top end of each impedance balancing tube is sweat soldered to their respective brackets 71, 72, 73, and 74, and the small supporting collar inserts 101, 102, 103, and 104. (Collars 101 and 102 only are shown in the drawing.)
  • a polyester fiberglass cap 48 seals the enclosure.
  • the preferred length of the impedance balancing tubes from the top of the collars to ground ring 45 has been found to be approximately 9% inches (approximately an electrical quarter wavelength), and the distance from the top of the collars to the ground base plate 30 is approximately 6% inches (approximately a free space one-sixth wavelength).
  • the individual radiating elements of the dual crossed bow ties are physically spaced 90 apart thus by phasing each element 90 electrical degrees sequentially from the preceding one, that is, 90, 180, and 270, a circularly polarized wave may be transmitted or received.
  • the schematic diagram of the electrical system of this embodiment is shown in FIG 8. It is shown phased for transmission and reception of right circularly polarized waves.
  • Opposite radiating elements are balanced fed 180 apart with the feed to the adjacent crossed elements electrically delayed 90, to provide an orthogonal feed to the quadrature spaced radiating elements.
  • Fifty ohm impedance RG-87A/U coaxial cable is the preferred transmission line for this embodiment. It has an insulating cover over the outer conductor. Two pieces of coaxial cable 81 and 82 are run up through the impedance balancing tubes 41 and 44 of adjacent radiators. The outer conductor (braid) is soldered to the collars and brackets 71 and 74 connecting to radiating elements 51 and 54 and to impedance balancing tubes 41 and 44. The center conductors of these coaxial lines are connected to the respective opposite collars, brackets (73, 72), impedance balancing tubes (43, 42), and radiators (53, 52) respectively as shown in FIGS. 7 and 8.
  • coaxial line feeding one set of diametrically opposite radiators (having 180 therebetween) is made 90 electrical degrees longer than the coaxial line feeding the other set of opposite radiators.
  • coaxial line 82 is made a quarter wavelength longer than coaxial line 81, from the common signal coupling point at the conventional coaxial T-connector 83.
  • this delay amounts to a cable length of approximately 6 11/16 inches.
  • cable 82 is approximately forty and k inches long and cable 81 is approximately 33 l3/l6 inches long.
  • the actual cable lengths and type of cable are not critical as long as a reasonably close impedance match with the radiating elements is maintained and power handling requirements are satisfied.
  • the quarter wave delay is critical.
  • Conventional communication sets 84 are designed for an antenna feed of approximately 50 ohms. In order to couple the two paralleled 50 ohm lines to the 50 ohm input to the set matching sections 85 and 86 must be used. Section 85 is approximately a one-third wavelength of 50 ohm cable (RG-87A/U) and section 86 is approximately a quarter wavelength of 75 ohm cable such as RG-140/U. In this embodiment the physical lengths are approximately 8.9 inches and 6.75 inches respectively.
  • Coaxial cable 89 is conventional fifty ohm cable (such as RG-87A/U) and of the length required to reach the bottom of the mast 90 where a conventional coaxial rotary joint 91 is positioned.
  • a rotary joint is required as the antenna with the matching sections and coaxial cables contained inside the mast rotate with the mast as it drives the helicopter blade. Cable 92 going from the rotary joint to the communication set does not rotate.
  • the rotary joint, the cable couplings, and the coaxial cable are all well known conventional pieces of communicating equipment.
  • An antenna system for a helicopter having a hollow rotor mast, for communicating via overhead satellite link, comprising:
  • An antenna system for communicating with a conventional communication set from a helicopter having a hollow rotor mast via overhead satellite link, the said communication set having a determined connecting impedance comprising:
  • means including a hollow tube cooperating with the said enclosed antenna radiating elements and the said rotor mast for axially positioning the antenna in fixed relationship on top of the rotor mast;
  • c. means cooperating with the said antenna elements extending into the said hollow tube for orthogonally coupling the said antenna elements and providing a common point of signal coupling;
  • means including an electrical quarter wavelength of coaxial cable for matching the electrical impedance at the said common signal coupling point to provide the said connecting impedance of the communication set, the said matching means being contained within the hollow rotor mast;
  • means including a coaxial rotary joint positioned at the bottom of the said rotor mast, for coupling the said communication set to the said matching means.

Abstract

A UHF antenna comprising crossed dipoles in the shape of drooped bow ties, encased by a polyester fiberglass laminated cone, positioned above and rotating with the blades of the helicopter, and orthogonally fed by a coaxial transmission line running through the hollow rotating mast provides an antenna for overhead signal transmission and reception. A coaxial rotary joint is placed inside the mast at the lower end to make a rotating electrical connection with the feed line.

Description

B ew-e72, 5R
luv-MHZ XR United States Patent Uhrig [54] HELICOPTER UHF ANTENNA SYSTEM FOR SATELLITE COMMUNICATIONS [72] Inventor: Jerome W. Uhrig, Dayton, Ohio [73] Assignee: The United States of America as represented by the Secretary of the United States Air Force 221 Filed: June3, 1971 21 Appl.No.: 149,495
[52] US. Cl. "343/708, 343/797, 343/872 [51] Int. Cl. ..H0lq 1/28 [58] Field of Search ..343/705, 708, 797, 872
[56] References Cited- UNITED STATES PATENTS 3,390,393 6/1968 Upton ..343/771 [4 1 Oct. 24, 1972 Primary Examiner-Eli Lieberman Attorney-Harry A. Herbert, Jr. and Robert Kern Duncan [57] ABSTRACT A UHF antenna comprising crossed dipoles in the shape of drooped bow ties, encased by a polyester fiberglass laminated cone, positioned above and rotating with the blades of the helicopter, and orthogonally fed by a coaxial transmission line running through the hollow rotating mast provides an antenna for overhead signal transmission and reception. A coaxial rotary joint is placed inside the mast at the lower end to make a rotating electrical connection with the feed line.
mcminwzw 3,701,151
, 'sum 10F4 I 1 I INVENTOR.
JifO Vf W 0192/6 PATENTED I973 3.701.157
' sum 3 or 4 INVENTOR. dko/v' w. 102/ y my PATENTEDum 24 m2 sum u UF 4 INVENTOR. lff leoflf W. U/l/E/ BY 54 d,
T ANIYS BACKGROUND OF THE INVENTION The field of the invention is in high frequency antennas for helicopters. v
Both the mechanical and electrical rotation of antennas are well known. However, previous rotation, unlike that of the present invention, has been primarily to obtain a desired major direction of radiation (or reception). U.S. Pat. No. 3,045,236, Rotatable Radomes for Aircraft issued to P. A. Colman et al is a typical ex ample of prior art of this nature. The conventional rotatable television antenna wherein the antenna elements are rotated to provide an increased gain in the direction of the desired transmitting antenna is well known. The closest known prior art to the present invention is U.S. Pat. No. 2,490,330, Aircraft Antenna System, issued to A. E. Widle, Jr. In this patent the propeller blades of a conventional aircraft are used as the antenna elements. The use of the propeller blades as an antenna was to obviate the use of a trailing or fixed antenna and not to achieve UI-IF electromagnetic radiation from, or to, the aircraft in the direction through the propeller, as in the present invention. The similarity of this prior patent and the present invention is that the rotation of the antenna is ancillary of collateral to'the function of the antenna.
Prior to this invention the problem of obtaining satisfactory communications via satellite link with airborne vehicles or ground stations from a helicopter has been serious. These communications are primarily in the UHF band of the electromagnetic radiation spectrum. On conventional fixed wing aircraft satisfactory communications via satellite link is readily accomplished by placing antennas on the top side of the air-.
craft. In this band (UHF), asis well known, communication is essentially via line-of-sight between the communicating antennas. On a helicopter having conventional antennas placed on top of the fuselage, communicating via satellite link (with the satellite overhead), the antennas are shadowed intermittently by the rotating blades above the ship. This is very undesirable for satisfactory communications.
SUMMARY OF THE INVENTION The invention provides for helicopters an antenna system for UHF communications via satellite link in which the antenna is not shadowed by the rotating blade of the helicopters.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a pictorial view of the antenna structure that is placed on top of the helicopter mast;
FIG. 2 is a pictorial view showing the location of the bow ties inside the insulating and protecting cover;
FIG. 3 is a pictorial view of the base plate assembly showing the elements connecting with the bow ties;
FIG. 4 is a thin section view out diametrically through two opposite elements with the details back of the cut omitted for clarity;
FIG. 5 is a developed view of one element of a bow tie;
FIG. 6 is a view of a mast nut for supporting the antenna;
2 no. 7 is a pictorial-view of the electrical coaxial cable connections to the antenna elements; and
FIG. 8 is a schematic view of the electrical circuit of the antenna system.
DESCRIPTION OF THE PREFERRED EMBODIMENT The antenna radiating elements are positioned on the inside of a protective insulating cover which is mounted on the top of a conventional hollow helicopter mast. (Radiating and radiation as used herein is to be construed in the broad sense covering both transmitting and reception.) This places the antenna above the helicopter blade, or blades, and the antenna rotates with the rotor of the helicopter. By the radiation elements of the antenna being above the rotor no chopping of the signal going to or coming from an overhead satellite occurs as with a conventional fuselage mounted antenna.
The specific embodiment set forth in detail is an antenna and system for the UHF portion of the communication band for a narrow band transmission frequency of approximately 303 MHz and a narrow band reception frequency of approximately 249 MHz. The standard practice is to use right circular polarization in the UHF band, thus the described embodiment is so connected. Left circular polarization is conventionally used for communication in, the VHF band. For the X- band of frequencies right circular polarization is used going up (transmitting) and left circular polarization is used coming down (receiving) as a general practice. The disclosed system may readily be used for either right orleft circular polarization or other frequency bands as will be described later.
Referring to FIG. 1, a pictorial view is shown of the antenna structure that mounts at the top of the helicopter mast. A polyester fiberglasslaminated frustrum of a right circular cone 11 supports, protects, and insulates the enclosed drooped bow tie radiating elements. The preferred included conical angle is approximately An internally threaded ring 12 couples the structure to a modified mast lock nut as shown in FIG. 6. To install the antenna on the hollow conventional helicopter mast, the conventional mast lock nut is removed and the modified mast lock nut shown in cross section in FIG. 6 is threaded onto the top of the mast in place of the conventional mast lock nut. The internal threads 61 engage the conventional external threads of the top of the mast. A hexagonal flange 62 provides a surface for engaging a wrench to tighten the modified mast nut to the required torque for safety. The modified mast nut locks to the helicopter mast in the conventional manner by a key stop meshing with the teeth 65. The hollow tube 13 (FIG. 1) slides into the modified mast nut along interior surface 63 and the antenna is fastened to the modified mast nut by tightening the internally threaded rotatable ring 12 on threads 64. Ring 12 may also be locked by a set screwthrough the ring 12 engaging the modified mast nut.
As all the Figures of the drawing pertain to the same structure, including the schematic diagram of FIG. 8, setting forth in detail one embodiment of the invention, identical reference numerals are used connoting the same structural elements in each figure.
An individual bow tie element is shown in FIG. 5. For the frequencies previous enumerated a lower base length 55 of approximately 6 inches, an upper base length 56 of approximately 1 13/ l 6 inches, and a height between bases of approximately 6% inches has been found to be preferred. These dimensions may be scaled up or downfor other frequencies as is well known in the art. The bow tie elements may be fabricated from brass or any other high conductivity material as is commonly used in antenna structures; Four bow tie elements are formed to and symmetrically fastened on the inside surface of the cover 11 as shown at 51, 52, 53, and 54 in FIG. 2. The cover with the bow tie elements in place fits over the base structure shown in FIG. 3. The metallic (typically brass or aluminum) base plate 30 is fastened to the cover by machine screws located in the holes around the periphery of each, and by additional screws through the cover, the small ends of the bow ties, and the brackets 71, 72, 73, and 74. These brackets in addition make electrical contact with the bow ties 51,.52, 53, and 54 respectively.
A no-depth section view of the complete structure, less wiring, taken diametrically through the centers of bow tie elements 51 and 53 is shown in FIG. 4. A full half section showing all elements back of the section cut becomes confusing due to the multiplicity of lines, and since the structure is completely symetrical a no-depth section as is shown in FIG. 4 is much simpler and easier to readily comprehend. The metallic base plate 30 is at'ground potential since it is rivited to aluminum bottom ring flange 40 which is welded to the shaft 13. The shaft 13 is mechanically coupled to the steel modified mast nut shown in FIG. 6 which is threaded onto the steel helicopter mast.
The four impedance balancing tubes 41, 42, 43, and 44, one connected to each bow tie radiating element, are connected together and to ground at their lower ends by metallic plate 45 which is soldered or brazed to the shaft 13. The tubes are further supported by teflon insulators 46 and 47. The top end of each impedance balancing tube is sweat soldered to their respective brackets 71, 72, 73, and 74, and the small supporting collar inserts 101, 102, 103, and 104. ( Collars 101 and 102 only are shown in the drawing.) A polyester fiberglass cap 48 seals the enclosure.
In the specific embodiment being set forth in detail, for the frequencies enumerated the preferred length of the impedance balancing tubes from the top of the collars to ground ring 45 has been found to be approximately 9% inches (approximately an electrical quarter wavelength), and the distance from the top of the collars to the ground base plate 30 is approximately 6% inches (approximately a free space one-sixth wavelength).
In the embodiment being described the individual radiating elements of the dual crossed bow ties are physically spaced 90 apart thus by phasing each element 90 electrical degrees sequentially from the preceding one, that is, 90, 180, and 270, a circularly polarized wave may be transmitted or received. The schematic diagram of the electrical system of this embodiment is shown in FIG 8. It is shown phased for transmission and reception of right circularly polarized waves. Opposite radiating elements are balanced fed 180 apart with the feed to the adjacent crossed elements electrically delayed 90, to provide an orthogonal feed to the quadrature spaced radiating elements.
Fifty ohm impedance RG-87A/U coaxial cable is the preferred transmission line for this embodiment. It has an insulating cover over the outer conductor. Two pieces of coaxial cable 81 and 82 are run up through the impedance balancing tubes 41 and 44 of adjacent radiators. The outer conductor (braid) is soldered to the collars and brackets 71 and 74 connecting to radiating elements 51 and 54 and to impedance balancing tubes 41 and 44. The center conductors of these coaxial lines are connected to the respective opposite collars, brackets (73, 72), impedance balancing tubes (43, 42), and radiators (53, 52) respectively as shown in FIGS. 7 and 8.
To produce the 90 phase-shift between adjacent elements the coaxial line feeding one set of diametrically opposite radiators (having 180 therebetween) is made 90 electrical degrees longer than the coaxial line feeding the other set of opposite radiators. As shown in FIG. 8, coaxial line 82 is made a quarter wavelength longer than coaxial line 81, from the common signal coupling point at the conventional coaxial T-connector 83. In the embodiment being described for the frequencies previously stated and with the known propagation velocity in RG-87A/U cable this delay amounts to a cable length of approximately 6 11/16 inches. In a specific satisfactorily operating embodiment cable 82 is approximately forty and k inches long and cable 81 is approximately 33 l3/l6 inches long. The actual cable lengths and type of cable are not critical as long as a reasonably close impedance match with the radiating elements is maintained and power handling requirements are satisfied. The quarter wave delay is critical. Conventional communication sets 84 are designed for an antenna feed of approximately 50 ohms. In order to couple the two paralleled 50 ohm lines to the 50 ohm input to the set matching sections 85 and 86 must be used. Section 85 is approximately a one-third wavelength of 50 ohm cable (RG-87A/U) and section 86 is approximately a quarter wavelength of 75 ohm cable such as RG-140/U. In this embodiment the physical lengths are approximately 8.9 inches and 6.75 inches respectively. The impedance at the connector 87 appears as 50 ohms to properly match the communication equipment. Coaxial cable 89 is conventional fifty ohm cable (such as RG-87A/U) and of the length required to reach the bottom of the mast 90 where a conventional coaxial rotary joint 91 is positioned. A rotary joint is required as the antenna with the matching sections and coaxial cables contained inside the mast rotate with the mast as it drives the helicopter blade. Cable 92 going from the rotary joint to the communication set does not rotate. The rotary joint, the cable couplings, and the coaxial cable are all well known conventional pieces of communicating equipment.
While a specific embodiment for specific communicating frequencies has been set forth in detail those skilled in the art will readily adapt the invention to other frequencies by scaling the physical structures up and down to accommodate lower and higher frequencies. The electrical dimensions have been presented in terms of wavelengths, as well as physical measurements for the specific embodiment, to further aid in practicing the invention at other frequencies. Obviously, left handed circular polarization may readily be obtained by merely making cable 81 one quarter wavelength longer than cable 82. The direction of rotation or movement of the helicopter mast is immaterial to the radiated (or received) wave. In the embodiment described in detail the VSWR (voltage-standing-waveratio) on line 92 to the communication set is typically l.48at249Ml-lzandl.l8at303l\dl-Iz.
I claim:
1. An antenna system, for a helicopter having a hollow rotor mast, for communicating via overhead satellite link, comprising:
a. dual crossed bow tie radiating elements positioned on the top of the said rotor mast and rotating therewith;
b. means cooperating with the interior of the said hollow mast and rotating therewith for orthogonally feeding the said radiating elements for circularly polarized radiation; and
0. means for electrical coupling from exterior the said mast to the means for orthogonally feeding the radiating elements.
2. An antenna system for communicating with a conventional communication set from a helicopter having a hollow rotor mast via overhead satellite link, the said communication set having a determined connecting impedance comprising:
a. drooped, dual, crossed bow tie antenna radiating elements, quadrature spaced, enclosed in an insulating protective cover;
b. means including a hollow tube cooperating with the said enclosed antenna radiating elements and the said rotor mast for axially positioning the antenna in fixed relationship on top of the rotor mast;
c. means cooperating with the said antenna elements extending into the said hollow tube for orthogonally coupling the said antenna elements and providing a common point of signal coupling;
. means including an electrical quarter wavelength of coaxial cable for matching the electrical impedance at the said common signal coupling point to provide the said connecting impedance of the communication set, the said matching means being contained within the hollow rotor mast; and
e. means including a coaxial rotary joint positioned at the bottom of the said rotor mast, for coupling the said communication set to the said matching means.

Claims (2)

1. An antenna system, for a helicopter having a hollow rotor mast, for communicating via overhead satellite link, comprising: a. dual crossed bow tie radiating elements positioned on the top of the said rotor mast and rotating therewith; b. means cooperating with the interior of the said hollow mast and rotating therewith for orthogonally feeding the said radiating elements for circularly polarized radiation; and c. means for electrical coupling from exterior the said mast to the means for orthogonally feeding the radiating elements.
2. An antenna system for communicating with a conventional communication set from a helicopter having a hollow rotor mast via overhead satellite link, the said communication set having a determined connecting impedance comprising: a. drooped, dual, crossed bow tie antenna radiating elements, quadrature spaced, enclosed in an insulating protective cover; b. means including a hollow tube cooperating with the said enclosed antenna radiating elements and the said rotor mast for axially positioning the antenna in fixed relationship on top of the rotor mast; c. means cooperating with the said antenna elements extending into the said hollow tube for orthogonally coupling the said antennA elements and providing a common point of signal coupling; d. means including an electrical quarter wavelength of coaxial cable for matching the electrical impedance at the said common signal coupling point to provide the said connecting impedance of the communication set, the said matching means being contained within the hollow rotor mast; and e. means including a coaxial rotary joint positioned at the bottom of the said rotor mast, for coupling the said communication set to the said matching means.
US149495A 1971-06-03 1971-06-03 Helicopter uhf antenna system for satellite communications Expired - Lifetime US3701157A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14949571A 1971-06-03 1971-06-03

Publications (1)

Publication Number Publication Date
US3701157A true US3701157A (en) 1972-10-24

Family

ID=22530543

Family Applications (1)

Application Number Title Priority Date Filing Date
US149495A Expired - Lifetime US3701157A (en) 1971-06-03 1971-06-03 Helicopter uhf antenna system for satellite communications

Country Status (1)

Country Link
US (1) US3701157A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811127A (en) * 1972-08-10 1974-05-14 Collins Radio Co Antenna for airborne satellite communications
US3896450A (en) * 1974-09-23 1975-07-22 Us Army Hardened antenna element cover
US3896446A (en) * 1972-07-13 1975-07-22 Mitsubishi Electric Corp Radar mounted on helicopter
US3987458A (en) * 1975-07-25 1976-10-19 The United States Of America As Represented By The Secretary Of The Army Low-profile quadrature-plate UHF antenna
US4031539A (en) * 1975-12-11 1977-06-21 Rca Corporation Broadband turnstile antenna
US4131896A (en) * 1976-02-10 1978-12-26 Westinghouse Electric Corp. Dipole phased array with capacitance plate elements to compensate for impedance variations over the scan angle
US5182566A (en) * 1991-10-02 1993-01-26 Geosurv, Inc. Method and apparatus for utilizing a movable GPS antenna for surveying purposes
EP0647977A1 (en) * 1993-09-10 1995-04-12 Radio Frequency Systems Inc. Circularly polarized microcell antenna
US5521610A (en) * 1993-09-17 1996-05-28 Trimble Navigation Limited Curved dipole antenna with center-post amplifier
US5589843A (en) * 1994-12-28 1996-12-31 Radio Frequency Systems, Inc. Antenna system with tapered aperture antenna and microstrip phase shifting feed network
FR2751471A1 (en) * 1990-12-14 1998-01-23 Dassault Electronique WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
US5818397A (en) * 1993-09-10 1998-10-06 Radio Frequency Systems, Inc. Circularly polarized horizontal beamwidth antenna having binary feed network with microstrip transmission line
US6072439A (en) * 1998-01-15 2000-06-06 Andrew Corporation Base station antenna for dual polarization
US6072432A (en) * 1997-05-02 2000-06-06 Radio Frequency Systems, Inc. Hybrid power tapered/space tapered multi-beam antenna
EP1391009A1 (en) * 2000-04-14 2004-02-25 Gregory Daniel Hall Plate dipole antenna
US20070063916A1 (en) * 2005-09-21 2007-03-22 Malone Bernard L Iii Versatile antenna for wireless communications
US20090096704A1 (en) * 2007-09-17 2009-04-16 Physical Sciences, Inc. Non-Cutoff Frequency Selective Surface Ground Plane Antenna Assembly
CN101816101A (en) * 2007-10-05 2010-08-25 凯瑟雷恩工厂两合公司 Supply network for a group antenna
US20100216398A1 (en) * 2009-02-25 2010-08-26 Alan Matthew Finn Wireless communication between a rotating frame of reference and a non-rotating frame of reference
US20110057848A1 (en) * 2009-09-09 2011-03-10 Baucom Charlie E Antenna apparatus and methods of use therefor
US8106846B2 (en) 2009-05-01 2012-01-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna
US8618998B2 (en) 2009-07-21 2013-12-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna with cavity for additional devices
US8779971B2 (en) 2010-05-24 2014-07-15 Robert J. Wellington Determining spatial orientation information of a body from multiple electromagnetic signals
EP2933877A1 (en) * 2014-04-15 2015-10-21 R.A. Miller Industries, Inc. Uhf satellite communications antenna
US10644384B1 (en) 2018-05-07 2020-05-05 Virtual Em Inc. Zero weight airborne antenna with near perfect radiation efficiency utilizing conductive airframe elements and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390393A (en) * 1964-09-17 1968-06-25 Bell Aerospace Corp Airfoil radar antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390393A (en) * 1964-09-17 1968-06-25 Bell Aerospace Corp Airfoil radar antenna

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896446A (en) * 1972-07-13 1975-07-22 Mitsubishi Electric Corp Radar mounted on helicopter
US3811127A (en) * 1972-08-10 1974-05-14 Collins Radio Co Antenna for airborne satellite communications
US3896450A (en) * 1974-09-23 1975-07-22 Us Army Hardened antenna element cover
US3987458A (en) * 1975-07-25 1976-10-19 The United States Of America As Represented By The Secretary Of The Army Low-profile quadrature-plate UHF antenna
US4031539A (en) * 1975-12-11 1977-06-21 Rca Corporation Broadband turnstile antenna
US4131896A (en) * 1976-02-10 1978-12-26 Westinghouse Electric Corp. Dipole phased array with capacitance plate elements to compensate for impedance variations over the scan angle
FR2751471A1 (en) * 1990-12-14 1998-01-23 Dassault Electronique WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
US5182566A (en) * 1991-10-02 1993-01-26 Geosurv, Inc. Method and apparatus for utilizing a movable GPS antenna for surveying purposes
US5481272A (en) * 1993-09-10 1996-01-02 Radio Frequency Systems, Inc. Circularly polarized microcell antenna
EP0647977A1 (en) * 1993-09-10 1995-04-12 Radio Frequency Systems Inc. Circularly polarized microcell antenna
US5818397A (en) * 1993-09-10 1998-10-06 Radio Frequency Systems, Inc. Circularly polarized horizontal beamwidth antenna having binary feed network with microstrip transmission line
US5521610A (en) * 1993-09-17 1996-05-28 Trimble Navigation Limited Curved dipole antenna with center-post amplifier
US5589843A (en) * 1994-12-28 1996-12-31 Radio Frequency Systems, Inc. Antenna system with tapered aperture antenna and microstrip phase shifting feed network
US6072432A (en) * 1997-05-02 2000-06-06 Radio Frequency Systems, Inc. Hybrid power tapered/space tapered multi-beam antenna
US6072439A (en) * 1998-01-15 2000-06-06 Andrew Corporation Base station antenna for dual polarization
EP1391009A1 (en) * 2000-04-14 2004-02-25 Gregory Daniel Hall Plate dipole antenna
EP1391009A4 (en) * 2000-04-14 2004-12-22 Gregory Daniel Hall Plate dipole antenna
US20070063916A1 (en) * 2005-09-21 2007-03-22 Malone Bernard L Iii Versatile antenna for wireless communications
US20090096704A1 (en) * 2007-09-17 2009-04-16 Physical Sciences, Inc. Non-Cutoff Frequency Selective Surface Ground Plane Antenna Assembly
US8451190B2 (en) 2007-09-17 2013-05-28 Physical Sciences, Inc. Non-cutoff frequency selective surface ground plane antenna assembly
US8004474B2 (en) * 2007-09-17 2011-08-23 Physical Sciences, Inc. Non-cutoff frequency selective surface ground plane antenna assembly
US20120098726A1 (en) * 2007-10-05 2012-04-26 Kathrein-Werke Kg Supply network for a group antenna
US9531083B2 (en) * 2007-10-05 2016-12-27 Kathrein-Werke Kg Supply network for a group antenna
CN101816101A (en) * 2007-10-05 2010-08-25 凯瑟雷恩工厂两合公司 Supply network for a group antenna
US8384605B2 (en) 2009-02-25 2013-02-26 Sikorsky Aircraft Corporation Wireless communication between a rotating frame of reference and a non-rotating frame of reference
EP2224536A1 (en) * 2009-02-25 2010-09-01 Sikorsky Aircraft Corporation Wireless communication between a rotating frame of reference and a non-rotating frame of reference
US20100216398A1 (en) * 2009-02-25 2010-08-26 Alan Matthew Finn Wireless communication between a rotating frame of reference and a non-rotating frame of reference
US8106846B2 (en) 2009-05-01 2012-01-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna
US8618998B2 (en) 2009-07-21 2013-12-31 Applied Wireless Identifications Group, Inc. Compact circular polarized antenna with cavity for additional devices
US8378903B2 (en) 2009-09-09 2013-02-19 L-3 Communications Integrated Systems L.P. Antenna apparatus and methods of use therefor
US20110057848A1 (en) * 2009-09-09 2011-03-10 Baucom Charlie E Antenna apparatus and methods of use therefor
US8779971B2 (en) 2010-05-24 2014-07-15 Robert J. Wellington Determining spatial orientation information of a body from multiple electromagnetic signals
US9719788B2 (en) 2010-05-24 2017-08-01 Robert J. Wellington Determining spatial orientation information of a body from multiple electromagnetic signals
EP2933877A1 (en) * 2014-04-15 2015-10-21 R.A. Miller Industries, Inc. Uhf satellite communications antenna
US9543657B2 (en) 2014-04-15 2017-01-10 R.A. Miller Industries, Inc. UHF satellite communications antenna
US10644384B1 (en) 2018-05-07 2020-05-05 Virtual Em Inc. Zero weight airborne antenna with near perfect radiation efficiency utilizing conductive airframe elements and method

Similar Documents

Publication Publication Date Title
US3701157A (en) Helicopter uhf antenna system for satellite communications
US4184163A (en) Broad band, four loop antenna
US3638224A (en) Stacked array of omnidirectional antennas
US4878062A (en) Global position satellite antenna
US3713167A (en) Omni-steerable cardioid antenna
US3838429A (en) Miniaturized transmission line top loaded monopole antenna
US4030100A (en) Multipurpose submarine antenna
US3781895A (en) Combined pitot tube and antenna
US4129871A (en) Circularly polarized antenna using slotted cylinder and conductive rods
US4907008A (en) Antenna for transmitting circularly polarized television signals
Bailey Broad-band half-wave dipole
US5323168A (en) Dual frequency antenna
US4555708A (en) Dipole ring array antenna for circularly polarized pattern
GB924145A (en) Improvements in or relating to antenna structure
US2998604A (en) Guy wire loaded folded antenna
US4031539A (en) Broadband turnstile antenna
US3299429A (en) Vertical array of folded dipoles adjustably mounted on support mast
US3702479A (en) Space diversity antenna system for uhf satellite communications for helicopters
US3546705A (en) Broadband modified turnstile antenna
US2644090A (en) Recessed slot antenna
US2726388A (en) Antenna system combinations and arrays
US2643334A (en) Turnstile antenna
US4431996A (en) Missile multi-frequency antenna
EP0058195A1 (en) Decoupling means for monopole antennas and the like
US4451829A (en) Circularly polarized antenna formed of a slotted cylindrical dipole