US2224646A - Electric control system for tabulating cards, documents, and the like - Google Patents

Electric control system for tabulating cards, documents, and the like Download PDF

Info

Publication number
US2224646A
US2224646A US138468A US13846837A US2224646A US 2224646 A US2224646 A US 2224646A US 138468 A US138468 A US 138468A US 13846837 A US13846837 A US 13846837A US 2224646 A US2224646 A US 2224646A
Authority
US
United States
Prior art keywords
code
frequency
markings
documents
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US138468A
Inventor
William F Friedman
Vernon E Whitman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US138468A priority Critical patent/US2224646A/en
Application granted granted Critical
Publication of US2224646A publication Critical patent/US2224646A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3412Sorting according to other particular properties according to a code applied to the object which indicates a property of the object, e.g. quality class, contents or incorrect indication

Definitions

  • the present invention relates to a code sysdeal primarily with a code system which cmtem and to an electric control system cooperating ploys regularly recurring variations in light rewith such code system for a variety of purposes. flectivity and with an electric control system
  • present code system and electric control system The electric system is designed to scan the for sorting a large variety of' objects.
  • it code by means of a suitable photoelectric demay be employed for sorting cards bearing items vice or by means of some other device responsive of information, represented by the present code to variations in the particular p p p rty 15 system or for reproducing the information 943- empl y d.
  • the present system may also be determined y Such Codes e enerate in the employed for sorting checks or other documents cu t of the scanning device and in the circuits upon which the sort to which each check or associated therewith.
  • the co System f the :0 document or card belongs is represented by a Present invention Permits 0f 8- large number 01 code of the present code system.
  • the present c e 1' markings, each peculiar to itself, and electrical system may also be employed for patentach having the prop of uc g in the ing or for otherwise operating upon objects whi h electric system a frequency or a set offrequencies 2 are already so constructed that they possess a pec to i e electrical syste which regularly recurring physical quality in accordmay have one or more photoelectric cells or ance with the present code.
  • relarelays associated with these circuits may be tively long and narrow zone on a surface of each mad t control t operation of a s rt n mech- 40 of such cards, documents, or the like may be imani m o th a large n mber of objects, such as printed with series of markings which will imchecks or other documents, record cards, or the part to said zone a periodic variation in the rel or p ka e may be passed over the scanflectivity to such zone. It will be appreciated ning devices, be scanned thereby, and then sortthat this variation in reflectivity can be imed into groups, classes, or sorts. 45 parted to the surface of the document in a num- When the present code system is employed for her of ways.
  • the variation may be secured by r or n a n t bula lng cards, the same printing or engraving with ordinary or special Photoelectric yst m may be employed to coninks of any desired color, or even with the use.
  • the face varied by calendering or other processes well same cards may be passed through the photoknown in the paper making industry.
  • the basic principle underlying the several forms of the printed code resides in provi ng upon a surface of the check, document, card, wrapper, or package, or any other article, an elongated and relatively narrow zone bearing printed marks thereon which are so distributed that alternate relatively light and relatively dark spaces are obtained, these being arranged in accordance with a predetermined frequency or frequencies for each coder
  • the current induced in the photoelectric device and in; the circuits associated therewith will vary in. accordance with such markings and generate an alternating current having frequency components characteristic of such markings.
  • control relay or relays which are specifically responsive to the frequency or frequencies included by such marking .will be put into operative condition and the same will then set into operation the mechanism under its control, whether it be a sorting, a printing, or reproducing mechanism, or the like.
  • Fig. 2 is a schematic showing of the control system
  • Fig. 3 shows Fig. 4 shows another form of the electric sysone form of the electric system
  • Fig. 5 constitutes a diagrammatic illustration of a sorting apparatus that may be employed herein and operated by the present electrical system.
  • code markings illustrating the praent code system are shown in Fig. 1 of the drawing.
  • One form of code marking comprises a 'series of spaced printed bars or stripes, applied preferably near one edge of the'document or card or the like It, as shown in Fig. 1a.
  • the unprinted or light spaces I! will reflect incident light, whereas thedark or printed stripes or bars II will absorb incident light.
  • the light spaces l2 are all of the same width and the printed bars it are all of the same width.
  • the basic or fundamental periodicity of this marking is determined by the sum of these two dimensions and by the rate of scanning; i. e., the velocity with which the documentv is caused to pass the photocell.
  • the sum ofthe I two dimensions just referred to is equal tothe distance between the centers of adjacent black, or white bars. are obtained by varying the fundamental frequency by varying the sum of these two dimensions, and this may be done either by varyingthe width of the printed bar while maintaining the width of the light space I 2 constant or vice versa Other codes in the same system 2,224,04 7 v e V .or by varying. both the width of the light space I! and of the printed bar It.
  • Fig. 1a may, therefore, for some purposes rely for differentiation merely upon the fundamental frequency, and for this purpose will merely employs; system of codes in which the sum of thewidtlr'of adjacent light and dark spaces vary from one code to the next;
  • both the fundamental and selected harmonic frequencies are utilized, and in such casesthe codes differ from each other either in the sum of the widths of the adjacent light and dark spaces or in the ratio of 'the adjacent light and dark spaces or in the ratio or the adjacent light and dark spaces, or in both respects.
  • code markings may be resolved into their spectra and that these spectra contain characteristic elements in addition to the fundamental frequency .termined by the distance between the peaks of a pair of adjacent dark spaces or light spaces which distance is varied from code to code.
  • Fig. 1c shows another check or card or other document or package employing variable density type of marking.
  • the frequency is determined by the distance between the points 24 and 26 which are adjacent lines of maximum density, the printing upon the space between these p n s be ming less and less dense until the point 28, half way between 24 and 26, is reached, where there may not be any marking at all, and constitutes the point of maximum reflectivity.
  • markings are disposed at or near the edge of the document, it will be understood that such markings may be disposed along any suitable line, provided that in each case, the code zone contains a sufiicient number of cycles. The number of cycles required depends upon the refinements of the systerm. In general, it may be said that for practical operation a minimum of ten cycles is de- 'sirable.
  • Fig. 1d shows a check, card, or similar article 30 bearing two code zones 32 and 34.
  • Each of these zones may be of any of the types shown in Fig. la, Fig. lb, or 'Fig. 10. These two zones differ from each other, however, in the fundamental frequency, and they cooperate with each other and with the photoelectric system in order to determine the nature of the operation of the controlled sorting, tabulating, printing, or reproducing mechanism.
  • each item of information will be represented thereon by a columnar zone bearing the imprinted code marking thereon, and these zones may be adjacent to each other.
  • Fig. 1e shows a portion of a tabulating card ll having the columnar zones l3, some of which bear the markings l5 representing in coded form the desired items of information.
  • the information contained therein can be secured from all zones simultaneously by simultaneous scanning with the required number of scanning systems; or, a single scanning system maybe employed, and the different zones scanned successively.
  • the code zone is designed to reflect incident light from a constant source of light onto a photoelectric cell or similar sensitive device, it will be understood that the same invention may be employed in connection with transparent or translucent articles, and the present code will vary the amount of light transmitted therethrough.
  • the electric system and its manner of cooperation with the documents bearing the codes are schematically illustrated in Fig. 2.
  • the document or other coded article 36 is passed over the scanning platform 38 which is provided with a slot 40.
  • Light from the source.” is directed upon the slot and is reflected from the document passing thereover onto the scanning device, diagrammatically represented by the photoelectric cell 44.
  • the cell is electrically connected in any suitable manner to a plurality of control circuits, each comprising an amplifier 48, a frequency selector or filter 48, and a control relay 50.
  • control relay 50' then serves to control the operation of any desired mechanism as set forth herelnabove.
  • the frequency selectors or filter circuits 48 in each control circuit is adjusted to a! preselected frequency, differing from the frequency of the remaining selectors or filters in the system.
  • check willsub- B will be determined by the harmonic conten of the voltage generated in the scanning circuit as-will be illustrated below. Two of the four necessary relays have been mentioned; the others are tuned to 200 and 220 cycles and are associated with the 100 and 110 cycle master relays, respectively.
  • the length of the slot 40 should preferably be equal to the width of the markings.
  • the slot should, however, be as narrow as is consistent with sufficient light reaching the photocell.
  • Fig: 3 shows the detail of one electric system that may be employed herein, it being understood, however, that such circuits may be varied as desired so long as it embodies a photoelectric device and a suitable number of control circuits, each containing amplifying means, frequency selecting means, and a control relay, as shown in Fig. 2.
  • a In Fig. 3 the variable current induced tubes from the battery 46.
  • Each of these circuits comprises suitable amplifying devices and suitable filteiing or frequency selecting devices, and a control relay. If desired, any type of rectifying device may be interposed between the control relay and the remainder of the circuit.
  • the circuit shown at the top of Fig. 3 which is illustrative of the remaining circuits, comprises multi-electrode tubes 50 and- 54 and interposed between them are the tuned coupling circuits C L C L, C, tuned.
  • the rectifier is illustrated by the two electrode tube 56, it being understood that this is merely illustrative of any suitable rectifier, it being further understood that A. C. relays may be employed .and the rectifier may then be omitted.
  • the control relay is indicated at J which is actuated in response to the frequency determined by its circuit and by making or breaking contact 58, it serves to control the nature of the oper- Darticular relay ation of the printing, sorting, or reproducing mechanism with which the system is employed.
  • An additional tuned circuit C, L 0 L, C is also interposed between tube 54 and the rectifier It.
  • the cathodes K of all'tubes are shown as grounded and suitable operating points on the tube characteristics batteries B", B", etc,
  • the tubes together with the coupling system act as amplifiers.
  • the coupling condensers 0 0" should be chosen so that the tuned circuits will be coupled slightly less than transfer of energy (amplification) with'the maximum sharpness at the tuned circuits. With the coupling system shown in Fig. 3, no inductive coupling is intended between the coils. It will be understood. however, that any other suitable type of tuned coupling may be employed.
  • This voltage will be further amplified as it passes through the tuned circuits and tubes tuned to its frequency, and a rectified voltage appearing across R will cause J to close its contact 58, thus starting the chain of mechanical events which will cause the check or other document to be deposited ln the selected receptacle or to'have other operations performed.
  • the voltage of frequency fl appearing on the grids of tubes 50 Ill, etc. will be attenuated so as to be substantially zero upon reaching R, etc., and, therefore, relays J, etc., will remain open.
  • Fig. 3 also illustrates the manner in which a similar electric control system operates when codes differing from each other in their harmonic content are employed.
  • the first control circuit of the control relay J is tuned to the fundamental frequency, while the remaining control circuits are each tuned to a selected harmonic frequency.
  • the relay J is a master relay and the other relays are auxiliary relays.
  • the operation sought to be performed is then controlled by thecooperation of a master relay and one or more auxiliary relays. If desired the auxiliary relays may be such that they function only when deenergized.
  • the number of control .circuits as shown in Fig. 3 may be multiplied are insured by the grid bias sources 66 and 68, the two code zones being individually scanned by the photocells I and 12.
  • each cell is .the same as that shown in Figs. 2 and 3.
  • Each article, document, or the like now energizes a selected control relay J in one system and a selected control relay M in the second system.
  • These two relays may now control th operation of the sorting, printing, or the like in a manner peculiar to their combination.
  • the two code zones shown in document 14 in Fig. 4 may be disposed successively if desired so that the relays operated thereby come into successive operation, and thus when this is employed for sorting into a large number of sorts the first relay may direct th travel of the document into a predetermined direction common to a group of sorts, and the second relay will direct the document or card into the selected sort.
  • Fig. 5 is a diagrammatic showing of a sorting mechanism such as that shown in patent numbered 2,020,925 and which may be employed herein in cooperation with the present electrical system.
  • the platform 38 is shown extended and is provided'with pivotal gates Ill secured to the heads of rotating pins I42.
  • the lower end of each pin I42 may be rotated by links Ill which in turn are operated by electro-magnets.
  • the corresponding 1 gate is deflected as shown at 9 thereby deflecting and directin the card or article 30 into the channel defined by the guides I41.
  • the compartments having trap doors which are also operated by electro-magnets under the control of the control relays.
  • Apparatus classes comprising a support for moving documents, photo-electric scanning devices operating in response to imprinted code markings on said documents to generate persistent electrical impulses having frequency characteristics corresponding to said markings; the documents belonging to one class bearing code markings which "cooperate with said scanning devices to give rise to persistent electrical impulses having one frequency characteristic distinguishing said class from some classes and another frequency characteristic distinguishing said class from the remaining classes; a pluralityof tuned circuits connected to said scanning devices, each circuit being tuned to a different frequency characteristic,
  • Compartments 'I II are dis-- for sorting documents intooperation.
  • Apparatus for sorting documents into classes comprising a support for moving documents, photo-electric scanning devices operating in response to imprinted code markings on said documents to generate persistent electrical impulses having frequency characteristics corresponding to said markings; the documents belonging to one class bearing code markings which cooperate with said scanning devices to give rise to persistent electrical impulses having one frequency characteristic distinguishing. said class from some classes and another frequency characteristic distinguishing said class from the remaining classes; a plurality of tuned circuits, each circuit being tuned to a different frequency characteristic and means selectively operable by a selective pair of such circuits to direct the documents belonging to each class in a path distinctive to each class.
  • Apparatus of the class described comprising scanning mechanism responsive to recurrent impulses having variable frequency characteristics, means for passing before said scanning means tabulating cards or the like having code markings thereon and causing said scanning mechanism to generate persistent electrical impulses having various frequency spectra; the tabulating cards belonging to one class bearing code markings which give rise to a spectrum characteristic of said class and different from the spectra produced by the code markings borne by the tabulating cards belonging to other classes; and
  • Apparatus ofthe class described comprising a support for moving tabulating cards or the like, photo-electric scanning devices operating in response to imprinted code markings. on said cards to generate persistent electrical impulses having frequency characteristics corresponding to said markings, the cards belonging to onevnauon E.'WHI'IMAN.

Description

Dec. 10, 1940 w. F. FRIEDMAN .ETAL. 2
ELECTRIC QONTROL SYSTEM FOR TABULATING CARDS, DOCUMENTS, AND THE LIKE Filed April 22, 19s? 2 Sheets-Sheet 1.
Dec. 10, 1940. w. F. FRIEDMAN EIIAL 2,224,645
ELECTRIC CONTROL SYSTEM FOR msum'rme CARDS nbquunms, mm THE LIKE Filed April 22,- 1937 2Sheet's-Shet 2 amen Wo f's Patented Dec. 10,1940 r i UNI/TED 1 STATES PATENT OFFICE L ELECTRIC CONTROL SYSTEM FOR .TABU
. LATING CARDS, DOCUMENTS, AND THE William F. Friedman, Washington, D. 0., and 1gerrnon E. Whitman, Bayaide, Long Island,
Application April 22, 937, Serial'No. 138,468
. whims. (c1.2o9-=-111) The present invention relates to a code sysdeal primarily with a code system which cmtem and to an electric control system cooperating ploys regularly recurring variations in light rewith such code system for a variety of purposes. flectivity and with an electric control system The present invention employs a regularly re= which is operable by such variations; it will be curring variation in a physical property of a seunderstood, however, that regularly recurring 5 ries of objects for the purpose of controlling a variations of other physical qualities or propervariety of operations that maybe sought to be ties, such asset forth above, may be employed performed upon the objects. The operation that in the present code system and may also be emmay be controlled by the present system may be ployed to cooperate with the electric control sys- 10 of a wide variety and for the purpose of illustrat tem so as to control the operations which are to 10 ing the invention, we may mention the use of the be performed upon the objects or articles. present code system and electric control system The electric system is designed to scan the for sorting a large variety of' objects. Thus, it code by means of a suitable photoelectric demay be employed for sorting cards bearing items vice or by means of some other device responsive of information, represented by the present code to variations in the particular p p p rty 15 system or for reproducing the information 943- empl y d. and a result of u scanning P- pearing on such cards or for translating such eration, alternating currents of frequencies P information. The present system may also be determined y Such Codes e enerate in the employed for sorting checks or other documents cu t of the scanning device and in the circuits upon which the sort to which each check or associated therewith. The co System f the :0 document or card belongs is represented by a Present invention Permits 0f 8- large number 01 code of the present code system. The present c e 1' markings, each peculiar to itself, and electrical system may also be employed for sorteach having the prop of uc g in the ing or for otherwise operating upon objects whi h electric system a frequency or a set offrequencies 2 are already so constructed that they possess a pec to i e electrical syste which regularly recurring physical quality in accordmay have one or more photoelectric cells or ance with the present code. 1 similar scanning devices, has a plurality of con- Among the physical properties that ma be trol circuits each of which is tuned to a predeemployed in the present code system and in the termined frequency that corresponds o p present electric control system are light refleccific code marking while the frequencies that 30 tivity, light transmissivity, electrical conduc m be induced by o er co e markings are tivity, magnetic permeability, and the dielectric filtered Out 01 attenuated. Each circuit constant. therefore, made to control the operation of a Other objects such as checks, documents, or uit le d vi e, such as a magnet or a relay, or
5 tabulating cards, or packages, or the wrappers the like. an the r. hereinafter called the therefor, which do not already possess aregularcontrol relay y be made to control the p- 1y recurring variation in any one of these properation of any typ f mechanism desired. and erties may have such variation imparted to them to perform any desired p T the by a variety of means. For example, a. relarelays associated with these circuits may be tively long and narrow zone on a surface of each mad t control t operation of a s rt n mech- 40 of such cards, documents, or the like may be imani m o th a large n mber of objects, such as printed with series of markings which will imchecks or other documents, record cards, or the part to said zone a periodic variation in the rel or p ka e may be passed over the scanflectivity to such zone. It will be appreciated ning devices, be scanned thereby, and then sortthat this variation in reflectivity can be imed into groups, classes, or sorts. 45 parted to the surface of the document in a num- When the present code system is employed for her of ways. The variation may be secured by r or n a n t bula lng cards, the same printing or engraving with ordinary or special Photoelectric yst m may be employed to coninks of any desired color, or even with the use. of trol the operation of a r n mechanism-winch inks ordinarily invisible to the human eye, Or, will sort the cards in groups or sorts correspond- 50 the color of the document may be left un-' ing to one or more items of information appearchanged, and the mattness or gloss of the suring on the card in code form. If desired, the face varied by calendering or other processes well same cards may be passed through the photoknown in the paper making industry. electric'system and the relays associated there- -The remainder of the present specification will with may control the operation of a printing 5 mechanism which serves to translate one or more items of information appearing on thesecards in coded form. The same system may also be employed, if desired, for operating a reproducing will be described in greater detail in a later portion of the present specification. The basic principle underlying the several forms of the printed code resides in provi ng upon a surface of the check, document, card, wrapper, or package, or any other article, an elongated and relatively narrow zone bearing printed marks thereon which are so distributed that alternate relatively light and relatively dark spaces are obtained, these being arranged in accordance with a predetermined frequency or frequencies for each coder When such a zone is scanned by a photoelectric device, the current induced in the photoelectric device and in; the circuits associated therewith will vary in. accordance with such markings and generate an alternating current having frequency components characteristic of such markings. With av given. code marking, therefore, the control relay or relays which are specifically responsive to the frequency or frequencies included by such marking .will be put into operative condition and the same will then set into operation the mechanism under its control, whether it be a sorting, a printing, or reproducing mechanism, or the like.
A clearer and more detailed understanding of the present invention may be had from the accompanying drawing andthe following specification, which illustrates several embodiments of the present invention but does not serve to limit the scope of the invention. I
In the drawing- Fig. 1 illustrates several code systems;
Fig. 2 is a schematic showing of the control system;
Fig. 3 shows Fig. 4 shows another form of the electric sysone form of the electric system;
' tem.
Fig. 5 constitutes a diagrammatic illustration of a sorting apparatus that may be employed herein and operated by the present electrical system.
The several types of code markings illustrating the praent code system are shown in Fig. 1 of the drawing. One form of code marking comprises a 'series of spaced printed bars or stripes, applied preferably near one edge of the'document or card or the like It, as shown in Fig. 1a. The unprinted or light spaces I! will reflect incident light, whereas thedark or printed stripes or bars II will absorb incident light. In the code shown in Fig. 1a the light spaces l2 are all of the same width and the printed bars it are all of the same width. The basic or fundamental periodicity of this marking is determined by the sum of these two dimensions and by the rate of scanning; i. e., the velocity with which the documentv is caused to pass the photocell. The sum ofthe I two dimensions just referred to is equal tothe distance between the centers of adjacent black, or white bars. are obtained by varying the fundamental frequency by varying the sum of these two dimensions, and this may be done either by varyingthe width of the printed bar while maintaining the width of the light space I 2 constant or vice versa Other codes in the same system 2,224,04 7 v e V .or by varying. both the width of the light space I! and of the printed bar It. While for many purposa the code system as just described will yield a sumcient numberof frequencies, substantially the same system may be employed to yield a still greater number of frequencies by providing an additional variation in which the sum of the width of adjacent light anddark spaces l2 and i4 is maintained constant but in which the ratio of the width of the light space with relation to the dark space is varied. Such markings or codes will all yield the same fundamental frequency but the harmonic content of one suchv code differs from the harmonic content of another such code by reason of the fact that the amplitudes of harmonic frequencies depend upon this ratio. Moreover, with a given ratio one or more of the harmonic frequencies drop out, while with another ratio, another harmonic frequency or another group of harmonic frequencies drop out. These zero amplitude harmonics may be employed to cooperate with a fundamental frequency for the control of a desired operation. The code system shown in Fig. 1a may, therefore, for some purposes rely for differentiation merely upon the fundamental frequency, and for this purpose will merely employs; system of codes in which the sum of thewidtlr'of adjacent light and dark spaces vary from one code to the next;
and for other purposes where a larger number of frequencies is desired for the purpose of controlling a greater variation in the operation of sorting, printing, or reproducing mechanisms, both the fundamental and selected harmonic frequencies are utilized, and in such casesthe codes differ from each other either in the sum of the widths of the adjacent light and dark spaces or in the ratio of 'the adjacent light and dark spaces or in the ratio or the adjacent light and dark spaces, or in both respects.
As an illustration of the above mentioned dependence of harmonic content upon the ratio of light to dark area widths, the following examples are stated without proof. (The proof involves a branch of higher mathematics known as "Fourier analysis and is omitted in the interest of simplification.) If the width of the dark band equals that of the light one, all even harmonics have zero amplitude. This means that if the document having such markings was passed over a photocell (covered by a table with a slit to in Fig. 2 narrow with respect to the dimensions of the markings) at the rate of 100 black bars per second, that a voltage .would be generated in the outputof the photocell having 100, 300, 500, and 700 cycle components. The frequencies of 200,
400, and 600 cycles would have practically no voltage. Furthermore, if the sensitivity of the system was such that the amplitude of the 100 cycle component was 4 volts, then the 300 cycle amplitude would be approximately 1.3 volts, and the 500 cycle component 0.8 volt. If, on the other hand, the dark bar had been 50% wider than the light one, the voltages at the various frequencies would have been as follows: 4.0 volts of 100 cycles; 1.2 volts of 200 cycles; 0.8 volt of 300 cycles, 1.0 volt of 400 cycles, and 0.8 volt of 500 cycles. The distinctions between the two examples are obvious: it is the purpose of the electrical elements in the system to allow such distinctions to cause different operations to be performed on the corresponding documents. It is obvious from the above analysis that ,code markings may be resolved into their spectra and that these spectra contain characteristic elements in addition to the fundamental frequency .termined by the distance between the peaks of a pair of adjacent dark spaces or light spaces which distance is varied from code to code.
Fig. 1c shows another check or card or other document or package employing variable density type of marking. Inthis case the frequency is determined by the distance between the points 24 and 26 which are adjacent lines of maximum density, the printing upon the space between these p n s be ming less and less dense until the point 28, half way between 24 and 26, is reached, where there may not be any marking at all, and constitutes the point of maximum reflectivity.
While, as shown here, these markings are disposed at or near the edge of the document, it will be understood that such markings may be disposed along any suitable line, provided that in each case, the code zone contains a sufiicient number of cycles. The number of cycles required depends upon the refinements of the systerm. In general, it may be said that for practical operation a minimum of ten cycles is de- 'sirable.
Fig. 1d shows a check, card, or similar article 30 bearing two code zones 32 and 34. Each of these zones may be of any of the types shown in Fig. la, Fig. lb, or 'Fig. 10. These two zones differ from each other, however, in the fundamental frequency, and they cooperate with each other and with the photoelectric system in order to determine the nature of the operation of the controlled sorting, tabulating, printing, or reproducing mechanism.
In the case of tabulating cards, each of which carries several items of information, each item of information will be represented thereon by a columnar zone bearing the imprinted code marking thereon, and these zones may be adjacent to each other.
Fig. 1e shows a portion of a tabulating card ll having the columnar zones l3, some of which bear the markings l5 representing in coded form the desired items of information.
When multiple code zones exist, as shown in Figs. 1d and 1e, the information contained therein can be secured from all zones simultaneously by simultaneous scanning with the required number of scanning systems; or, a single scanning system maybe employed, and the different zones scanned successively.
While in the preferred form of the invention as thus far described. the code zone is designed to reflect incident light from a constant source of light onto a photoelectric cell or similar sensitive device, it will be understood that the same invention may be employed in connection with transparent or translucent articles, and the present code will vary the amount of light transmitted therethrough.
The electric system and its manner of cooperation with the documents bearing the codes are schematically illustrated in Fig. 2. The document or other coded article 36 is passed over the scanning platform 38 which is provided with a slot 40. Light from the source." is directed upon the slot and is reflected from the document passing thereover onto the scanning device, diagrammatically represented by the photoelectric cell 44. The cell is electrically connected in any suitable manner to a plurality of control circuits, each comprising an amplifier 48, a frequency selector or filter 48, and a control relay 50. The
actuation or energization of the control relay 50' then serves to control the operation of any desired mechanism as set forth herelnabove. The frequency selectors or filter circuits 48 in each control circuitis adjusted to a! preselected frequency, differing from the frequency of the remaining selectors or filters in the system.
It will now be understood that with a prederelay or combination of control relays will be energized and the desired operation determined by the code markings on the document will be performed. ,As a specific example of the action of such a'system, let us consider the electrical differentiation between checks which have been so marked that they are to be sorted into groups EA, EB, DA, and DB. In accordance with any practical embodiment of this invention, all checks will be assumed to be scanned at a constant'rate, irrespective of the markings they may have. In our specific example it-will be assumed that checks EA and EB have been marked with coding bars whose distances between centers ls equal in the two cases, giving rise therefore to equal fundamental frequencies when scanned, and that these spacings are such that this fundamental frequency will be 100 cycles lneach case. 100 cycles mayftherefore, be said to be characteristic of all checks which are to be filed or sorted under the letter E. All checks for sorting under D, however, will be given a code marking which will have av fundamental of 110 cycles, whether the checks are intended for sub-sort A or sub-sort B. The differentia- .tion between the sub-sorts A and B either in case E or in .case D will be made on the basis of the I harmonic content of the markings. Let it be further assumed that allchecks intended for sub-sort A- are marked with bars in which the width of the dark bar is always equal to that of the light one. In accordance with the analysis of this case given in a paragraph above, the amplitude of all even harmonics will be zero. Checks intended forsub-sort B may be given markings in which the dark bar is 50% wider will be referred to as the master relays of sort E and D respectively. Any check which passes the scanning mechanism so as to generate a voltage or current with a 100 cycle component,will energize the E master relay and be directed toward primary sort E, irrespective of the higher sequently be passed on to sub-sort A harmonic contents. Whether the check willsub- B will be determined by the harmonic conten of the voltage generated in the scanning circuit as-will be illustrated below. Two of the four necessary relays have been mentioned; the others are tuned to 200 and 220 cycles and are associated with the 100 and 110 cycle master relays, respectively.
These additional relays will be recognized as be-- ing tuned to the second harmonics of master relays E and D. Let us assume now that check EA passes the scann lng mechanism; master re- .lay E is energized because of the 100 cycle voltage present; there is, however, no 200 cycle component available to actuate the relay tuned to this harmonic; the check will, therefore, pass on to a place corresponding to that combination. If, on the other hand, check EB had passed, a voltage of 200 cycles would have been present in addition to the 100 cycle one. and the check will pass on to a place corresponding to the combined action of master relay E and sub-relay B. -A similar analysis will show how the relay energizing is unique for each of the check markings considered. Mechanisms by which these different relay actions-may bemade to actuate corresponding sorting operations are well known in the art and constitute no part of the present invention. Suffice it to say that the essentials for distinguishing between checks EA, EB, DA, and DB have been derived above, and they may, therefore, be sorted into classifications EA, EB, DA, or DB, as the case may be.
The length of the slot 40 should preferably be equal to the width of the markings. The slot should, however, be as narrow as is consistent with sufficient light reaching the photocell.
Fig: 3 shows the detail of one electric system that may be employed herein, it being understood, however, that such circuits may be varied as desired so long as it embodies a photoelectric device and a suitable number of control circuits, each containing amplifying means, frequency selecting means, and a control relay, as shown in Fig. 2. a In Fig. 3, the variable current induced tubes from the battery 46. Each of these circuits comprises suitable amplifying devices and suitable filteiing or frequency selecting devices, and a control relay. If desired, any type of rectifying device may be interposed between the control relay and the remainder of the circuit.
More particularly, the circuit shown at the top of Fig. 3 which is illustrative of the remaining circuits, comprises multi-electrode tubes 50 and- 54 and interposed between them are the tuned coupling circuits C L C L, C, tuned.
to a predetermined frequency corresponding to the fundamental frequency of a selected code. The rectifier is illustrated by the two electrode tube 56, it being understood that this is merely illustrative of any suitable rectifier, it being further understood that A. C. relays may be employed .and the rectifier may then be omitted. The control relay is indicated at J which is actuated in response to the frequency determined by its circuit and by making or breaking contact 58, it serves to control the nature of the oper- Darticular relay ation of the printing, sorting, or reproducing mechanism with which the system is employed. An additional tuned circuit C, L 0 L, C is also interposed between tube 54 and the rectifier It. The cathodes K of all'tubes are shown as grounded and suitable operating points on the tube characteristics batteries B", B", etc, The tubes together with the coupling system act as amplifiers. The coupling condensers 0 0"", should be chosen so that the tuned circuits will be coupled slightly less than transfer of energy (amplification) with'the maximum sharpness at the tuned circuits. With the coupling system shown in Fig. 3, no inductive coupling is intended between the coils. It will be understood. however, that any other suitable type of tuned coupling may be employed.
What has Just been said regarding the control circuit beginning with tube 50 which is tuned to a frequency fl is equally applicable to the remaining control circuits which are indicated by tubes 50, 50', etc., except that the circuits following tube 50 are tuned to 12, etc. Relays J J, etc., constitute the control relays, each responsive to a preselected frequency.
To further illustrate the action of the device considered so far, let us assume that the relays J are normally open. This is the condition when the voltage drop across R R, etc., is zero, which condition will automatically be met when the light entering it is not varying, as when no bars are passing slot 40 in Fig. 1. Suppose, now, that a check or other document I 0 is caused to pass the slot at such arate that the light is varied from maximum to minimum back to maximum (one complete cycle) fl times per second. This will cause a voltage of frequency II to be impressed on the grids of tubes 50, W 50, etc. This voltage will be further amplified as it passes through the tuned circuits and tubes tuned to its frequency, and a rectified voltage appearing across R will cause J to close its contact 58, thus starting the chain of mechanical events which will cause the check or other document to be deposited ln the selected receptacle or to'have other operations performed.
The voltage of frequency fl appearing on the grids of tubes 50 Ill, etc., will be attenuated so as to be substantially zero upon reaching R, etc., and, therefore, relays J, etc., will remain open.
Fig. 3 also illustrates the manner in which a similar electric control system operates when codes differing from each other in their harmonic content are employed. In this case the first control circuit of the control relay J is tuned to the fundamental frequency, while the remaining control circuits are each tuned to a selected harmonic frequency. The relay J is a master relay and the other relays are auxiliary relays. The operation sought to be performed is then controlled by thecooperation of a master relay and one or more auxiliary relays. If desired the auxiliary relays may be such that they function only when deenergized. The number of control .circuits as shown in Fig. 3 may be multiplied are insured by the grid bias sources 66 and 68, the two code zones being individually scanned by the photocells I and 12. The electrical system associated with each cell is .the same as that shown in Figs. 2 and 3. Each article, document, or the like, now energizes a selected control relay J in one system and a selected control relay M in the second system. These two relays may now control th operation of the sorting, printing, or the like in a manner peculiar to their combination.
The two code zones shown in document 14 in Fig. 4 may be disposed successively if desired so that the relays operated thereby come into successive operation, and thus when this is employed for sorting into a large number of sorts the first relay may direct th travel of the document into a predetermined direction common to a group of sorts, and the second relay will direct the document or card into the selected sort.
Fig. 5 is a diagrammatic showing of a sorting mechanism such as that shown in patent numbered 2,020,925 and which may be employed herein in cooperation with the present electrical system. The platform 38 is shown extended and is provided'with pivotal gates Ill secured to the heads of rotating pins I42. The lower end of each pin I42 may be rotated by links Ill which in turn are operated by electro-magnets. Thus .when the .corresponding electro-magnet is ener-' gized the corresponding 1 gate is deflected as shown at 9 thereby deflecting and directin the card or article 30 into the channel defined by the guides I41. posed between and below the guides I", the compartments having trap doors which are also operated by electro-magnets under the control of the control relays. I
Having thus described\ our invention, we claim:
1. Apparatus classes, comprising a support for moving documents, photo-electric scanning devices operating in response to imprinted code markings on said documents to generate persistent electrical impulses having frequency characteristics corresponding to said markings; the documents belonging to one class bearing code markings which "cooperate with said scanning devices to give rise to persistent electrical impulses having one frequency characteristic distinguishing said class from some classes and another frequency characteristic distinguishing said class from the remaining classes; a pluralityof tuned circuits connected to said scanning devices, each circuit being tuned to a different frequency characteristic,
55 and means operable by such circuits to direct Compartments 'I II are dis-- for sorting documents intooperation.
2. Apparatus for sorting documents into classes, comprising a support for moving documents, photo-electric scanning devices operating in response to imprinted code markings on said documents to generate persistent electrical impulses having frequency characteristics corresponding to said markings; the documents belonging to one class bearing code markings which cooperate with said scanning devices to give rise to persistent electrical impulses having one frequency characteristic distinguishing. said class from some classes and another frequency characteristic distinguishing said class from the remaining classes; a plurality of tuned circuits, each circuit being tuned to a different frequency characteristic and means selectively operable by a selective pair of such circuits to direct the documents belonging to each class in a path distinctive to each class.
3. Apparatus of the class described comprising scanning mechanism responsive to recurrent impulses having variable frequency characteristics, means for passing before said scanning means tabulating cards or the like having code markings thereon and causing said scanning mechanism to generate persistent electrical impulses having various frequency spectra; the tabulating cards belonging to one class bearing code markings which give rise to a spectrum characteristic of said class and different from the spectra produced by the code markings borne by the tabulating cards belonging to other classes; and
means responsive to the Joint operation of a plurality of spectrum components of a selected spectrum for performing a selected machine operation.
4. Apparatus ofthe class described comprising a support for moving tabulating cards or the like, photo-electric scanning devices operating in response to imprinted code markings. on said cards to generate persistent electrical impulses having frequency characteristics corresponding to said markings, the cards belonging to onevnauon E.'WHI'IMAN.
US138468A 1937-04-22 1937-04-22 Electric control system for tabulating cards, documents, and the like Expired - Lifetime US2224646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US138468A US2224646A (en) 1937-04-22 1937-04-22 Electric control system for tabulating cards, documents, and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US138468A US2224646A (en) 1937-04-22 1937-04-22 Electric control system for tabulating cards, documents, and the like

Publications (1)

Publication Number Publication Date
US2224646A true US2224646A (en) 1940-12-10

Family

ID=22482147

Family Applications (1)

Application Number Title Priority Date Filing Date
US138468A Expired - Lifetime US2224646A (en) 1937-04-22 1937-04-22 Electric control system for tabulating cards, documents, and the like

Country Status (1)

Country Link
US (1) US2224646A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427383A (en) * 1941-07-29 1947-09-16 Ibm Statistical machine controlled by magnetic, frequency coded records
US2552156A (en) * 1946-03-19 1951-05-08 France Henri De Numbers reading device
US2612994A (en) * 1949-10-20 1952-10-07 Norman J Woodland Classifying apparatus and method
US2618386A (en) * 1945-07-11 1952-11-18 Ibm Record card sorting device
US2704634A (en) * 1949-06-04 1955-03-22 Rauch
US2712898A (en) * 1950-07-19 1955-07-12 Bull Sa Machines Arrangement for analysis and comparison of recordings
US2731621A (en) * 1952-04-01 1956-01-17 Cgs Lab Inc Counterfeit detector
US2754496A (en) * 1951-04-23 1956-07-10 Robert C Embry Identification coder and decoder
US2774821A (en) * 1952-05-06 1956-12-18 Bell Telephone Labor Inc Card translator
US2870429A (en) * 1951-03-27 1959-01-20 Gen Precision Lab Inc Automatic program control system
US2872590A (en) * 1954-11-12 1959-02-03 Wilkata Codes Inc Photoelectric scanning device
US2880328A (en) * 1954-11-23 1959-03-31 American Can Co Apparatus for detecting containers having mismatched parts
US2896763A (en) * 1954-07-23 1959-07-28 Lehigh Inc Vending machine
US2923921A (en) * 1954-06-23 1960-02-02 Shapin
US2925586A (en) * 1953-04-29 1960-02-16 Levy Maurice Moise Method of, and apparatus for, electronically interpreting a pattern code
US2932392A (en) * 1954-02-23 1960-04-12 Alan Foster Apparatus for determining the denomination and/or genuineness of paper money and thelike
US2936112A (en) * 1954-04-16 1960-05-10 Ibm Record sensing mechanism
US2936886A (en) * 1954-10-05 1960-05-17 Reed Res Inc Stamp sensing letter sorter
US2941717A (en) * 1952-12-31 1960-06-21 Self Winding Clock Company Inc Automatic classifying system
US2982952A (en) * 1955-06-28 1961-05-02 Zenith Radio Corp Subscription television
US2997417A (en) * 1954-12-23 1961-08-22 Dirks Gerhard Method of preparing record carrier
US3003631A (en) * 1956-10-08 1961-10-10 Bernard L Stock Means for detecting the presence of contents in envelopes
US3035380A (en) * 1957-05-24 1962-05-22 William B Leavens Method for inspecting cartons
US3038607A (en) * 1958-06-20 1962-06-12 Pitney Bowes Inc Article marking and orienting
DE1151965B (en) * 1953-07-08 1963-07-25 Ulrich Knick Dipl Ing Accounting machine
DE976426C (en) * 1951-12-07 1963-09-05 Siemens Ag Method for equalizing transmission of telegraphic pulse series composed of steps of uniform temporal length, e.g. B. Teletype
US3152256A (en) * 1958-11-21 1964-10-06 Gen Atronics Corp Photosensitive code identifying means and method
DE977005C (en) * 1951-12-07 1964-10-29 Siemens Ag Method for equalizing transmission of telegraphic pulse series composed of steps of uniform temporal length, e.g. B. Teletype
US3276253A (en) * 1963-11-20 1966-10-04 Eastman Kodak Co Film aperture tester
US3282210A (en) * 1963-04-10 1966-11-01 Morris O Weig Certified check coded for rejection in sorting machine
US3325632A (en) * 1961-07-12 1967-06-13 Sylvania Electric Prod Data storage techniques
US3359405A (en) * 1963-11-05 1967-12-19 Svenska Dataregister Ab Data record and sensing means therefor
US3402299A (en) * 1964-06-18 1968-09-17 Telefunken Patent Method and apparatus for scanning
US3458688A (en) * 1965-08-09 1969-07-29 Ibm Document line position identification for line marking and document indexing apparatus
US3573436A (en) * 1968-10-08 1971-04-06 Pitney Bowes Alpex Method and apparatus for reading tickets, and ticket for use therewith
US3798458A (en) * 1972-10-30 1974-03-19 Ibm Optical scanner including an aperture design for non-synchronous detection of bar codes
US4510383A (en) * 1981-09-18 1985-04-09 Boehringer Mannheim Gmbh Device for the optical identification of a coding on a diagnostic test strip
US4752675A (en) * 1985-12-23 1988-06-21 Zetmeir Karl D Method of collecting response data from direct mail advertising
US4786891A (en) * 1986-04-08 1988-11-22 Yokogawa Electric Corporation Absolute encoder for linear or angular position measurements
US5110134A (en) * 1991-03-01 1992-05-05 No Peek 21 Card mark sensor and methods for blackjack
US5219172A (en) * 1991-03-01 1993-06-15 No Peek 21 Playing card marks and card mark sensor for blackjack
US5224712A (en) * 1991-03-01 1993-07-06 No Peek 21 Card mark sensor and methods for blackjack
US5266784A (en) * 1990-02-16 1993-11-30 Intermark Corporation Promotional scanning and validating device
US5827165A (en) * 1995-10-27 1998-10-27 Windmoller & Holscher Device for pulling open continuously cross-conveyed tube sections for the purpose of forming bottoms in the manufacture of sacks
US6517472B1 (en) * 1998-10-05 2003-02-11 Starlinger & Co. Gesellschaft M.B.H. Device for separating material webs lying on top of each other

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427383A (en) * 1941-07-29 1947-09-16 Ibm Statistical machine controlled by magnetic, frequency coded records
US2618386A (en) * 1945-07-11 1952-11-18 Ibm Record card sorting device
US2552156A (en) * 1946-03-19 1951-05-08 France Henri De Numbers reading device
US2704634A (en) * 1949-06-04 1955-03-22 Rauch
US2612994A (en) * 1949-10-20 1952-10-07 Norman J Woodland Classifying apparatus and method
US2712898A (en) * 1950-07-19 1955-07-12 Bull Sa Machines Arrangement for analysis and comparison of recordings
US2870429A (en) * 1951-03-27 1959-01-20 Gen Precision Lab Inc Automatic program control system
US2754496A (en) * 1951-04-23 1956-07-10 Robert C Embry Identification coder and decoder
DE976426C (en) * 1951-12-07 1963-09-05 Siemens Ag Method for equalizing transmission of telegraphic pulse series composed of steps of uniform temporal length, e.g. B. Teletype
DE977005C (en) * 1951-12-07 1964-10-29 Siemens Ag Method for equalizing transmission of telegraphic pulse series composed of steps of uniform temporal length, e.g. B. Teletype
US2731621A (en) * 1952-04-01 1956-01-17 Cgs Lab Inc Counterfeit detector
US2774821A (en) * 1952-05-06 1956-12-18 Bell Telephone Labor Inc Card translator
US2941717A (en) * 1952-12-31 1960-06-21 Self Winding Clock Company Inc Automatic classifying system
US2925586A (en) * 1953-04-29 1960-02-16 Levy Maurice Moise Method of, and apparatus for, electronically interpreting a pattern code
DE1151965B (en) * 1953-07-08 1963-07-25 Ulrich Knick Dipl Ing Accounting machine
US2932392A (en) * 1954-02-23 1960-04-12 Alan Foster Apparatus for determining the denomination and/or genuineness of paper money and thelike
US2936112A (en) * 1954-04-16 1960-05-10 Ibm Record sensing mechanism
US3037695A (en) * 1954-04-16 1962-06-05 Ibm Record bearing instrumentalities
US2923921A (en) * 1954-06-23 1960-02-02 Shapin
US2896763A (en) * 1954-07-23 1959-07-28 Lehigh Inc Vending machine
US2936886A (en) * 1954-10-05 1960-05-17 Reed Res Inc Stamp sensing letter sorter
US2872590A (en) * 1954-11-12 1959-02-03 Wilkata Codes Inc Photoelectric scanning device
US2880328A (en) * 1954-11-23 1959-03-31 American Can Co Apparatus for detecting containers having mismatched parts
US2997417A (en) * 1954-12-23 1961-08-22 Dirks Gerhard Method of preparing record carrier
US2982952A (en) * 1955-06-28 1961-05-02 Zenith Radio Corp Subscription television
US3003631A (en) * 1956-10-08 1961-10-10 Bernard L Stock Means for detecting the presence of contents in envelopes
US3035380A (en) * 1957-05-24 1962-05-22 William B Leavens Method for inspecting cartons
US3038607A (en) * 1958-06-20 1962-06-12 Pitney Bowes Inc Article marking and orienting
US3152256A (en) * 1958-11-21 1964-10-06 Gen Atronics Corp Photosensitive code identifying means and method
US3325632A (en) * 1961-07-12 1967-06-13 Sylvania Electric Prod Data storage techniques
US3282210A (en) * 1963-04-10 1966-11-01 Morris O Weig Certified check coded for rejection in sorting machine
US3359405A (en) * 1963-11-05 1967-12-19 Svenska Dataregister Ab Data record and sensing means therefor
US3276253A (en) * 1963-11-20 1966-10-04 Eastman Kodak Co Film aperture tester
US3402299A (en) * 1964-06-18 1968-09-17 Telefunken Patent Method and apparatus for scanning
US3458688A (en) * 1965-08-09 1969-07-29 Ibm Document line position identification for line marking and document indexing apparatus
US3573436A (en) * 1968-10-08 1971-04-06 Pitney Bowes Alpex Method and apparatus for reading tickets, and ticket for use therewith
US3798458A (en) * 1972-10-30 1974-03-19 Ibm Optical scanner including an aperture design for non-synchronous detection of bar codes
US4510383A (en) * 1981-09-18 1985-04-09 Boehringer Mannheim Gmbh Device for the optical identification of a coding on a diagnostic test strip
US4752675A (en) * 1985-12-23 1988-06-21 Zetmeir Karl D Method of collecting response data from direct mail advertising
US4786891A (en) * 1986-04-08 1988-11-22 Yokogawa Electric Corporation Absolute encoder for linear or angular position measurements
US5266784A (en) * 1990-02-16 1993-11-30 Intermark Corporation Promotional scanning and validating device
US5110134A (en) * 1991-03-01 1992-05-05 No Peek 21 Card mark sensor and methods for blackjack
US5219172A (en) * 1991-03-01 1993-06-15 No Peek 21 Playing card marks and card mark sensor for blackjack
US5224712A (en) * 1991-03-01 1993-07-06 No Peek 21 Card mark sensor and methods for blackjack
US5364106A (en) * 1991-03-01 1994-11-15 No Peek 21 Card mark sensor and methods for blackjack
US5827165A (en) * 1995-10-27 1998-10-27 Windmoller & Holscher Device for pulling open continuously cross-conveyed tube sections for the purpose of forming bottoms in the manufacture of sacks
US6517472B1 (en) * 1998-10-05 2003-02-11 Starlinger & Co. Gesellschaft M.B.H. Device for separating material webs lying on top of each other

Similar Documents

Publication Publication Date Title
US2224646A (en) Electric control system for tabulating cards, documents, and the like
EP0021707B1 (en) Multiple document detecting system and method of detecting multiple documents
US3105908A (en) burkhardt etal
US3246295A (en) Scanner
US2961649A (en) Automatic reading system
US4134538A (en) Process and apparatus for identification of objects
DE2829778A1 (en) Credit or identity card carrying machine-readable information - contains paper ply with plastics coating filled with absorbent and/or scattering, scannable material
US4510615A (en) Magnetic character reader with double document detection
GB2041603A (en) High speed electrically responsive indicia detecting apparatus and method
DE3000560A1 (en) METHOD AND DEVICE FOR LABELING AND IDENTIFYING IMITATION-PROOF DATA CARRIERS
DE10011281A1 (en) Capacitive method and device for acquiring information encoded by a differentially conductive pattern
DE2114676B2 (en) Optical label reader
US3207910A (en) Photosensitive arrangement for scanning fluorescing identifications
US2231186A (en) Identifying means
US2618386A (en) Record card sorting device
DE19518329A1 (en) Method and device for identifying different, elongated metallic objects, in particular cutlery items
EP0295229A2 (en) A document detecting arrangement
DE1282341B (en)
US3402299A (en) Method and apparatus for scanning
DE1103056B (en) Method for determining the position of a document with regard to a label on it
WO1996030879A1 (en) Method and devices for checking security documents
US3509534A (en) Character recognition apparatus
DE19718916A1 (en) Application and method for checking documents with diffractive optical security layers
US3577203A (en) Character recording and recognition system
DE1524192A1 (en) System for sorting documents