US20140286317A9 - Assignment acknowledgement for a wireless communication system - Google Patents

Assignment acknowledgement for a wireless communication system Download PDF

Info

Publication number
US20140286317A9
US20140286317A9 US11/370,638 US37063806A US2014286317A9 US 20140286317 A9 US20140286317 A9 US 20140286317A9 US 37063806 A US37063806 A US 37063806A US 2014286317 A9 US2014286317 A9 US 2014286317A9
Authority
US
United States
Prior art keywords
channel
ack
assignment
message
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/370,638
Other versions
US20070211667A1 (en
US8879511B2 (en
Inventor
Avneesh Agrawal
Aamod Khandekar
Alexei Gorokhov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/260,931 external-priority patent/US8565194B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US11/370,638 priority Critical patent/US8879511B2/en
Priority to SG201003787-7A priority patent/SG162735A1/en
Priority to CA2610425A priority patent/CA2610425C/en
Priority to CN2006800242381A priority patent/CN101213865B/en
Priority to MX2007015007A priority patent/MX2007015007A/en
Priority to KR1020137011418A priority patent/KR20130054460A/en
Priority to KR1020127010805A priority patent/KR101302590B1/en
Priority to AU2006252482A priority patent/AU2006252482B2/en
Priority to KR1020077031029A priority patent/KR101164282B1/en
Priority to EP06771790.0A priority patent/EP1897395B1/en
Priority to JP2008514829A priority patent/JP4740324B2/en
Priority to NZ563877A priority patent/NZ563877A/en
Priority to PCT/US2006/021211 priority patent/WO2006130742A1/en
Priority to BRPI0611324-9A priority patent/BRPI0611324B1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOROKHOV, ALEXEI, AGRAWAL, AVNEESH, KHANDEKAR, AAMOD
Publication of US20070211667A1 publication Critical patent/US20070211667A1/en
Priority to IL187722A priority patent/IL187722A0/en
Priority to NO20076438A priority patent/NO20076438L/en
Publication of US20140286317A9 publication Critical patent/US20140286317A9/en
Publication of US8879511B2 publication Critical patent/US8879511B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals

Definitions

  • the following description relates generally to wireless communications and, amongst other things, to dynamically managing network resources in wireless communication systems.
  • Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, broadcast, messaging, and so on. These systems may be multiple-access systems capable of supporting communication for multiple users by sharing the available system resources. Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, and frequency division multiple access (FDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • Multiple-access communication systems typically employ methods of assigning system resources to the individual users of the system.
  • assignments change rapidly over time, system overhead required just to manage the assignments can become a significant portion of the overall system capacity.
  • assignments are sent using messages that constrain the assignment of resource blocks to a subset of the total possible permutations of blocks, assignment expense can be reduced somewhat, but by definition, assignments are constrained.
  • assignments are “sticky” (e.g., an assignment persists over time rather than having a deterministic expiration time), to determine whether the assignments have been properly decoded.
  • FIG. 1 shows a wireless communication system
  • FIG. 2 illustrates H-ARQ transmission on the forward link.
  • FIGS. 3A and 3B show two subcarrier structures.
  • FIG. 4 shows a frequency-hopping scheme
  • FIGS. 5A and 5B show two signaling transmission schemes for an ACK channel.
  • FIG. 6 shows puncturing of a time-frequency block for the ACK channel.
  • FIG. 7A shows an ACK segment with multiple clusters.
  • FIG. 7B shows a time-frequency block not punctured by an ACK segment.
  • FIG. 7C shows a time-frequency block punctured by an ACK segment.
  • FIG. 8 shows transmission of an ACK message to achieve diversity.
  • FIG. 9 shows a binary channel tree
  • FIG. 10 shows a process for acknowledging transmissions on a reverse link by a terminal.
  • FIG. 11 shows an apparatus for acknowledging transmissions on a reverse link by a terminal.
  • FIG. 12 shows a process for determining a message that is being acknowledged on a reverse link channel.
  • FIG. 13 shows an apparatus for determining a message that is being acknowledged on a reverse link channel.
  • FIG. 14 shows a block diagram of a base station and a terminal.
  • FIG. 15 shows a block diagram of a transmit data and signaling processor.
  • FIG. 16 shows a block diagram of a receive data and signaling processor.
  • FIG. 1 shows a wireless communication system 100 with multiple base stations 110 and multiple terminals 120 .
  • a base station is a station that communicates with the terminals.
  • a base station may also be called, and may contain some or all of the functionality of, an access point, a Node B, and/or some other network entity.
  • Each base station 110 provides communication coverage for a particular geographic area 102 .
  • the term “cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • a base station coverage area may be partitioned into multiple smaller areas, e.g., three smaller areas 104 a , 104 b , and 104 c . Each smaller area is served by a respective base transceiver subsystem (BTS).
  • BTS base transceiver subsystem
  • ctor can refer to a BTS and/or its coverage area depending on the context in which the term is used.
  • BTSs for all sectors of that cell are typically co-located within the base station for the cell.
  • the signaling transmission techniques described herein may be used for a system with sectorized cells as well as a system with un-sectorized cells.
  • base station is used generically for a station that serves a sector as well as a station that serves a cell.
  • Terminals 120 are typically dispersed throughout the system, and each terminal may be fixed or mobile.
  • A-terminal may also be called, and may contain some or all of the functionality of, a mobile station, a user equipment, and/or some other device.
  • a terminal may be a wireless device, a cellular phone, a personal digital assistant (PDA), a wireless modem card, and so on.
  • PDA personal digital assistant
  • a terminal may communicate with zero, one, or multiple base stations on the forward and reverse links at any given moment.
  • a system controller 130 couples to base stations 110 and provides coordination and control for these base stations.
  • System controller 130 may be a single network entity or a collection of network entities.
  • the base stations may communicate with one another as needed.
  • the signaling transmission techniques described herein may be used to send various types of signaling such as ACK information, power control commands, channel quality indicators (CQIs), requests for system resources, access probes, feedback information, and so on. These techniques may be used for the forward link as well as the reverse link. For clarity, these techniques are described below for sending ACK information on the reverse link.
  • CQIs channel quality indicators
  • Certain aspects of system allow efficient allocation of resources ACKs of assignment messages transmitted from base stations 110 .
  • Assignment messages my be acknowledged in order to increase assignment reliability and to improve scheduling, in order to reduce lost or not decoded packets. Further, by acknowledging assignments, the number of assignments to be transmitted may be reduced and therefore the power budget available for forward link transmission increased.
  • certain logical resources allocated for reverse link transmission are utilized for assignment, which may be supplemental, decremental, forward link, reverse link, or the like, ACKs while others are used for sending data ACKs.
  • a logical resource has only one ACK channel, or an assignment for a given terminal has only one ACK channel then all ACKs are related to data only. That way, if multiple reverse link ACK channels are available both data and assignment messages may be acknowledged. However, if only one or other number of system limited ACK channels are available, then only data messages are acknowledged.
  • the ACK may be transmitted only for the data packet(s) and not for the assignment. This may be performed in cases where there are link budget or other power limitations.
  • System 100 may employ hybrid automatic repeat request (H-ARQ) transmission, which is also called incremental redundancy (IR) transmission.
  • H-ARQ hybrid automatic repeat request
  • IR incremental redundancy
  • a transmitter sends one or more transmissions for a data packet until the packet is decoded correctly by a receiver or the maximum number of transmissions has been sent.
  • H-ARQ improves reliability for data transmission and supports rate adaptation for packets in the presence of changes in channel conditions.
  • FIG. 2 illustrates H-ARQ transmission on the forward link.
  • a base station processes (e.g., encodes and modulates) a data packet (Packet 1 ) and generates multiple (V) data blocks, where V>1.
  • a data packet may also be called a codeword and so on.
  • a data block may also be called a subpacket, an H-ARQ transmission, and so on.
  • Each data block for the packet may contain sufficient information to allow a terminal to correctly decode the packet under favorable channel conditions.
  • the V data blocks typically contain different redundancy information for the packet.
  • Each data block may be sent in a frame, which may be of any time duration. The V data blocks are sent one at a time until the packet is terminated, and the block transmissions are spaced apart by Q frames, where Q>1.
  • the base station transmits the first data block (Block 1 ) for Packet 1 in frame m.
  • the terminal receives and processes (e.g., demodulates and decodes) Block 1 , determines that Packet 1 is decoded in error, and sends a NAK to the base station in frame m+q, where q is the ACK/NAK delay and 1 ⁇ q ⁇ Q.
  • the base station receives the NAK and transmits the second data block (Block 2 ) for Packet 1 in frame m+Q.
  • the terminal receives Block 2 , processes Blocks 1 and 2 , determines that Packet 1 is decoded in error, and sends back a NAK in frame m+Q+q.
  • the block transmission and NAK response may continue up to V times.
  • the base station transmits data block 3 (Block 3 ) for Packet 1 in frame m+2Q.
  • the terminal receives Block 3 , processes Blocks 1 through 3 for Packet 1 , determines that the packet is decoded correctly, and sends back an ACK in frame m+2Q+q.
  • the base station receives the ACK and terminates the transmission of Packet 1 .
  • the base station processes the next data packet (Packet 2 ) and transmits the data blocks for Packet 2 in similar manner.
  • a new data block is sent every Q frames.
  • the base station may transmit up to Q packets in an interlaced manner.
  • a first interlace is formed with frames m, m+Q, and so on
  • a second interlace is formed with frames m+1, m+Q+1, and so on
  • a Q-th interlace is formed with frames m+Q ⁇ 1, m+2Q ⁇ 1, and so on.
  • the Q interlaces are offset from one another by one frame.
  • the H-ARQ retransmission delay Q and the ACK/NAK delay q are typically selected to provide sufficient processing time for both the transmitter and receiver.
  • FIG. 2 shows transmission of both NAKs and ACKs.
  • an ACK-based scheme which is assumed for the description below, an ACK is sent if a packet is decoded correctly, and NAKs are not sent and are presumed by the absence of ACKs.
  • the signaling transmission techniques described herein may be used for various wireless communication systems such as a CDMA system, a TDMA system, an FDMA system, an orthogonal frequency division multiple access (OFDMA) system, a single-carrier frequency division multiple access (SC-FDMA) system, and so on.
  • An OFDMA system utilizes orthogonal frequency division multiplexing (OFDM), which is a modulation technique that partitions the overall system bandwidth into multiple (K) orthogonal subcarriers. These subcarriers are also called tones, bins, and so on. With OFDM, each subcarrier that may be independently modulated with data.
  • OFDM orthogonal frequency division multiplexing
  • An SC-FDMA system may utilize interleaved FDMA (IFDMA) to transmit on subcarriers that are distributed across the system bandwidth, localized FDMA (LFDMA) to transmit on a block of adjacent subcarriers, or enhanced FDMA (EFDMA) to transmit on multiple blocks of adjacent subcarriers.
  • IFDMA interleaved FDMA
  • LFDMA localized FDMA
  • EFDMA enhanced FDMA
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDMA.
  • the signaling transmission techniques may also be used with various subcarrier structures.
  • the following description assumes that the K total subcarriers are usable for transmission and are given indices of 1 through K.
  • FIG. 3A shows a distributed subcarrier structure 300 .
  • set s contains subcarriers s, S+s, 2S+s, . . . , (N ⁇ 1) ⁇ S+s, for s ⁇ 1, . . . , S ⁇ .
  • FIG. 3B shows a block subcarrier structure 310 .
  • set s contains subcarriers (s ⁇ 1) ⁇ N+1 through s ⁇ N, for s ⁇ 1, . . . , S ⁇ .
  • the signaling transmission techniques may be used with any subcarrier structure having any number of subcarrier sets.
  • Each subcarrier set may include any number of subcarriers that may be arranged in any manner.
  • the subcarriers in each set may be uniformly distributed across the system bandwidth as shown in FIG. 3A , contiguous as shown in FIG. 3B , and so on.
  • the subcarrier sets may include the same or different numbers of subcarriers.
  • FIG. 4 shows an exemplary partitioning of time and frequency into time-frequency blocks.
  • a time-frequency block may also be called a tile, a traffic block, or some other terminology.
  • a time-frequency block corresponds to a specific subcarrier set in a specific time interval, which may span one or multiple symbol periods.
  • a symbol period is the duration of one OFDM symbol or one SC-FDMA symbol.
  • S orthogonal time-frequency blocks are available in each time interval.
  • System 100 may define traffic channels to facilitate allocation and use of the available system resources.
  • a traffic channel is a means for sending data from a transmitter to a receiver and may also be called a channel, a physical channel, a physical layer channel, a data channel, a transmission channel, and so on. Traffic channels may be defined for various types of system resources such as frequency and time.
  • any number of traffic channels may be defined, and the traffic channels may have the same or different transmission capacities.
  • S traffic channels are defined, with each traffic channel being mapped to one time-frequency block in each time interval used for data transmission.
  • These S traffic channels may be assigned to up to S terminals.
  • FIG. 4 also shows an exemplary frequency-hopping scheme 400 .
  • each traffic channel is mapped to a specific sequence of time-frequency blocks that hop across frequency in different time intervals to achieve frequency diversity, as shown in FIG. 4 .
  • a hop interval is the amount of time spent on a given subcarrier set and is equal to one time interval for the embodiment shown in FIG. 4 .
  • a frequency hopping (FH) pattern indicates the specific time-frequency block to use for each traffic channel in each time interval used for data transmission.
  • FIG. 4 shows the sequence of time-frequency blocks for traffic channel y.
  • the other traffic channels may be mapped to vertically and circularly shifted versions of the time-frequency block sequence for traffic channel y.
  • Frequency hopping may be used with the subcarrier structures shown in FIGS. 3A and 3B .
  • a time-frequency block is one distributed subcarrier set (e.g., as shown in FIG. 3A ) in one symbol period.
  • the subcarriers for a traffic channel span across the entire system bandwidth and change from symbol period to symbol period.
  • a time-frequency block is one contiguous subcarrier set (e.g., as shown in FIG. 3B ) in multiple symbol periods.
  • the subcarriers for a traffic channel are contiguous and fixed for an entire hop interval but change from hop interval to hop interval.
  • Other frequency hopping schemes may also be defined.
  • a terminal may send ACK information on a reverse link acknowledgment channel (R-ACKCH) to a base station to acknowledge H-ARQ transmissions sent by the base station on the forward link.
  • R-ACKCH reverse link acknowledgment channel
  • the R-ACKCH is also called an ACK channel in the following description.
  • an H-ARQ transmission is sent in one frame, which may span one or multiple hop intervals.
  • the terminal may send an ACK/NAK for each frame in which an H-ARQ transmission is received from the base station.
  • FIG. 5A shows a signaling transmission scheme 500 for the ACK channel.
  • a frame spans two hop intervals, and the ACK channel is mapped to one time-frequency block in each ACK frame.
  • An ACK frame is a frame in which the ACK channel is sent, and a data frame is a frame used for data transmission.
  • Each data frame may be associated with an ACK frame that is q frames away, as shown in FIG. 2 .
  • the ACK channel may puncture all or a portion of each time-frequency block to which the ACK channel is mapped, as described below.
  • FIG. 5B shows a signaling transmission scheme 510 for the ACK channel.
  • S 32
  • a frame spans one hop interval
  • the ACK channel is mapped to four time-frequency blocks in each ACK frame.
  • the ACK channel may puncture all or a portion of each time-frequency block.
  • FIGS. 5A and 5B show the ACK channel puncturing one traffic channel y whenever the ACK channel is mapped to a time-frequency block used for traffic channel y.
  • the ACK channel also punctures other traffic channels, which are not labeled in FIGS. 5A and 5B for clarity.
  • a terminal may transmit data on an assigned traffic channel (e.g., traffic channel y) and may transmit ACK messages on the ACK channel. If many traffic channels are available, then the ACK channel punctures only a portion of the transmission on the assigned traffic channel and punctures mostly the transmissions from other terminals on other traffic channels.
  • an assigned traffic channel e.g., traffic channel y
  • the ACK channel punctures only a portion of the transmission on the assigned traffic channel and punctures mostly the transmissions from other terminals on other traffic channels.
  • the ACK channel may be mapped to any number of time-frequency blocks in each ACK frame.
  • the ACK channel is mapped to a fixed number of time-frequency blocks in each ACK frame. This fixed number may be determined based on the number of available traffic channels and/or some other factors.
  • the ACK channel is mapped to a configurable number of time-frequency blocks in each ACK frame. This configurable number may be determined based on the number of traffic channels that are in use, the number of packets that are sent on each traffic channel, the number of ACK bits that may be sent in each time-frequency block, and so on.
  • FIGS. 5A and 5B show specific embodiments for puncturing the traffic channels with the ACK channel.
  • the ACK channel is mapped to one or more fixed subcarrier sets, and the traffic channels hop around the fixed ACK channel.
  • the S subcarrier sets are arranged into G regions, with each region including S/G consecutive subcarrier sets. The ACK channel is then mapped to one subcarrier set in each region. The ACK channel may also puncture the traffic channels in other manners.
  • the ACK channel may be mapped to time-frequency blocks in a pseudo-random or deterministic manner.
  • the ACK channel may be mapped to different subcarrier sets to achieve frequency and interference diversity, e.g., as shown in FIGS. 5A and 5B .
  • the ACK channel is pseudo-random with respect to the traffic channels and equally punctures the traffic channels. This may be achieved by hopping the ACK channel, hopping the traffic channels, or hopping both the ACK channel and the traffic channels.
  • An FH pattern may indicate the specific time-frequency block(s) for the ACK channel in each ACK frame. This FH pattern may be sent to the terminals or may be known a priori by the terminals. In any case, the terminals have knowledge of the time-frequency blocks occupied by the ACK channel.
  • FIG. 6 shows an embodiment of the puncturing of a time-frequency block by the ACK channel.
  • the time-frequency block covers N subcarriers and spans T symbol periods.
  • the ACK channel may puncture all or a portion of the time-frequency block.
  • An ACK segment is a time-frequency segment used for the ACK channel.
  • An ACK segment is formed by the part of the time-frequency block that is punctured and used for the ACK channel.
  • an ACK segment may cover any number of subcarriers and may span any number of symbol periods.
  • the ACK channel punctures the entire time-frequency block. For this embodiment, the ACK channel is sent in the entire time-frequency block, and traffic data is not sent in the time-frequency block.
  • the ACK channel punctures a portion of the time-frequency block.
  • the ACK channel may puncture a half, a quarter, an eighth, or some other fraction of the time-frequency block.
  • the punctured portion may be contiguous in both time and frequency, as shown in FIG. 6 . Transmission on contiguous subcarriers may result in a lower peak-to-average power ratio (PAPR), which is desirable.
  • PAPR peak-to-average power ratio
  • the punctured portion may be spread across frequency, across time, or across both frequency and time.
  • the ACK channel is sent in the punctured portion of the time-frequency block, and traffic data may be sent in the remaining portion of the time-frequency block.
  • FIG. 7A shows an embodiment of an ACK segment.
  • the ACK segment covers 8 subcarriers and spans 8 symbol periods.
  • the ACK segment includes 64 transmission units.
  • a transmission unit is one subcarrier in one symbol period.
  • the ACK segment is partitioned into four clusters. Each cluster covers 8 subcarriers, spans 2 consecutive symbol periods, and includes 16 transmission units.
  • an ACK segment may be partitioned in various manners.
  • each cluster covers two subcarriers and spans all 8 symbol periods.
  • each cluster covers all subcarriers and spans all symbol periods in the ACK segment.
  • cluster 1 may include subcarriers 1 and 2 in symbol periods 1 and 5 , subcarriers 3 and 4 in symbol periods 2 and 6 , subcarriers 5 and 6 in symbol periods 3 and 7 , and subcarriers 7 and 8 in symbol periods 4 and 8 .
  • FIG. 7B shows an embodiment of a time-frequency block that is not punctured by an ACK segment.
  • the time-frequency block covers 16 subcarriers, spans 8 symbol periods, and includes 128 transmission units. Pilot symbols may be sent on some of the transmission units, and data symbols may be sent on the remaining transmission units.
  • a data symbol is a symbol for traffic data
  • a pilot symbol is a symbol for pilot, which is data that is known a priori by both the base station and the terminals
  • a signaling symbol is a symbol for signaling
  • a symbol is typically a complex value.
  • pilot symbols are sent on subcarriers 1 , 9 and 16 in symbol periods 1 , 2 , 3 , 6 , 7 and 8 , or six strips of three pilot symbols.
  • the pilot symbols may be distributed across frequency, e.g., as shown in FIG. 7B , and may be used to derive a channel estimate for the time-frequency block.
  • the channel estimate may be used to perform data detection for the data symbols sent in the time-frequency block.
  • FIG. 7C shows an embodiment of a time-frequency block that is punctured by an ACK segment.
  • pilot symbols are sent on subcarriers 9 and 16 in symbol periods 1 , 2 , 3 , 6 , 7 and 8 , or four strips of three pilot symbols.
  • the pilot symbols may be used to derive a channel estimate for the unpunctured portion of the time-frequency block.
  • FIGS. 7B and 7C allows a serving sector to derive an interference estimate for an ACK segment for one or more neighbor sectors.
  • a terminal may transmit on an entire time-frequency block to the serving sector if this time-frequency block is not punctured by an ACK segment for the serving sector. However, this time-frequency block may collide with an ACK segment for one or more neighbor sectors. In this case, the lower half of the time-frequency block may observe higher interference from the ACK segment for the neighbor sector(s).
  • the serving sector may estimate the interference from the other sector(s) based on the pilot symbols sent on subcarrier 1 in symbol periods 1 , 2 , 3 , 6 , 7 and 8 .
  • the serving sector may use the interference estimate for data detection of the data symbols sent in the time-frequency block.
  • FIGS. 7B and 7C show one embodiment for sending pilot and data in a time-frequency block. Pilot and data may also be sent using various other patterns for a time-frequency block. In general, a sufficient number of pilot symbols may be sent on a time-frequency block to allow a serving sector to derive a channel estimate for the time-frequency block, with and without puncturing by an ACK segment for the serving sector. A sufficient number of pilot symbols may be located such that the serving sector can derive an interference estimate for the ACK segment from neighbor sectors.
  • a terminal may send an ACK message for each H-ARQ transmission received from a base station.
  • the amount of information sent in each ACK message may be dependent on the number of packets sent in the corresponding H-ARQ transmission.
  • an ACK message includes one bit that acknowledges an H-ARQ transmission for one packet.
  • an ACK message includes multiple (B) bits that acknowledge an H-ARQ transmission for B packets.
  • an ACK message is sent with On/Off keying, for example, ‘1’ for ACK and ‘0’ for NAK.
  • an ACK message is encoded prior to transmission.
  • Multiple terminals may send their ACK messages using code division multiplexing (CDM), time division multiplexing (TDM), frequency division multiplexing (FDM), some other orthogonal multiplexing scheme, or a combination thereof.
  • CDM code division multiplexing
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • Multiple terminals may send their ACK messages in the same cluster of an ACK segment using any orthogonal multiplexing scheme.
  • ACK messages are sent using CDM.
  • the terminals are assigned different spreading codes or sequences, and each terminal spread its ACK messages with its spreading code.
  • the spread ACK messages for the terminals are orthogonal to one another in the code domain.
  • the spreading codes are orthogonal codes formed with columns of a Hadamard matrix.
  • a 2 ⁇ 2 Hadamard matrix W 2 ⁇ 2 and a larger size Hadamard matrix W 2L ⁇ 2L may be expressed as:
  • Hadamard matrices of square dimensions that are power of two may be formed as shown in equation (1).
  • the spreading codes are orthogonal codes formed with columns of a Fourier matrix.
  • An L ⁇ L Fourier matrix F L ⁇ L has element f n,m in the n-th row of the m-th column, which may be expressed as:
  • a 1-bit ACK message may be spread with an L-chip spreading code to generate a spread ACK message that contains L chips, as follows:
  • a u is an ACK bit for terminal u, which may have a value of 0 or 1, or a u ⁇ 0, 1 ⁇ ;
  • w u,i is the i-th chip of the spreading code assigned to terminal u;
  • x u,i is the i-th chip of the spread ACK message for terminal u.
  • the L chips of the spread ACK message may be sent in the frequency domain by mapping these L ACK chips to L transmission units in an ACK segment, e.g., like OFDMA.
  • these L ACK chips may be sent in the time domain by performing an L-point DFT/FFT to obtain L frequency-domain symbols and mapping these L symbols to L transmission units in an ACK segment, e.g., like SC-FDMA.
  • a 1-bit ACK message may be sent in 16 transmission units, and the ACK bit may be spread with a 16-chip spreading code to generate 16 ACK chips. These 16 ACK chips may then be mapped to 16 transmission units in one ACK cluster. Up to 15 other terminals may send their ACK messages in the same cluster using other spreading codes. Up to 64 terminals may send ACK messages in one ACK segment.
  • each cluster includes 16 transmission units (e.g., as shown in FIG. 7A ), eight spreading codes may be used to send ACK information and are called usable spreading codes, and the remaining eight spreading codes are used for interference estimation and are called reserved spreading codes.
  • eight usable spreading codes are available for each cluster, and up to 32 ACK messages may be sent in one ACK segment.
  • eight reserved spreading codes may be used for interference estimation in each cluster. More than 32 ACK messages may be sent in one ACK segment by allocating more spreading codes for sending ACK messages. More than 32 ACK messages may be sent in one ACK frame by allocating more ACK segments for the ACK channel.
  • ACK messages are sent using TDM or FDM.
  • the terminals are assigned different transmission units for the ACK channel, and each terminal sends its ACK message in its assigned transmission units.
  • the ACK messages for the terminals would then be orthogonal to one another in time and/or frequency.
  • eight terminals may be assigned eight rows of a cluster, and each terminal may send its ACK bit on the two transmission units in the assigned row.
  • four clusters are formed, with each cluster covering two subcarriers and spanning 8 symbol periods. Eight terminals may be assigned eight columns of a cluster, and each terminal may send its ACK bit on the two transmission units in the assigned column.
  • FIG. 8 shows an embodiment for transmitting an ACK message to achieve frequency and time diversity.
  • the ACK message is sent on different clusters in multiple (C) ACK segments, one cluster in each ACK segment.
  • Sending the ACK message over a longer time interval may also improve link budget for terminals located at the edge of coverage.
  • These disadvantage terminals typically have an upper limit on transmit power.
  • a longer transmission time interval for the ACK message allows a disadvantage terminal to transmit the ACK message with more energy spread over a longer period of time, which improves the likelihood of correctly receiving the ACK message.
  • the ACK message also achieves frequency diversity since the four ACK segments occupy different subcarrier sets in different 2-symbol intervals.
  • C-th order diversity may be achieved for the ACK message by sending the ACK message in different clusters in C ACK segments.
  • an ACK message is sent on different clusters in C ACK segments, and the terminals are mapped to the clusters in a pseudo-random or deterministic manner such that an ACK message for each terminal observes interference from a different set of terminals in each of the C clusters on which that ACK message is sent.
  • This embodiment provides time and frequency diversity for the ACK message sent by each terminal. This embodiment further provides diversity with respect to the interference from the other terminals.
  • a base station performs the complementary despreading to recover the ACK messages sent by the terminals. For each terminal u, the base station despreads the received symbols from each of the C clusters used by terminal u with the spreading code assigned to terminal u and obtains C despread symbols for the C clusters. For each of the C clusters, the base station may also despread the received symbols with each of the reserved spreading codes to obtain an interference estimate for that cluster. The base station may then scale and combine the C despread symbols for terminal u with the interference estimates for the C clusters to obtain a detected ACK message for terminal u, as described below.
  • the signaling transmission techniques described herein may be used with various channel structures.
  • An exemplary channel structure is described below.
  • FIG. 9 shows an embodiment of a binary channel tree 900 .
  • a set of traffic channels may be defined with the 32 subcarrier sets.
  • Each traffic channel is assigned a unique channel ID and is mapped to one or more subcarrier sets in each time interval.
  • a traffic channel may be defined for each node in channel tree 900 .
  • the traffic channels may be sequentially numbered from top to bottom and from left to right for each tier.
  • the largest traffic channel corresponding to the topmost node is assigned a channel ID of 0 and is mapped to all 32 subcarrier sets.
  • the 32 traffic channels in the lowest tier 1 have channel IDs of 31 through 62 and are called base traffic channels.
  • Each base traffic channel is mapped to one subcarrier set.
  • the tree structure shown in FIG. 9 places certain restrictions on the use of the traffic channels for an orthogonal system. For each traffic channel that is assigned, all traffic channels that are subsets (or descendants) of the assigned traffic channel and all traffic channels for which the assigned traffic channel is a subset are restricted. The restricted traffic channels are not used concurrently with the assigned traffic channel so that no two traffic channels use the same subcarrier set at the same time.
  • an ACK resource is assigned to each traffic channel that is assigned for use.
  • An ACK resource may also be called an ACK sub-channel or some other terminology.
  • An ACK resource includes pertinent resources (e.g., a spreading code and a set of clusters) used to send an ACK message in each ACK frame.
  • pertinent resources e.g., a spreading code and a set of clusters
  • the ACK messages for each traffic channel may be sent on the assigned ACK resource.
  • the assigned ACK resources may be signaled to the terminal.
  • an ACK resource is associated with each of the base traffic channels in the lowest tier of a channel tree.
  • This embodiment allows for assignment of the maximum number of traffic channels of the minimum size.
  • a larger traffic channel corresponding to a node above the lowest tier may use (1) the ACK resources for all base traffic channels under the larger traffic channel, (2) the ACK resource for one of the base traffic channels, e.g., the base traffic channel with the lowest channel ID, or (3) the ACK resources for a subset of the base traffic channels under the larger traffic channel.
  • an ACK message for the larger traffic channel may be sent using multiple ACK resources to improve the likelihood of correct reception.
  • a larger traffic channel with multiple base traffic channels may be assigned for the transmission.
  • the number of base traffic channels is equal to or greater than the number of packets.
  • Each packet may be mapped to a different base traffic channel.
  • the ACK for each packet may then be sent using the ACK resource for the associated base traffic channel.
  • an ACK resource is assigned to each packet to be acknowledged.
  • a terminal may be assigned one ACK resource if one packet is sent in a frame.
  • a terminal may be assigned multiple ACK resources if multiple packets are sent in a frame, e.g., using either a larger traffic channel or spatial multiplexing to transmit via multiple antennas.
  • the ACK will be transmitted with a channel ID of the next highest channel ID of an unused data channel. That is, assuming an assignment is transmitted assigning node 15 , and thus nodes 31 and 32 to a terminal, the ACK for the assignment would be transmitted on the ACK resources of channel 32 . In this way, the base station can determine what packet is being acknowledged based upon the channel on which the ACK is received.
  • the assignment need not be assigned and only the ACK for the data packet is transmitted. This may be performed for link budget limited or power limited situations.
  • an H-ARQ transmission may span multiple interlaces, and an ACK message is sent in multiple ACK frames.
  • the base station may combine the detected ACK messages for the multiple ACK frames to improve ACK detection performance.
  • System 100 may support a single-carrier mode and a multi-carrier mode.
  • K subcarriers may be available for transmission, and the ACK channel may puncture the traffic channels as described above.
  • K subcarriers may be available for each of multiple carriers.
  • the ACK channel may be scaled up for the multi-carrier mode to support more traffic channels and/or to acknowledge more packets that may be sent with more carriers.
  • the transmit power for the ACK channel may be controlled to achieve good performance, which may be quantified by a given target ACK-to-NAK error rate (e.g., 1%), a given target NAK-to-ACK error rate (e.g., 0.1%), and/or some other metrics.
  • the transmit power for the ACK channel for a given terminal is adjusted based on the measured performance for the ACK channel for that terminal.
  • the transmit power for the ACK channel is adjusted based on the transmit power for a reference channel.
  • the reference channel may be any channel that is sent often or regularly, e.g., a traffic channel or a signaling channel such as a channel quality indicator (CQI) channel.
  • CQI channel quality indicator
  • the ACK channel may use the transmit power for the reference channel as a power reference.
  • the transmit power for the ACK channel may be set equal to the power reference plus a delta, which may be adjusted based on the performance of the ACK channel.
  • the reference channel is thus used for short-term power set point while the long-term offset of the ACK channel is controlled based on the ACK performance.
  • FIG. 10 shows an embodiment of a process 1000 for acknowledging transmissions on a reverse link by a terminal.
  • signaling is sent with CDM, however, this need not be the case.
  • the type of message being acknowledged is determined. (block 1012 ). Based upon the type, an acknowledgment channel is assigned to the acknowledgement message for the message. (block 1014 ). If the message is a data message or a control message, other than an assignment, the channel ID move from the lowest numbered node to the highest numbered node, or logical resource, that is available and includes acknowledgment channels. If the message being acknowledged is an assignment message, then the highest ordered channel, if available, is assigned to the ACK message for the assignment.
  • An assignment message may be a new assignment, supplemental assignment, or explicit detrimental assignment, depending on system parameters that determine which types of assignments are to be acknowledged.
  • the time-frequency segments for a signaling channel that punctures traffic channels are then determined, e.g., based on a frequency hopping pattern for the signaling channel (block 1016 ).
  • Signaling is generated (block 1018 ) and spread with a spreading code (e.g., a Walsh code) to obtain spread signaling (block 1020 ).
  • the spread signaling is mapped to the time-frequency segments for the signaling channel (block 1022 ).
  • Each time-frequency segment may include multiple clusters.
  • a signaling message may be mapped to different clusters in multiple time-frequency segments to achieve diversity.
  • the signaling may also be sent with other multiplexing schemes instead of CDM.
  • Traffic data is processed and mapped to time-frequency blocks for a traffic channel assigned for use (block 1024 ). Traffic data that is mapped to the time-frequency segments for the signaling channel is punctured (block 1026 ). OFDM symbols or SC-FDMA symbols are generated for the mapped signaling and traffic data (block 1028 ).
  • FIG. 11 shows an embodiment of an apparatus 1100 for acknowledging transmissions on a reverse link by a terminal.
  • Apparatus 1100 includes means for determining a message type being acknowledged (block 1112 ), assigning an channel ID to the acknowledgement message based upon the type (block 1114 ), means for determining time-frequency segments for a signaling channel that punctures traffic channels (block 1116 ), means for generating signaling (block 1118 ), means for spreading the signaling with a spreading code (e.g., a Walsh code) to generate spread signaling (block 1120 ), and means for mapping the spread signaling to the time-frequency segments for the signaling channel (block 1122 ).
  • a signaling message may be mapped to different clusters in multiple time-frequency segments to achieve diversity.
  • Apparatus 1110 further includes means for processing and mapping traffic data to time-frequency blocks for an assigned traffic channel (block 1124 ), means for puncturing traffic data that is mapped to the time-frequency segments for the signaling channel (block 1126 ), and means for generating OFDM symbols or SC-FDMA symbols for the mapped signaling and traffic data (block 1128 ).
  • FIG. 12 shows an embodiment of a process 1200 for determining a message that is being acknowledged on a reverse link channel.
  • Process 1200 may be performed by a base station to receive signaling and data sent on the reverse link.
  • the time-frequency segments for the signaling channel are determined (block 1212 ).
  • Received symbols are extracted from the time-frequency segments for the signaling channel (block 1214 ).
  • the extracted received symbols are processed to recover the transmitted signaling.
  • the extracted received symbols are despread with a spreading code assigned to a terminal to obtain despread symbols for the terminal (block 1216 ).
  • the extracted received symbols may also be despread with spreading code(s) not used for signaling to obtain interference estimates (block 1218 ).
  • the despread symbols are detected (e.g., with the interference estimates, if available) to recover the signaling sent by the terminal (block 1220 ).
  • a signaling message may be sent on different clusters in multiple time-frequency segments. In this case, received symbols are extracted from each cluster and despread with the spreading code, and the despread symbols for the different clusters are detected to recover the signaling message.
  • Received symbols are extracted from time-frequency blocks for a traffic channel assigned to the terminal and the channel ID is determined (block 1222 ). Received symbols extracted from the time-frequency segments for the signaling channel are punctured (block 1224 ). The unpunctured received symbols are processed to obtain decoded data for the terminal (block 1226 ).
  • the channel ID and acknowledgement are then sent for further processing to determine the channel being acknowledged.
  • FIG. 13 shows an embodiment of an apparatus 1300 for receiving signaling and traffic data.
  • Apparatus 1300 includes means for determining the time-frequency segments for the signaling channel (block 1312 ), means for extracting received symbols from the time-frequency segments for the signaling channel (block 1314 ), means for despreading the extracted received symbols with a spreading code assigned to a terminal to obtain despread symbols (block 1316 ), means for despreading the extracted received symbols with spreading code(s) not used for signaling to obtain interference estimates (block 1318 ), and means for performing detection on the despread symbols (e.g., with the interference estimates, if available) to recover the signaling sent by the terminal (block 1320 ).
  • a signaling message may also be recovered from different clusters in multiple time-frequency segments.
  • Apparatus 1300 further includes means for extracting received symbols from time-frequency blocks for a traffic channel assigned to the terminal and the channel ID (block 1322 ), means for puncturing received symbols extracted from the time-frequency segments for the signaling channel (block 1324 ), and means for processing the unpunctured received symbols to obtain decoded data for the terminal (block 1326 ).
  • FIG. 14 shows a block diagram of an embodiment of a base station 110 and a terminal 120 in FIG. 1 .
  • base station 110 and terminal 120 are each equipped with a single antenna.
  • a transmit (TX) data and signaling processor 1410 receives traffic data for one or more terminals, processes (e.g., formats, encodes, interleaves, and symbol maps) the traffic data for each terminal based on one or more coding and modulation schemes selected for that terminal, and provides data symbols. Processor 1410 also generates pilot symbols and signaling symbols.
  • An OFDM modulator 1412 performs OFDM modulation on the data symbols, pilot symbols, and signaling symbols and provides OFDM symbols. If system 100 utilizes SC-FDMA, then modulator 1412 performs SC-FDMA modulation and provides SC-FDMA symbols.
  • a transmitter (TMTR) 1414 conditions (e.g., converts to analog, filters, amplifies, and upconverts) the OFDM symbols to generate an FL modulated signal, which is transmitted from an antenna 1416 .
  • an antenna 1452 receives FL modulated signals from base station 110 and possibly other base stations and provides a received signal to a receiver (RCVR) 1454 .
  • Receiver 1454 processes (e.g., conditions and digitizes) the received signal and provides received samples.
  • An OFDM demodulator (Demod) 1456 performs OFDM demodulation on the received samples and provides received symbols for the K total subcarriers.
  • a receive (RX) data and signaling processor 1458 processes (e.g., symbol demaps, deinterleaves, and decodes) the received symbols and provides decoded data and signaling for terminal 120 .
  • a controller/processor 1470 receives decoding results from processor 1458 and generates ACK messages for terminal 120 .
  • a TX data and signaling processor 1460 generates signaling symbols for the ACK messages, based upon the type of message being acknowledged, data symbols for traffic data to be sent to base station 110 , and pilot symbols.
  • An OFDM modulator 1462 performs OFDM modulation on the data symbols, pilot symbols, and signaling symbols and provides OFDM symbols.
  • a transmitter 1464 conditions the OFDM symbols and generates an RL modulated signal, which is transmitted from antenna 1452 .
  • RL modulated signals from terminal 120 and other terminals are received by antenna 1416 , conditioned and digitized by a receiver 1420 , demodulated by an OFDM demodulator 1422 , and processed by an RX data and signaling processor 1424 to recover the ACK messages, and determine the channel ID of the ACK message to determine the message type being acknowledged, and traffic data sent by terminal 120 and other terminals.
  • a controller/processor 1430 receives the detected ACK messages and controls the data transmissions on the forward link to the terminals.
  • Controllers/processors 1430 and 1470 direct the operation of various processing units at base station 110 and terminal 120 , respectively.
  • Memories 1432 and 1472 store program codes and data for base station 110 and terminal 120 , respectively.
  • FIG. 15 shows a block diagram of an embodiment of TX data and signaling processor 1460 at terminal 120 .
  • Processor 1460 includes a TX data processor 1510 , a TX signaling processor 1520 , and a multiplexer (MUX)/combiner 1530 .
  • MUX multiplexer
  • a unit 1512 encodes, interleaves, and symbol maps traffic data and provides data symbols.
  • a symbol-to-subcarrier mapper 1514 maps the data symbols to the time-frequency blocks for a traffic channel assigned to terminal 120 .
  • a puncturer 1516 punctures data symbols that are mapped to time-frequency segments for the ACK channel, based upon the channel ID that is based upon the type of message being acknowledged, and provides the unpunctured data symbols.
  • a data spreader 1522 spreads an ACK message with a spreading code assigned to terminal 120 and provides ACK chips.
  • the spreading is performed in the frequency domain, and data spreader 1522 provides the ACK chips as signaling symbols.
  • the spreading is performed in the time domain, and a DFT unit transforms the ACK chips for each symbol period to the frequency domain and provides the signaling symbols.
  • a symbol-to-subcarrier mapper 1524 maps the signaling symbols to the proper clusters in the time-frequency segments for the ACK channel.
  • Unit 1530 combines the data symbols from processor 1510 and the signaling symbols from processor 1520 and provides the mapped data and signaling symbols.
  • FIG. 16 shows a block diagram of an embodiment of RX data and signaling processor 1424 at base station 110 .
  • Processor 1424 includes an RX data processor 1610 and an RX signaling processor 1620 .
  • RX data processor 1610 For clarity, the processing to recover traffic data and signaling from one terminal u (e.g., terminal 120 in FIGS. 14 and 15 ) is described below.
  • a symbol-to-subcarrier demapper 1612 extracts received symbols from the time-frequency blocks for the traffic channel assigned to terminal 120 .
  • a puncturer 1614 punctures the received symbols extracted from the time-frequency segments for the ACK channel and provides the unpunctured received symbols.
  • a unit 1616 symbol demaps, deinterleaves, and decodes the unpunctured received symbols and provides decoded data for terminal 120 .
  • a symbol-to-subcarrier demapper 1622 extracts received symbols from the time-frequency segments for the ACK channel and then may provide the channel information along with the detected ACK symbol to detector 1628 for providing for forwarding with the detected ACK symbols. If the spreading is performed in the frequency domain, then an IDFT unit transforms the received symbols for each symbol period to the time domain and provides time-domain samples for despreading (not shown in FIG. 16 ). If the spreading is performed in the frequency domain, which is shown in FIG. 16 and assumed for the description below, then demapper 1622 provides the received symbols for despreading.
  • a data despreader 1624 despreads the received symbols from each cluster with the spreading code assigned to terminal 120 , as follows:
  • An interference estimator 1626 despreads the received symbols from each cluster with each reserved spreading code as follows:
  • z j,c is a despread symbol for reserved spreading codej
  • I 0,c is the interference estimate for cluster c.
  • a detector 1628 performs detection for the ACK message sent by terminal 120 based on the despread symbols and the interference estimates for all clusters, as follows:
  • Equation (7) computes the energy of the despread symbol for the ACK bit for each cluster, scales the symbol energy for each cluster based on the interference estimate for that cluster, and combines the weighted results for all clusters used to send the ACK bit.
  • the ACK detection may also be performed in other manners.
  • base station 110 performs ACK detection with interference cancellation. For example, base station 110 may detect the ACK bit for the strongest received terminal, estimate the interference due to this terminal, subtract the estimated interference from the received symbols, and detect the ACK bit for the next strongest received terminal based on the interference-canceled received symbols.
  • base station 110 performs coherent ACK detection. For this embodiment, base station 110 derives a channel estimate for each terminal based on a pilot sent by that terminal and performs ACK detection with the channel estimate.
  • the signaling transmission techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof.
  • the processing units at a terminal may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
  • the processing units at a base station may also be implemented within one or more ASIC, DSPs
  • the techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the software codes may be stored in a memory (e.g., memory 1432 or 1472 in FIG. 14 ) and executed by a processor (e.g., processor 1430 or 1470 ).
  • the memory may be implemented within the processor or external to the processor.
  • channels herein refers to information or transmission types that may be transmitted by the access point or access terminal. It does not require or utilize fixed or predetermined blocks of subcarriers, time periods, or other resources dedicated to such transmissions.
  • time-frequency segments are exemplary resources that may be assigned for signaling and data.
  • the time-frequency segments may also comprise frequency subcarriers, transmission symbols, or other resources, in addition to time frequency segments.

Abstract

A method, apparatus, and channel structure for acknowledging assignment messages is provided. The method and apparatus allow for efficient signaling based upon the resources.

Description

    CLAIM OF PRIORITY UNDER 35 U.S.C. §120
  • The present Application for Patent claims priority to U.S. patent application Ser. No. 11/142,121 entitled “USE OF SUPPLEMENTAL ASSIGNMENTS,” filed May 31, 2005, and U.S. patent application Ser. No. 11/260,931, entitled “PUNCTURING SIGNALING CHANNEL FOR A WIRELESS COMMUNICATION SYSTEM,” filed Oct. 27, 2005, both of which are hereby expressly incorporated by reference herein.
  • BACKGROUND
  • I. Field
  • The following description relates generally to wireless communications and, amongst other things, to dynamically managing network resources in wireless communication systems.
  • II. Background
  • Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, broadcast, messaging, and so on. These systems may be multiple-access systems capable of supporting communication for multiple users by sharing the available system resources. Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, and frequency division multiple access (FDMA) systems.
  • Multiple-access communication systems typically employ methods of assigning system resources to the individual users of the system. When such assignments change rapidly over time, system overhead required just to manage the assignments can become a significant portion of the overall system capacity. When assignments are sent using messages that constrain the assignment of resource blocks to a subset of the total possible permutations of blocks, assignment expense can be reduced somewhat, but by definition, assignments are constrained. Further, in a system where assignments are “sticky” (e.g., an assignment persists over time rather than having a deterministic expiration time), to determine whether the assignments have been properly decoded.
  • In view of at least the above, there exists a need in the art for a system and/or methodology of improving assignment notification and/or updates and reducing overhead in wireless network systems.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features and nature of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout.
  • FIG. 1 shows a wireless communication system.
  • FIG. 2 illustrates H-ARQ transmission on the forward link.
  • FIGS. 3A and 3B show two subcarrier structures.
  • FIG. 4 shows a frequency-hopping scheme.
  • FIGS. 5A and 5B show two signaling transmission schemes for an ACK channel.
  • FIG. 6 shows puncturing of a time-frequency block for the ACK channel.
  • FIG. 7A shows an ACK segment with multiple clusters.
  • FIG. 7B shows a time-frequency block not punctured by an ACK segment.
  • FIG. 7C shows a time-frequency block punctured by an ACK segment.
  • FIG. 8 shows transmission of an ACK message to achieve diversity.
  • FIG. 9 shows a binary channel tree.
  • FIG. 10 shows a process for acknowledging transmissions on a reverse link by a terminal.
  • FIG. 11 shows an apparatus for acknowledging transmissions on a reverse link by a terminal.
  • FIG. 12 shows a process for determining a message that is being acknowledged on a reverse link channel.
  • FIG. 13 shows an apparatus for determining a message that is being acknowledged on a reverse link channel.
  • FIG. 14 shows a block diagram of a base station and a terminal.
  • FIG. 15 shows a block diagram of a transmit data and signaling processor.
  • FIG. 16 shows a block diagram of a receive data and signaling processor.
  • DETAILED DESCRIPTION
  • The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
  • FIG. 1 shows a wireless communication system 100 with multiple base stations 110 and multiple terminals 120. A base station is a station that communicates with the terminals. A base station may also be called, and may contain some or all of the functionality of, an access point, a Node B, and/or some other network entity. Each base station 110 provides communication coverage for a particular geographic area 102. The term “cell” can refer to a base station and/or its coverage area depending on the context in which the term is used. To improve system capacity, a base station coverage area may be partitioned into multiple smaller areas, e.g., three smaller areas 104 a, 104 b, and 104 c. Each smaller area is served by a respective base transceiver subsystem (BTS). The term “sector” can refer to a BTS and/or its coverage area depending on the context in which the term is used. For a sectorized cell, the BTSs for all sectors of that cell are typically co-located within the base station for the cell. The signaling transmission techniques described herein may be used for a system with sectorized cells as well as a system with un-sectorized cells. For simplicity, in the following description, the term “base station” is used generically for a station that serves a sector as well as a station that serves a cell.
  • Terminals 120 are typically dispersed throughout the system, and each terminal may be fixed or mobile. A-terminal may also be called, and may contain some or all of the functionality of, a mobile station, a user equipment, and/or some other device. A terminal may be a wireless device, a cellular phone, a personal digital assistant (PDA), a wireless modem card, and so on. A terminal may communicate with zero, one, or multiple base stations on the forward and reverse links at any given moment.
  • For a centralized architecture, a system controller 130 couples to base stations 110 and provides coordination and control for these base stations. System controller 130 may be a single network entity or a collection of network entities. For a distributed architecture, the base stations may communicate with one another as needed.
  • The signaling transmission techniques described herein may be used to send various types of signaling such as ACK information, power control commands, channel quality indicators (CQIs), requests for system resources, access probes, feedback information, and so on. These techniques may be used for the forward link as well as the reverse link. For clarity, these techniques are described below for sending ACK information on the reverse link.
  • Certain aspects of system allow efficient allocation of resources ACKs of assignment messages transmitted from base stations 110. Assignment messages my be acknowledged in order to increase assignment reliability and to improve scheduling, in order to reduce lost or not decoded packets. Further, by acknowledging assignments, the number of assignments to be transmitted may be reduced and therefore the power budget available for forward link transmission increased.
  • In such cases, certain logical resources allocated for reverse link transmission are utilized for assignment, which may be supplemental, decremental, forward link, reverse link, or the like, ACKs while others are used for sending data ACKs. However, if a logical resource has only one ACK channel, or an assignment for a given terminal has only one ACK channel then all ACKs are related to data only. That way, if multiple reverse link ACK channels are available both data and assignment messages may be acknowledged. However, if only one or other number of system limited ACK channels are available, then only data messages are acknowledged.
  • Further, in certain aspects, if both a data packet and assignment are being acknowledged for a single frame, or part of a frame, the ACK may be transmitted only for the data packet(s) and not for the assignment. This may be performed in cases where there are link budget or other power limitations.
  • System 100 may employ hybrid automatic repeat request (H-ARQ) transmission, which is also called incremental redundancy (IR) transmission. With H-ARQ, a transmitter sends one or more transmissions for a data packet until the packet is decoded correctly by a receiver or the maximum number of transmissions has been sent. H-ARQ improves reliability for data transmission and supports rate adaptation for packets in the presence of changes in channel conditions.
  • FIG. 2 illustrates H-ARQ transmission on the forward link. A base station processes (e.g., encodes and modulates) a data packet (Packet 1) and generates multiple (V) data blocks, where V>1. A data packet may also be called a codeword and so on. A data block may also be called a subpacket, an H-ARQ transmission, and so on. Each data block for the packet may contain sufficient information to allow a terminal to correctly decode the packet under favorable channel conditions. The V data blocks typically contain different redundancy information for the packet. Each data block may be sent in a frame, which may be of any time duration. The V data blocks are sent one at a time until the packet is terminated, and the block transmissions are spaced apart by Q frames, where Q>1.
  • The base station transmits the first data block (Block 1) for Packet 1 in frame m. The terminal receives and processes (e.g., demodulates and decodes) Block 1, determines that Packet 1 is decoded in error, and sends a NAK to the base station in frame m+q, where q is the ACK/NAK delay and 1≦q<Q. The base station receives the NAK and transmits the second data block (Block 2) for Packet 1 in frame m+Q. The terminal receives Block 2, processes Blocks 1 and 2, determines that Packet 1 is decoded in error, and sends back a NAK in frame m+Q+q. The block transmission and NAK response may continue up to V times. For the example shown in FIG. 2, the base station transmits data block 3 (Block 3) for Packet 1 in frame m+2Q. The terminal receives Block 3, processes Blocks 1 through 3 for Packet 1, determines that the packet is decoded correctly, and sends back an ACK in frame m+2Q+q. The base station receives the ACK and terminates the transmission of Packet 1. The base station processes the next data packet (Packet 2) and transmits the data blocks for Packet 2 in similar manner.
  • In FIG. 2, a new data block is sent every Q frames. To improve channel utilization, the base station may transmit up to Q packets in an interlaced manner. In an embodiment, a first interlace is formed with frames m, m+Q, and so on, a second interlace is formed with frames m+1, m+Q+1, and so on, and a Q-th interlace is formed with frames m+Q−1, m+2Q−1, and so on. The Q interlaces are offset from one another by one frame. The base station may transmit up to Q packets on the Q interlaces. For example, if Q=2, then the first interlace may include odd-numbered frames, and the second interlace may include even-numbered frames. As another example, if Q=6, then six interlaces may be formed and used to send six packets in an interlaced manner. In general, the H-ARQ retransmission delay Q and the ACK/NAK delay q are typically selected to provide sufficient processing time for both the transmitter and receiver.
  • For clarity, FIG. 2 shows transmission of both NAKs and ACKs. For an ACK-based scheme, which is assumed for the description below, an ACK is sent if a packet is decoded correctly, and NAKs are not sent and are presumed by the absence of ACKs.
  • The signaling transmission techniques described herein may be used for various wireless communication systems such as a CDMA system, a TDMA system, an FDMA system, an orthogonal frequency division multiple access (OFDMA) system, a single-carrier frequency division multiple access (SC-FDMA) system, and so on. An OFDMA system utilizes orthogonal frequency division multiplexing (OFDM), which is a modulation technique that partitions the overall system bandwidth into multiple (K) orthogonal subcarriers. These subcarriers are also called tones, bins, and so on. With OFDM, each subcarrier that may be independently modulated with data. An SC-FDMA system may utilize interleaved FDMA (IFDMA) to transmit on subcarriers that are distributed across the system bandwidth, localized FDMA (LFDMA) to transmit on a block of adjacent subcarriers, or enhanced FDMA (EFDMA) to transmit on multiple blocks of adjacent subcarriers. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDMA.
  • The signaling transmission techniques may also be used with various subcarrier structures. For simplicity, the following description assumes that the K total subcarriers are usable for transmission and are given indices of 1 through K.
  • FIG. 3A shows a distributed subcarrier structure 300. For subcarrier structure 300, the K total subcarriers are arranged into S non-overlapping sets such that each set contains N subcarriers that are uniformly distributed across the K total subcarriers. Consecutive subcarriers in each set are spaced apart by S subcarriers, where K=S·N. Hence, set s contains subcarriers s, S+s, 2S+s, . . . , (N−1)·S+s, for s∈{1, . . . , S}.
  • FIG. 3B shows a block subcarrier structure 310. For subcarrier structure 310, the K total subcarriers are arranged into S non-overlapping sets such that each set contains N consecutive subcarriers, where K=S·N. Hence, set s contains subcarriers (s−1)·N+1 through s·N, for s∈{1, . . . , S}.
  • In general, the signaling transmission techniques may be used with any subcarrier structure having any number of subcarrier sets. Each subcarrier set may include any number of subcarriers that may be arranged in any manner. For example, the subcarriers in each set may be uniformly distributed across the system bandwidth as shown in FIG. 3A, contiguous as shown in FIG. 3B, and so on. The subcarrier sets may include the same or different numbers of subcarriers.
  • FIG. 4 shows an exemplary partitioning of time and frequency into time-frequency blocks. A time-frequency block may also be called a tile, a traffic block, or some other terminology. In an embodiment, a time-frequency block corresponds to a specific subcarrier set in a specific time interval, which may span one or multiple symbol periods. A symbol period is the duration of one OFDM symbol or one SC-FDMA symbol. S orthogonal time-frequency blocks are available in each time interval.
  • System 100 may define traffic channels to facilitate allocation and use of the available system resources. A traffic channel is a means for sending data from a transmitter to a receiver and may also be called a channel, a physical channel, a physical layer channel, a data channel, a transmission channel, and so on. Traffic channels may be defined for various types of system resources such as frequency and time.
  • In general, any number of traffic channels may be defined, and the traffic channels may have the same or different transmission capacities. For simplicity, much of the following description assumes that S traffic channels are defined, with each traffic channel being mapped to one time-frequency block in each time interval used for data transmission. These S traffic channels may be assigned to up to S terminals.
  • FIG. 4 also shows an exemplary frequency-hopping scheme 400. For scheme 400, each traffic channel is mapped to a specific sequence of time-frequency blocks that hop across frequency in different time intervals to achieve frequency diversity, as shown in FIG. 4. A hop interval is the amount of time spent on a given subcarrier set and is equal to one time interval for the embodiment shown in FIG. 4. A frequency hopping (FH) pattern indicates the specific time-frequency block to use for each traffic channel in each time interval used for data transmission. FIG. 4 shows the sequence of time-frequency blocks for traffic channel y. The other traffic channels may be mapped to vertically and circularly shifted versions of the time-frequency block sequence for traffic channel y.
  • Frequency hopping may be used with the subcarrier structures shown in FIGS. 3A and 3B. In an embodiment, which is called symbol rate hopping, a time-frequency block is one distributed subcarrier set (e.g., as shown in FIG. 3A) in one symbol period. For symbol rate hopping, the subcarriers for a traffic channel span across the entire system bandwidth and change from symbol period to symbol period. In another embodiment, which is called block hopping, a time-frequency block is one contiguous subcarrier set (e.g., as shown in FIG. 3B) in multiple symbol periods. For block hopping, the subcarriers for a traffic channel are contiguous and fixed for an entire hop interval but change from hop interval to hop interval. Other frequency hopping schemes may also be defined.
  • A terminal may send ACK information on a reverse link acknowledgment channel (R-ACKCH) to a base station to acknowledge H-ARQ transmissions sent by the base station on the forward link. The R-ACKCH is also called an ACK channel in the following description. Referring back to FIG. 2, an H-ARQ transmission is sent in one frame, which may span one or multiple hop intervals. The terminal may send an ACK/NAK for each frame in which an H-ARQ transmission is received from the base station. Several embodiments of the ACK channel for different frame sizes are described below.
  • FIG. 5A shows a signaling transmission scheme 500 for the ACK channel. For the embodiment shown in FIG. 5A, a frame spans two hop intervals, and the ACK channel is mapped to one time-frequency block in each ACK frame. An ACK frame is a frame in which the ACK channel is sent, and a data frame is a frame used for data transmission. Each data frame may be associated with an ACK frame that is q frames away, as shown in FIG. 2. The ACK channel may puncture all or a portion of each time-frequency block to which the ACK channel is mapped, as described below.
  • FIG. 5B shows a signaling transmission scheme 510 for the ACK channel. For the embodiment shown in FIG. 5B, S=32, a frame spans one hop interval, and the ACK channel is mapped to four time-frequency blocks in each ACK frame. The ACK channel may puncture all or a portion of each time-frequency block.
  • For clarity, FIGS. 5A and 5B show the ACK channel puncturing one traffic channel y whenever the ACK channel is mapped to a time-frequency block used for traffic channel y. The ACK channel also punctures other traffic channels, which are not labeled in FIGS. 5A and 5B for clarity. A terminal may transmit data on an assigned traffic channel (e.g., traffic channel y) and may transmit ACK messages on the ACK channel. If many traffic channels are available, then the ACK channel punctures only a portion of the transmission on the assigned traffic channel and punctures mostly the transmissions from other terminals on other traffic channels.
  • In general, the ACK channel may be mapped to any number of time-frequency blocks in each ACK frame. In an embodiment, the ACK channel is mapped to a fixed number of time-frequency blocks in each ACK frame. This fixed number may be determined based on the number of available traffic channels and/or some other factors. In another embodiment, the ACK channel is mapped to a configurable number of time-frequency blocks in each ACK frame. This configurable number may be determined based on the number of traffic channels that are in use, the number of packets that are sent on each traffic channel, the number of ACK bits that may be sent in each time-frequency block, and so on.
  • FIGS. 5A and 5B show specific embodiments for puncturing the traffic channels with the ACK channel. In another embodiment, the ACK channel is mapped to one or more fixed subcarrier sets, and the traffic channels hop around the fixed ACK channel. In yet another embodiment, the S subcarrier sets are arranged into G regions, with each region including S/G consecutive subcarrier sets. The ACK channel is then mapped to one subcarrier set in each region. The ACK channel may also puncture the traffic channels in other manners.
  • In general, the ACK channel may be mapped to time-frequency blocks in a pseudo-random or deterministic manner. The ACK channel may be mapped to different subcarrier sets to achieve frequency and interference diversity, e.g., as shown in FIGS. 5A and 5B. In an embodiment, the ACK channel is pseudo-random with respect to the traffic channels and equally punctures the traffic channels. This may be achieved by hopping the ACK channel, hopping the traffic channels, or hopping both the ACK channel and the traffic channels. An FH pattern may indicate the specific time-frequency block(s) for the ACK channel in each ACK frame. This FH pattern may be sent to the terminals or may be known a priori by the terminals. In any case, the terminals have knowledge of the time-frequency blocks occupied by the ACK channel.
  • FIG. 6 shows an embodiment of the puncturing of a time-frequency block by the ACK channel. The time-frequency block covers N subcarriers and spans T symbol periods. In general, the ACK channel may puncture all or a portion of the time-frequency block. An ACK segment is a time-frequency segment used for the ACK channel. An ACK segment is formed by the part of the time-frequency block that is punctured and used for the ACK channel. In general, an ACK segment may cover any number of subcarriers and may span any number of symbol periods. In an embodiment, which is not shown in FIG. 6, the ACK channel punctures the entire time-frequency block. For this embodiment, the ACK channel is sent in the entire time-frequency block, and traffic data is not sent in the time-frequency block. In another embodiment, which is shown in FIG. 6, the ACK channel punctures a portion of the time-frequency block. For example, the ACK channel may puncture a half, a quarter, an eighth, or some other fraction of the time-frequency block. The punctured portion may be contiguous in both time and frequency, as shown in FIG. 6. Transmission on contiguous subcarriers may result in a lower peak-to-average power ratio (PAPR), which is desirable. Alternatively, the punctured portion may be spread across frequency, across time, or across both frequency and time. In any case, the ACK channel is sent in the punctured portion of the time-frequency block, and traffic data may be sent in the remaining portion of the time-frequency block.
  • FIG. 7A shows an embodiment of an ACK segment. For this embodiment, the ACK segment covers 8 subcarriers and spans 8 symbol periods. The ACK segment includes 64 transmission units. A transmission unit is one subcarrier in one symbol period. For the embodiment shown in FIG. 7A, the ACK segment is partitioned into four clusters. Each cluster covers 8 subcarriers, spans 2 consecutive symbol periods, and includes 16 transmission units.
  • In general, an ACK segment may be partitioned in various manners. In another embodiment, each cluster covers two subcarriers and spans all 8 symbol periods. In yet another embodiment, each cluster covers all subcarriers and spans all symbol periods in the ACK segment. For example, cluster 1 may include subcarriers 1 and 2 in symbol periods 1 and 5, subcarriers 3 and 4 in symbol periods 2 and 6, subcarriers 5 and 6 in symbol periods 3 and 7, and subcarriers 7 and 8 in symbol periods 4 and 8.
  • FIG. 7B shows an embodiment of a time-frequency block that is not punctured by an ACK segment. For this embodiment, the time-frequency block covers 16 subcarriers, spans 8 symbol periods, and includes 128 transmission units. Pilot symbols may be sent on some of the transmission units, and data symbols may be sent on the remaining transmission units. As used herein, a data symbol is a symbol for traffic data, a pilot symbol is a symbol for pilot, which is data that is known a priori by both the base station and the terminals, a signaling symbol is a symbol for signaling, and a symbol is typically a complex value. For the embodiment shown in FIG. 7B, pilot symbols are sent on subcarriers 1, 9 and 16 in symbol periods 1, 2, 3, 6, 7 and 8, or six strips of three pilot symbols. The pilot symbols may be distributed across frequency, e.g., as shown in FIG. 7B, and may be used to derive a channel estimate for the time-frequency block. The channel estimate may be used to perform data detection for the data symbols sent in the time-frequency block.
  • FIG. 7C shows an embodiment of a time-frequency block that is punctured by an ACK segment. For this embodiment, pilot symbols are sent on subcarriers 9 and 16 in symbol periods 1, 2, 3, 6, 7 and 8, or four strips of three pilot symbols. The pilot symbols may be used to derive a channel estimate for the unpunctured portion of the time-frequency block.
  • The embodiment shown in FIGS. 7B and 7C allows a serving sector to derive an interference estimate for an ACK segment for one or more neighbor sectors. A terminal may transmit on an entire time-frequency block to the serving sector if this time-frequency block is not punctured by an ACK segment for the serving sector. However, this time-frequency block may collide with an ACK segment for one or more neighbor sectors. In this case, the lower half of the time-frequency block may observe higher interference from the ACK segment for the neighbor sector(s). The serving sector may estimate the interference from the other sector(s) based on the pilot symbols sent on subcarrier 1 in symbol periods 1, 2, 3, 6, 7 and 8. The serving sector may use the interference estimate for data detection of the data symbols sent in the time-frequency block.
  • FIGS. 7B and 7C show one embodiment for sending pilot and data in a time-frequency block. Pilot and data may also be sent using various other patterns for a time-frequency block. In general, a sufficient number of pilot symbols may be sent on a time-frequency block to allow a serving sector to derive a channel estimate for the time-frequency block, with and without puncturing by an ACK segment for the serving sector. A sufficient number of pilot symbols may be located such that the serving sector can derive an interference estimate for the ACK segment from neighbor sectors.
  • A terminal may send an ACK message for each H-ARQ transmission received from a base station. The amount of information sent in each ACK message may be dependent on the number of packets sent in the corresponding H-ARQ transmission. In an embodiment, an ACK message includes one bit that acknowledges an H-ARQ transmission for one packet. In another embodiment, an ACK message includes multiple (B) bits that acknowledge an H-ARQ transmission for B packets. In an embodiment, an ACK message is sent with On/Off keying, for example, ‘1’ for ACK and ‘0’ for NAK. In another embodiment, an ACK message is encoded prior to transmission.
  • Multiple terminals may send their ACK messages using code division multiplexing (CDM), time division multiplexing (TDM), frequency division multiplexing (FDM), some other orthogonal multiplexing scheme, or a combination thereof. Multiple terminals may send their ACK messages in the same cluster of an ACK segment using any orthogonal multiplexing scheme.
  • In an embodiment, ACK messages are sent using CDM. For this embodiment, the terminals are assigned different spreading codes or sequences, and each terminal spread its ACK messages with its spreading code. The spread ACK messages for the terminals are orthogonal to one another in the code domain.
  • In an embodiment, the spreading codes are orthogonal codes formed with columns of a Hadamard matrix. A 2×2 Hadamard matrix W2×2 and a larger size Hadamard matrix W2L×2L may be expressed as:
  • W _ 2 × 2 = [ 1 1 1 - 1 ] and W _ 2 L × 2 L = [ W _ L × L W _ L × L W _ L × L - W _ L × L ] . Eq ( 1 )
  • Hadamard matrices of square dimensions that are power of two (e.g., 2×2, 4×4, 8×8, and so on) may be formed as shown in equation (1).
  • In another embodiment, the spreading codes are orthogonal codes formed with columns of a Fourier matrix. An L×L Fourier matrix FL×L has element fn,m in the n-th row of the m-th column, which may be expressed as:
  • f n , m = - j2π ( n - 1 ) ( m - 1 ) L , for n = 1 , , L and m = 1 , , L . Eq ( 2 )
  • Fourier matrices of any square dimension (e.g., 2×2, 3×3, 4×4, 5×5, and so on) may be formed as shown in equation (2).
  • A 1-bit ACK message may be spread with an L-chip spreading code to generate a spread ACK message that contains L chips, as follows:

  • x u,i =a u ·w u,i,

  • for

  • i=1, . . . , L,   Eq (3)
  • where au is an ACK bit for terminal u, which may have a value of 0 or 1, or au∈{0, 1};
  • wu,i is the i-th chip of the spreading code assigned to terminal u; and
  • xu,i is the i-th chip of the spread ACK message for terminal u.
  • The L chips of the spread ACK message may be sent in the frequency domain by mapping these L ACK chips to L transmission units in an ACK segment, e.g., like OFDMA. Alternatively, these L ACK chips may be sent in the time domain by performing an L-point DFT/FFT to obtain L frequency-domain symbols and mapping these L symbols to L transmission units in an ACK segment, e.g., like SC-FDMA.
  • For the embodiment shown in FIG. 7A, a 1-bit ACK message may be sent in 16 transmission units, and the ACK bit may be spread with a 16-chip spreading code to generate 16 ACK chips. These 16 ACK chips may then be mapped to 16 transmission units in one ACK cluster. Up to 15 other terminals may send their ACK messages in the same cluster using other spreading codes. Up to 64 terminals may send ACK messages in one ACK segment.
  • In an embodiment, a subset of the available spreading codes is used for sending ACK information. The remaining spreading codes are not used for sending ACK information and are used instead for interference estimation. In an embodiment, each cluster includes 16 transmission units (e.g., as shown in FIG. 7A), eight spreading codes may be used to send ACK information and are called usable spreading codes, and the remaining eight spreading codes are used for interference estimation and are called reserved spreading codes. For this embodiment, eight usable spreading codes are available for each cluster, and up to 32 ACK messages may be sent in one ACK segment. For this embodiment, eight reserved spreading codes may be used for interference estimation in each cluster. More than 32 ACK messages may be sent in one ACK segment by allocating more spreading codes for sending ACK messages. More than 32 ACK messages may be sent in one ACK frame by allocating more ACK segments for the ACK channel.
  • In another embodiment, ACK messages are sent using TDM or FDM. For this embodiment, the terminals are assigned different transmission units for the ACK channel, and each terminal sends its ACK message in its assigned transmission units. The ACK messages for the terminals would then be orthogonal to one another in time and/or frequency. In an embodiment based on the ACK segment shown in FIG. 7A, eight terminals may be assigned eight rows of a cluster, and each terminal may send its ACK bit on the two transmission units in the assigned row. In another embodiment, four clusters are formed, with each cluster covering two subcarriers and spanning 8 symbol periods. Eight terminals may be assigned eight columns of a cluster, and each terminal may send its ACK bit on the two transmission units in the assigned column.
  • FIG. 8 shows an embodiment for transmitting an ACK message to achieve frequency and time diversity. For this embodiment, the ACK message is sent on different clusters in multiple (C) ACK segments, one cluster in each ACK segment. For the embodiment shown in FIG. 8, C=4, and the ACK message is sent on four different clusters in four ACK segments to achieve time diversity. Sending the ACK message over a longer time interval may also improve link budget for terminals located at the edge of coverage. These disadvantage terminals typically have an upper limit on transmit power. A longer transmission time interval for the ACK message allows a disadvantage terminal to transmit the ACK message with more energy spread over a longer period of time, which improves the likelihood of correctly receiving the ACK message. The ACK message also achieves frequency diversity since the four ACK segments occupy different subcarrier sets in different 2-symbol intervals. C-th order diversity may be achieved for the ACK message by sending the ACK message in different clusters in C ACK segments.
  • In an embodiment, an ACK message is sent on different clusters in C ACK segments, and the terminals are mapped to the clusters in a pseudo-random or deterministic manner such that an ACK message for each terminal observes interference from a different set of terminals in each of the C clusters on which that ACK message is sent. This embodiment provides time and frequency diversity for the ACK message sent by each terminal. This embodiment further provides diversity with respect to the interference from the other terminals.
  • A base station performs the complementary despreading to recover the ACK messages sent by the terminals. For each terminal u, the base station despreads the received symbols from each of the C clusters used by terminal u with the spreading code assigned to terminal u and obtains C despread symbols for the C clusters. For each of the C clusters, the base station may also despread the received symbols with each of the reserved spreading codes to obtain an interference estimate for that cluster. The base station may then scale and combine the C despread symbols for terminal u with the interference estimates for the C clusters to obtain a detected ACK message for terminal u, as described below.
  • The signaling transmission techniques described herein may be used with various channel structures. An exemplary channel structure is described below.
  • FIG. 9 shows an embodiment of a binary channel tree 900. For the embodiment shown in FIG. 9, S=32 subcarrier sets are available for use. A set of traffic channels may be defined with the 32 subcarrier sets. Each traffic channel is assigned a unique channel ID and is mapped to one or more subcarrier sets in each time interval. For example, a traffic channel may be defined for each node in channel tree 900. The traffic channels may be sequentially numbered from top to bottom and from left to right for each tier. The largest traffic channel corresponding to the topmost node is assigned a channel ID of 0 and is mapped to all 32 subcarrier sets. The 32 traffic channels in the lowest tier 1 have channel IDs of 31 through 62 and are called base traffic channels. Each base traffic channel is mapped to one subcarrier set.
  • The tree structure shown in FIG. 9 places certain restrictions on the use of the traffic channels for an orthogonal system. For each traffic channel that is assigned, all traffic channels that are subsets (or descendants) of the assigned traffic channel and all traffic channels for which the assigned traffic channel is a subset are restricted. The restricted traffic channels are not used concurrently with the assigned traffic channel so that no two traffic channels use the same subcarrier set at the same time.
  • In an embodiment, an ACK resource is assigned to each traffic channel that is assigned for use. An ACK resource may also be called an ACK sub-channel or some other terminology. An ACK resource includes pertinent resources (e.g., a spreading code and a set of clusters) used to send an ACK message in each ACK frame. For this embodiment, the ACK messages for each traffic channel may be sent on the assigned ACK resource. The assigned ACK resources may be signaled to the terminal.
  • In another embodiment, an ACK resource is associated with each of the base traffic channels in the lowest tier of a channel tree. This embodiment allows for assignment of the maximum number of traffic channels of the minimum size. A larger traffic channel corresponding to a node above the lowest tier may use (1) the ACK resources for all base traffic channels under the larger traffic channel, (2) the ACK resource for one of the base traffic channels, e.g., the base traffic channel with the lowest channel ID, or (3) the ACK resources for a subset of the base traffic channels under the larger traffic channel. For options (1) and (3) above, an ACK message for the larger traffic channel may be sent using multiple ACK resources to improve the likelihood of correct reception. If multiple packets are sent in parallel, e.g., using multiple-input multiple-output (MIMO) transmission, then a larger traffic channel with multiple base traffic channels may be assigned for the transmission. The number of base traffic channels is equal to or greater than the number of packets. Each packet may be mapped to a different base traffic channel. The ACK for each packet may then be sent using the ACK resource for the associated base traffic channel.
  • In yet another embodiment, an ACK resource is assigned to each packet to be acknowledged. A terminal may be assigned one ACK resource if one packet is sent in a frame. A terminal may be assigned multiple ACK resources if multiple packets are sent in a frame, e.g., using either a larger traffic channel or spatial multiplexing to transmit via multiple antennas.
  • In the case of an assignment transmission, which may be a supplemental, decremental, forward link, or reverse link assignment, from the base station, the ACK will be transmitted with a channel ID of the next highest channel ID of an unused data channel. That is, assuming an assignment is transmitted assigning node 15, and thus nodes 31 and 32 to a terminal, the ACK for the assignment would be transmitted on the ACK resources of channel 32. In this way, the base station can determine what packet is being acknowledged based upon the channel on which the ACK is received. However, if no channel is available for acknowledgements of the assignments, if the number of data packets to be acknowledged is less than or equal to the number of available ACK channels or all the nodes do not have ACK resources, all ACKs are determined to be for data packets.
  • As discussed previously, in some cases, if both a data packet and assignment packet is to be acknowledged, the assignment need not be assigned and only the ACK for the data packet is transmitted. This may be performed for link budget limited or power limited situations.
  • In yet another embodiment, an H-ARQ transmission may span multiple interlaces, and an ACK message is sent in multiple ACK frames. The base station may combine the detected ACK messages for the multiple ACK frames to improve ACK detection performance.
  • System 100 may support a single-carrier mode and a multi-carrier mode. In the single-carrier mode, K subcarriers may be available for transmission, and the ACK channel may puncture the traffic channels as described above. In the multi-carrier mode, K subcarriers may be available for each of multiple carriers. The ACK channel may be scaled up for the multi-carrier mode to support more traffic channels and/or to acknowledge more packets that may be sent with more carriers.
  • The transmit power for the ACK channel may be controlled to achieve good performance, which may be quantified by a given target ACK-to-NAK error rate (e.g., 1%), a given target NAK-to-ACK error rate (e.g., 0.1%), and/or some other metrics. In an embodiment, the transmit power for the ACK channel for a given terminal is adjusted based on the measured performance for the ACK channel for that terminal. In another embodiment, the transmit power for the ACK channel is adjusted based on the transmit power for a reference channel. The reference channel may be any channel that is sent often or regularly, e.g., a traffic channel or a signaling channel such as a channel quality indicator (CQI) channel. The ACK channel may use the transmit power for the reference channel as a power reference. The transmit power for the ACK channel may be set equal to the power reference plus a delta, which may be adjusted based on the performance of the ACK channel. The reference channel is thus used for short-term power set point while the long-term offset of the ACK channel is controlled based on the ACK performance.
  • FIG. 10 shows an embodiment of a process 1000 for acknowledging transmissions on a reverse link by a terminal. For the embodiment shown in FIG. 10, signaling is sent with CDM, however, this need not be the case. The type of message being acknowledged is determined. (block 1012). Based upon the type, an acknowledgment channel is assigned to the acknowledgement message for the message. (block 1014). If the message is a data message or a control message, other than an assignment, the channel ID move from the lowest numbered node to the highest numbered node, or logical resource, that is available and includes acknowledgment channels. If the message being acknowledged is an assignment message, then the highest ordered channel, if available, is assigned to the ACK message for the assignment. An assignment message may be a new assignment, supplemental assignment, or explicit detrimental assignment, depending on system parameters that determine which types of assignments are to be acknowledged.
  • The time-frequency segments for a signaling channel that punctures traffic channels are then determined, e.g., based on a frequency hopping pattern for the signaling channel (block 1016). Signaling is generated (block 1018) and spread with a spreading code (e.g., a Walsh code) to obtain spread signaling (block 1020). The spread signaling is mapped to the time-frequency segments for the signaling channel (block 1022). Each time-frequency segment may include multiple clusters. A signaling message may be mapped to different clusters in multiple time-frequency segments to achieve diversity. The signaling may also be sent with other multiplexing schemes instead of CDM.
  • Traffic data is processed and mapped to time-frequency blocks for a traffic channel assigned for use (block 1024). Traffic data that is mapped to the time-frequency segments for the signaling channel is punctured (block 1026). OFDM symbols or SC-FDMA symbols are generated for the mapped signaling and traffic data (block 1028).
  • FIG. 11 shows an embodiment of an apparatus 1100 for acknowledging transmissions on a reverse link by a terminal. Apparatus 1100 includes means for determining a message type being acknowledged (block 1112), assigning an channel ID to the acknowledgement message based upon the type (block 1114), means for determining time-frequency segments for a signaling channel that punctures traffic channels (block 1116), means for generating signaling (block 1118), means for spreading the signaling with a spreading code (e.g., a Walsh code) to generate spread signaling (block 1120), and means for mapping the spread signaling to the time-frequency segments for the signaling channel (block 1122). A signaling message may be mapped to different clusters in multiple time-frequency segments to achieve diversity. Apparatus 1110 further includes means for processing and mapping traffic data to time-frequency blocks for an assigned traffic channel (block 1124), means for puncturing traffic data that is mapped to the time-frequency segments for the signaling channel (block 1126), and means for generating OFDM symbols or SC-FDMA symbols for the mapped signaling and traffic data (block 1128).
  • FIG. 12 shows an embodiment of a process 1200 for determining a message that is being acknowledged on a reverse link channel. Process 1200 may be performed by a base station to receive signaling and data sent on the reverse link. The time-frequency segments for the signaling channel are determined (block 1212). Received symbols are extracted from the time-frequency segments for the signaling channel (block 1214). The extracted received symbols are processed to recover the transmitted signaling. For the embodiment shown in FIG. 12, the extracted received symbols are despread with a spreading code assigned to a terminal to obtain despread symbols for the terminal (block 1216). The extracted received symbols may also be despread with spreading code(s) not used for signaling to obtain interference estimates (block 1218). The despread symbols are detected (e.g., with the interference estimates, if available) to recover the signaling sent by the terminal (block 1220). A signaling message may be sent on different clusters in multiple time-frequency segments. In this case, received symbols are extracted from each cluster and despread with the spreading code, and the despread symbols for the different clusters are detected to recover the signaling message.
  • Received symbols are extracted from time-frequency blocks for a traffic channel assigned to the terminal and the channel ID is determined (block 1222). Received symbols extracted from the time-frequency segments for the signaling channel are punctured (block 1224). The unpunctured received symbols are processed to obtain decoded data for the terminal (block 1226).
  • The channel ID and acknowledgement are then sent for further processing to determine the channel being acknowledged.
  • FIG. 13 shows an embodiment of an apparatus 1300 for receiving signaling and traffic data. Apparatus 1300 includes means for determining the time-frequency segments for the signaling channel (block 1312), means for extracting received symbols from the time-frequency segments for the signaling channel (block 1314), means for despreading the extracted received symbols with a spreading code assigned to a terminal to obtain despread symbols (block 1316), means for despreading the extracted received symbols with spreading code(s) not used for signaling to obtain interference estimates (block 1318), and means for performing detection on the despread symbols (e.g., with the interference estimates, if available) to recover the signaling sent by the terminal (block 1320). A signaling message may also be recovered from different clusters in multiple time-frequency segments. Apparatus 1300 further includes means for extracting received symbols from time-frequency blocks for a traffic channel assigned to the terminal and the channel ID (block 1322), means for puncturing received symbols extracted from the time-frequency segments for the signaling channel (block 1324), and means for processing the unpunctured received symbols to obtain decoded data for the terminal (block 1326).
  • FIG. 14 shows a block diagram of an embodiment of a base station 110 and a terminal 120 in FIG. 1. For this embodiment, base station 110 and terminal 120 are each equipped with a single antenna.
  • At base station 110, a transmit (TX) data and signaling processor 1410 receives traffic data for one or more terminals, processes (e.g., formats, encodes, interleaves, and symbol maps) the traffic data for each terminal based on one or more coding and modulation schemes selected for that terminal, and provides data symbols. Processor 1410 also generates pilot symbols and signaling symbols. An OFDM modulator 1412 performs OFDM modulation on the data symbols, pilot symbols, and signaling symbols and provides OFDM symbols. If system 100 utilizes SC-FDMA, then modulator 1412 performs SC-FDMA modulation and provides SC-FDMA symbols. A transmitter (TMTR) 1414 conditions (e.g., converts to analog, filters, amplifies, and upconverts) the OFDM symbols to generate an FL modulated signal, which is transmitted from an antenna 1416.
  • At terminal 120, an antenna 1452 receives FL modulated signals from base station 110 and possibly other base stations and provides a received signal to a receiver (RCVR) 1454. Receiver 1454 processes (e.g., conditions and digitizes) the received signal and provides received samples. An OFDM demodulator (Demod) 1456 performs OFDM demodulation on the received samples and provides received symbols for the K total subcarriers. A receive (RX) data and signaling processor 1458 processes (e.g., symbol demaps, deinterleaves, and decodes) the received symbols and provides decoded data and signaling for terminal 120.
  • A controller/processor 1470 receives decoding results from processor 1458 and generates ACK messages for terminal 120. A TX data and signaling processor 1460 generates signaling symbols for the ACK messages, based upon the type of message being acknowledged, data symbols for traffic data to be sent to base station 110, and pilot symbols. An OFDM modulator 1462 performs OFDM modulation on the data symbols, pilot symbols, and signaling symbols and provides OFDM symbols. A transmitter 1464 conditions the OFDM symbols and generates an RL modulated signal, which is transmitted from antenna 1452.
  • At base station 110, RL modulated signals from terminal 120 and other terminals are received by antenna 1416, conditioned and digitized by a receiver 1420, demodulated by an OFDM demodulator 1422, and processed by an RX data and signaling processor 1424 to recover the ACK messages, and determine the channel ID of the ACK message to determine the message type being acknowledged, and traffic data sent by terminal 120 and other terminals. A controller/processor 1430 receives the detected ACK messages and controls the data transmissions on the forward link to the terminals.
  • Controllers/ processors 1430 and 1470 direct the operation of various processing units at base station 110 and terminal 120, respectively. Memories 1432 and 1472 store program codes and data for base station 110 and terminal 120, respectively.
  • FIG. 15 shows a block diagram of an embodiment of TX data and signaling processor 1460 at terminal 120. Processor 1460 includes a TX data processor 1510, a TX signaling processor 1520, and a multiplexer (MUX)/combiner 1530.
  • Within TX data processor 1510, a unit 1512 encodes, interleaves, and symbol maps traffic data and provides data symbols. A symbol-to-subcarrier mapper 1514 maps the data symbols to the time-frequency blocks for a traffic channel assigned to terminal 120. A puncturer 1516 punctures data symbols that are mapped to time-frequency segments for the ACK channel, based upon the channel ID that is based upon the type of message being acknowledged, and provides the unpunctured data symbols.
  • Within TX signaling processor 1520, a data spreader 1522 spreads an ACK message with a spreading code assigned to terminal 120 and provides ACK chips. For the embodiment shown in FIG. 15, the spreading is performed in the frequency domain, and data spreader 1522 provides the ACK chips as signaling symbols. In another embodiment, which is not shown in FIG. 15, the spreading is performed in the time domain, and a DFT unit transforms the ACK chips for each symbol period to the frequency domain and provides the signaling symbols. For both embodiments, a symbol-to-subcarrier mapper 1524 maps the signaling symbols to the proper clusters in the time-frequency segments for the ACK channel. Unit 1530 combines the data symbols from processor 1510 and the signaling symbols from processor 1520 and provides the mapped data and signaling symbols.
  • FIG. 16 shows a block diagram of an embodiment of RX data and signaling processor 1424 at base station 110. Processor 1424 includes an RX data processor 1610 and an RX signaling processor 1620. For clarity, the processing to recover traffic data and signaling from one terminal u (e.g., terminal 120 in FIGS. 14 and 15) is described below.
  • Within RX data processor 1610, a symbol-to-subcarrier demapper 1612 extracts received symbols from the time-frequency blocks for the traffic channel assigned to terminal 120. A puncturer 1614 punctures the received symbols extracted from the time-frequency segments for the ACK channel and provides the unpunctured received symbols. A unit 1616 symbol demaps, deinterleaves, and decodes the unpunctured received symbols and provides decoded data for terminal 120.
  • Within RX signaling processor 1620, a symbol-to-subcarrier demapper 1622 extracts received symbols from the time-frequency segments for the ACK channel and then may provide the channel information along with the detected ACK symbol to detector 1628 for providing for forwarding with the detected ACK symbols. If the spreading is performed in the frequency domain, then an IDFT unit transforms the received symbols for each symbol period to the time domain and provides time-domain samples for despreading (not shown in FIG. 16). If the spreading is performed in the frequency domain, which is shown in FIG. 16 and assumed for the description below, then demapper 1622 provides the received symbols for despreading. A data despreader 1624 despreads the received symbols from each cluster with the spreading code assigned to terminal 120, as follows:
  • z u , c = i r c , i · w u , i , Eq ( 4 )
  • where rc,i is the i-th received symbol from cluster c; and
      • zu,c is a despread symbol from cluster c for terminal u.
  • An interference estimator 1626 despreads the received symbols from each cluster with each reserved spreading code as follows:
  • z j , c = i r c , i · w j , i , for j RC Eq ( 5 )
  • where zj,c is a despread symbol for reserved spreading codej; and
      • RC is a set of all reserved spreading codes.
        Interference estimator 1626 then derives an interference estimate for each cluster by summing the squared magnitude of the despread symbols for the reserved spreading codes, as follows:
  • I 0 , c = j RC z j , c 2 , Eq ( 6 )
  • where I0,c is the interference estimate for cluster c.
  • A detector 1628 performs detection for the ACK message sent by terminal 120 based on the despread symbols and the interference estimates for all clusters, as follows:
  • A u = c z u , c 2 I 0 , c , and Eq ( 7 ) ACK u = { 1 A u > A th , 0 otherwise , Eq ( 8 )
  • where Ath is a threshold used for detecting an ACK bit and ACKu is the detected ACK message for terminal 120. Equation (7) computes the energy of the despread symbol for the ACK bit for each cluster, scales the symbol energy for each cluster based on the interference estimate for that cluster, and combines the weighted results for all clusters used to send the ACK bit.
  • The ACK detection may also be performed in other manners. In another embodiment, base station 110 performs ACK detection with interference cancellation. For example, base station 110 may detect the ACK bit for the strongest received terminal, estimate the interference due to this terminal, subtract the estimated interference from the received symbols, and detect the ACK bit for the next strongest received terminal based on the interference-canceled received symbols. In yet another embodiment, base station 110 performs coherent ACK detection. For this embodiment, base station 110 derives a channel estimate for each terminal based on a pilot sent by that terminal and performs ACK detection with the channel estimate.
  • The signaling transmission techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, firmware, software, or a combination thereof. For a hardware implementation, the processing units at a terminal may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof. The processing units at a base station may also be implemented within one or more ASIC, DSPs, processors, and so on.
  • For a firmware and/or software implementation, the techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory (e.g., memory 1432 or 1472 in FIG. 14) and executed by a processor (e.g., processor 1430 or 1470). The memory may be implemented within the processor or external to the processor.
  • It should be noted that the concept of channels herein refers to information or transmission types that may be transmitted by the access point or access terminal. It does not require or utilize fixed or predetermined blocks of subcarriers, time periods, or other resources dedicated to such transmissions.
  • Further, time-frequency segments are exemplary resources that may be assigned for signaling and data. The time-frequency segments may also comprise frequency subcarriers, transmission symbols, or other resources, in addition to time frequency segments.
  • The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (30)

What is claimed is:
1. An apparatus comprising:
at least one processor configured to determine a message type for a message that is being acknowledged, assigning a channel identification based upon the message type, and map the acknowledgment to resources for a signaling channel that puncture traffic channels based upon the channel identification; and
a memory coupled to the at least one processor.
2. The apparatus of claim 1, wherein processor is configured to assign a highest available channel identification to acknowledgements of assignment messages.
3. The apparatus of claim 1, wherein processor is configured to assign a lowest available channel identification to acknowledgments of data messages.
4. The apparatus of claim 1, wherein the at least one processor is configured to spread the acknowledgment with a spreading code, and to map the spread acknowledgment to the resources for the acknowledgment channel.
5. The apparatus of claim 1, wherein the at least one processor is configured to map an acknowledgment message to resources comprising multiple time-frequency segments.
6. The apparatus of claim 5, wherein the multiple time-frequency segments cover different frequency subcarriers.
7. The apparatus of claim 1, wherein the resources comprise time-frequency segment that each comprise multiple clusters, and wherein the at least one processor is configured to map an acknowledgment message to a cluster in each of multiple time-frequency segments.
8. The apparatus of claim 1, wherein the at least one processor is configured to determine the resources for the acknowledgment channel based on a frequency hopping pattern.
9. The apparatus of claim 1, wherein the acknowledgment channel equally punctures the traffic channels.
10. The apparatus of claim 1, wherein the traffic channels are defined by a channel tree, and wherein each node in the channel tree is associated with specific resources in the acknowledgment channel and wherein acknowledgments for assignment messages are assigned the highest available node.
11. The apparatus of claim 1, wherein the at least one processor is configured to generate orthogonal frequency division multiplexing (OFDM) symbols carrying the mapped signaling.
12. The apparatus of claim 1, wherein the at least one processor is configured to generate single-carrier frequency division multiple access (SC-FDMA) symbols carrying the mapped signaling.
13. The apparatus of claim 2, wherein the assignment message is a supplemental assignment message.
14. The apparatus of claim 2, wherein the assignment message is a decremental assignment message.
15. The apparatus of claim 2, wherein the assignment message may be a forward link assignment or a reverse link assignment.
16. A method comprising:
determining a type of message being acknowledged;
assigning a channel identification based upon the type;
generating the acknowledgment for transmission via a communication channel; and
mapping the acknowledgment to resources based upon the channel type for a channel that punctures traffic channels.
17. The method of claim 16, further comprising:
spreading the acknowledgment with a spreading code, and wherein the spread signaling is mapped to the resources for the signaling channel.
18. The method of claim 16, wherein mapping comprises mapping a signaling message to multiple time-frequency segments.
19. The method of claim 16, wherein assigning comprises assigning a highest channel identification to acknowledgements of assignment messages.
20. The method of claim 19, wherein the assignment messages comprise supplemental assignment messages.
21. The method of claim 19, wherein the assignment messages comprise supplemental assignment messages.
22. The method of claim 19, wherein the assignment message may be a forward link assignment or a reverse link assignment.
23. The method of claim 16, wherein assigning comprises assigning a lowest channel identification to acknowledgements to data messages.
24. An apparatus comprising:
means for determining a type of message being acknowledged;
means for assigning a channel identification based upon the type;
means for generating the acknowledgment for transmission via a communication channel; and
means for mapping the acknowledgment to resources based upon the channel type for a channel that punctures traffic channels.
25. The apparatus of claim 24, wherein the means for assigning comprises means for assigning a highest channel identification to acknowledgements of assignment messages.
26. The apparatus of claim 25, wherein the assignment messages comprise supplemental assignment messages.
27. The apparatus of claim 25, wherein the assignment messages comprise a forward link assignment or a reverse link assignment.
28. The apparatus of claim 25, wherein the assignment messages comprise supplemental assignment messages.
29. The apparatus of claim 24, wherein the means for assigning comprises means for assigning a lowest channel identification to acknowledgements to data messages.
30. The apparatus of claim 24, wherein the means for mapping comprises means for mapping the acknowledgement to multiple time-frequency segments.
US11/370,638 2005-05-31 2006-03-07 Assignment acknowledgement for a wireless communication system Expired - Fee Related US8879511B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US11/370,638 US8879511B2 (en) 2005-10-27 2006-03-07 Assignment acknowledgement for a wireless communication system
JP2008514829A JP4740324B2 (en) 2005-05-31 2006-05-31 Allocation acknowledgment for wireless communication systems
PCT/US2006/021211 WO2006130742A1 (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
CN2006800242381A CN101213865B (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
MX2007015007A MX2007015007A (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system.
KR1020137011418A KR20130054460A (en) 2006-03-07 2006-05-31 Assignment acknowledgement for a wireless communication system
KR1020127010805A KR101302590B1 (en) 2006-03-07 2006-05-31 Assignment acknowledgement for a wireless communication system
AU2006252482A AU2006252482B2 (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
KR1020077031029A KR101164282B1 (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
EP06771790.0A EP1897395B1 (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
SG201003787-7A SG162735A1 (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
NZ563877A NZ563877A (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
CA2610425A CA2610425C (en) 2005-05-31 2006-05-31 Assignment acknowledgement for a wireless communication system
BRPI0611324-9A BRPI0611324B1 (en) 2005-05-31 2006-05-31 CONFIGURATION OF DESIGNATION FOR A WIRELESS COMMUNICATION SYSTEM
IL187722A IL187722A0 (en) 2005-05-31 2007-11-28 Assignment acknowledgement for a wireless communication system
NO20076438A NO20076438L (en) 2005-05-31 2007-12-13 Award receipt for a wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/260,931 US8565194B2 (en) 2005-10-27 2005-10-27 Puncturing signaling channel for a wireless communication system
US11/370,638 US8879511B2 (en) 2005-10-27 2006-03-07 Assignment acknowledgement for a wireless communication system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/260,931 Continuation-In-Part US8565194B2 (en) 2005-05-31 2005-10-27 Puncturing signaling channel for a wireless communication system

Publications (3)

Publication Number Publication Date
US20070211667A1 US20070211667A1 (en) 2007-09-13
US20140286317A9 true US20140286317A9 (en) 2014-09-25
US8879511B2 US8879511B2 (en) 2014-11-04

Family

ID=38478832

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/370,638 Expired - Fee Related US8879511B2 (en) 2005-05-31 2006-03-07 Assignment acknowledgement for a wireless communication system

Country Status (2)

Country Link
US (1) US8879511B2 (en)
KR (2) KR20130054460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150326444A1 (en) * 2014-05-06 2015-11-12 Silicon Image, Inc. Network topology discovery
US10079722B2 (en) 2014-05-09 2018-09-18 Lattice Semiconductor Corporation Stream creation with limited topology information

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) * 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8477684B2 (en) * 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US7864740B2 (en) * 2006-03-17 2011-01-04 Futurewei Technologies, Inc. System for minimizing signaling overhead in OFDMA-based communication systems
EP2838237B1 (en) 2006-04-12 2016-06-29 Lg Electronics Inc. Method and devices for allocating reference signals in mimo system
US8102802B2 (en) * 2006-05-08 2012-01-24 Motorola Mobility, Inc. Method and apparatus for providing downlink acknowledgments and transmit indicators in an orthogonal frequency division multiplexing communication system
FI20065438A0 (en) * 2006-06-22 2006-06-22 Nokia Corp Disturbance Removal Unit and Disturbance Removal Procedure
US7953061B2 (en) 2006-10-02 2011-05-31 Lg Electronics Inc. Method for transmitting control signal using efficient multiplexing
TWI416913B (en) 2006-10-02 2013-11-21 Lg Electronics Inc Method for transmitting downlink control signal
KR101355313B1 (en) * 2006-10-12 2014-01-23 엘지전자 주식회사 Method of allocating reference signals in MIMO system
PT3503449T (en) 2006-10-31 2020-11-04 Ericsson Telefon Ab L M Method and apparatuss for error control in telecommunications systems
US8306060B2 (en) * 2006-11-07 2012-11-06 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed video having a composite frame format
US8391130B2 (en) * 2006-11-28 2013-03-05 Samsung Electronics Co., Ltd. Method and apparatus for estimating and reducing interference in wireless communication systems
US8169995B2 (en) * 2006-12-04 2012-05-01 Samsung Electronics Co., Ltd. System and method for wireless communication of uncompressed video having delay-insensitive data transfer
EP1936853B1 (en) * 2006-12-20 2018-11-21 Panasonic Intellectual Property Corporation of America Avoidance of feedback collision in mobile communications
KR101265800B1 (en) * 2007-01-10 2013-05-20 엘지전자 주식회사 Method of transmitting control signal for multi-carrier system
JP5206921B2 (en) * 2007-03-16 2013-06-12 日本電気株式会社 Resource allocation control method and apparatus in mobile radio system
US8630242B2 (en) 2007-03-19 2014-01-14 Lg Electronics Inc. Resource allocation method and a method for transmitting/receiving resource allocation information in mobile communication system
KR101049138B1 (en) 2007-03-19 2011-07-15 엘지전자 주식회사 In a mobile communication system, an acknowledgment signal receiving method
CA3108727C (en) 2007-03-23 2023-03-07 Optis Wireless Technology, Llc Radio communication base station device and control channel arrangement method
ES2587705T3 (en) * 2007-04-11 2016-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus in a telecommunication system
KR101341501B1 (en) * 2007-05-29 2013-12-16 엘지전자 주식회사 Method for transmitting control information
KR100913090B1 (en) * 2007-06-13 2009-08-21 엘지전자 주식회사 A method for transmitting spread-signal in a communication system
KR100908063B1 (en) 2007-06-13 2009-07-15 엘지전자 주식회사 Method of transmitting a spread signal in a mobile communication system
JP4505043B2 (en) 2007-06-15 2010-07-14 パナソニック株式会社 Wireless communication apparatus and response signal spreading method
KR100900289B1 (en) 2007-06-21 2009-05-29 엘지전자 주식회사 A method for transmitting and receiving a control channel in the Orthogonal Frequency Division Multiplexing system
DK2846560T3 (en) 2007-07-06 2017-03-27 Huawei Tech Co Ltd Mobile communication system, method and mobile station device
EP2439864A1 (en) 2007-10-29 2012-04-11 Panasonic Corporation Radio communication device and constellation control method
US20090109916A1 (en) * 2007-10-31 2009-04-30 Nokia Corporation Method and apparatus for providing a shared reservation acknowledgement channel
US9397779B2 (en) * 2008-01-29 2016-07-19 Koninklijke Philips N.V. Method of packet retransmission and reception and wireless device employing the same
US20100046367A1 (en) * 2008-08-20 2010-02-25 Qualcomm Incorporated Power and resource efficient appdu based approach with scheduled data transmission times for wlan
US9590832B1 (en) 2008-09-23 2017-03-07 Marvell International Ltd. Sub-carrier adaptation in multi-carrier communication systems
US20100172318A1 (en) * 2009-01-05 2010-07-08 Intel Corporation Handling Hybrid Automatic Repeat Requests in Wireless Systems
CN104184567B (en) 2009-01-24 2019-11-22 华为技术有限公司 ACK/NACK channel resource allocation and the method and device of confirmation message processing
US8804611B2 (en) * 2009-02-12 2014-08-12 Qualcomm Incorporated Method and apparatus for acknowledging successful reception of a data transmission for multi-access compatibility in a wireless communication system
US20110085519A1 (en) * 2009-10-09 2011-04-14 Nokia Corporation Spreading Code Allocation
US8782237B2 (en) 2010-01-28 2014-07-15 Intel Corporation Audio/video streaming in a topology of devices
US8830981B2 (en) 2010-07-22 2014-09-09 Blackberry Limited Methods and apparatus to poll in wireless communications based on assignments
US9001649B2 (en) 2010-07-22 2015-04-07 Blackberry Limited Methods and apparatus to communicate data between a wireless network and a mobile station
US8837388B2 (en) * 2010-07-22 2014-09-16 Blackberry Limited Methods and apparatus to perform assignments in wireless communications
US8745231B2 (en) 2010-07-22 2014-06-03 Blackberry Limited Methods and apparatus to poll in wireless communications
US10033485B2 (en) * 2010-08-25 2018-07-24 Qualcomm Incorporated Managing acknowledgement messages from multiple destinations for multi user MIMO transmissions
JP5826852B2 (en) * 2011-08-30 2015-12-02 パナソニック株式会社 SC-FDMA transmitter and transmission method
US9525516B2 (en) * 2011-08-30 2016-12-20 Panasonic Corporation Transmission device and transmission method
KR20150044875A (en) * 2012-08-13 2015-04-27 엘지전자 주식회사 Channelization method in whitespace band and apparatus for the same
US9661657B2 (en) 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
US9264099B1 (en) * 2015-06-02 2016-02-16 Link Labs, Inc. Frequency-block hopping
KR102458074B1 (en) * 2016-03-31 2022-10-24 삼성전자 주식회사 Method and Device for providing different services

Family Cites Families (877)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US844796A (en) * 1905-11-13 1907-02-19 S I I Battiste Insulating wire-holder.
US4393276A (en) 1981-03-19 1983-07-12 Bell Telephone Laboratories, Incorporated Fourier masking analog signal secure communication system
FR2527871B1 (en) 1982-05-27 1986-04-11 Thomson Csf RADIOCOMMUNICATION SYSTEM, FREQUENCY HOPPING
SU1320883A1 (en) 1985-02-06 1987-06-30 Предприятие П/Я Р-6707 Device for recovering time intervals of digital signals received from channel with limited bandwidth
FR2584884B1 (en) 1985-07-09 1987-10-09 Trt Telecom Radio Electr FREE CHANNEL SEARCHING METHOD AND DEVICE FOR A MOBILE RADIO SYSTEM
JPS6216639A (en) 1985-07-16 1987-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Privacy telephone system
GB2180127B (en) 1985-09-04 1989-08-23 Philips Electronic Associated Method of data communication
JPS6290045A (en) 1985-10-16 1987-04-24 Kokusai Denshin Denwa Co Ltd <Kdd> Frequency assignment system in fdma communication system
US5008900A (en) 1989-08-14 1991-04-16 International Mobile Machines Corporation Subscriber unit for wireless digital subscriber communication system
FR2652452B1 (en) 1989-09-26 1992-03-20 Europ Agence Spatiale DEVICE FOR SUPPLYING A MULTI-BEAM ANTENNA.
JPH04111544A (en) 1990-08-31 1992-04-13 Nippon Telegr & Teleph Corp <Ntt> Radio channel assigning method
JP2807771B2 (en) 1991-03-28 1998-10-08 キヤノン株式会社 Wireless telephone system and wireless communication device
US5257399A (en) 1990-11-28 1993-10-26 Telefonaktiebolaget L M Ericsson Multiple access handling in a cellular communications system
US5253270A (en) * 1991-07-08 1993-10-12 Hal Communications Apparatus useful in radio communication of digital data using minimal bandwidth
US5455839A (en) 1991-12-27 1995-10-03 Motorola, Inc. Device and method for precoding
JP2904986B2 (en) 1992-01-31 1999-06-14 日本放送協会 Orthogonal frequency division multiplex digital signal transmitter and receiver
US5384810A (en) * 1992-02-05 1995-01-24 At&T Bell Laboratories Modulo decoder
US5363408A (en) 1992-03-24 1994-11-08 General Instrument Corporation Mode selective quadrature amplitude modulation communication system
US5282222A (en) * 1992-03-31 1994-01-25 Michel Fattouche Method and apparatus for multiple access between transceivers in wireless communications using OFDM spread spectrum
GB9209027D0 (en) 1992-04-25 1992-06-17 British Aerospace Multi purpose digital signal regenerative processing apparatus
US5268694A (en) 1992-07-06 1993-12-07 Motorola, Inc. Communication system employing spectrum reuse on a spherical surface
FR2693861A1 (en) 1992-07-16 1994-01-21 Philips Electronique Lab Multiplexed orthogonal frequency division signal receiver with frequency synchronization device.
US5768276A (en) 1992-10-05 1998-06-16 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels supporting broadcast SMS
US5604744A (en) * 1992-10-05 1997-02-18 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels for multiple access radiocommunication
US5404355A (en) 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
US5603081A (en) 1993-11-01 1997-02-11 Telefonaktiebolaget Lm Ericsson Method for communicating in a wireless communication system
US5384410A (en) * 1993-03-24 1995-01-24 The Du Pont Merck Pharmaceutical Company Removal of boronic acid protecting groups by transesterification
JP2942913B2 (en) 1993-06-10 1999-08-30 ケイディディ株式会社 Remote party authentication / encryption key distribution method
EP0705512B1 (en) 1993-06-18 1997-10-01 Qualcomm Incorporated Method and apparatus for determining the data rate of a received signal
US5870393A (en) * 1995-01-20 1999-02-09 Hitachi, Ltd. Spread spectrum communication system and transmission power control method therefor
US6501810B1 (en) 1998-10-13 2002-12-31 Agere Systems Inc. Fast frame synchronization
US5594738A (en) * 1993-10-18 1997-01-14 Motorola, Inc. Time slot allocation method
ZA948134B (en) 1993-10-28 1995-06-13 Quaqlcomm Inc Method and apparatus for performing handoff between sectors of a common base station
US5410538A (en) 1993-11-09 1995-04-25 At&T Corp. Method and apparatus for transmitting signals in a multi-tone code division multiple access communication system
SG48266A1 (en) 1993-12-22 1998-04-17 Philips Electronics Nv Multicarrier frequency hopping communications system
US5465253A (en) 1994-01-04 1995-11-07 Motorola, Inc. Method and apparatus for demand-assigned reduced-rate out-of-band signaling channel
US5469471A (en) 1994-02-01 1995-11-21 Qualcomm Incorporated Method and apparatus for providing a communication link quality indication
GB9402942D0 (en) * 1994-02-16 1994-04-06 Northern Telecom Ltd Base station antenna arrangement
US5513379A (en) 1994-05-04 1996-04-30 At&T Corp. Apparatus and method for dynamic resource allocation in wireless communication networks utilizing ordered borrowing
US5603096A (en) 1994-07-11 1997-02-11 Qualcomm Incorporated Reverse link, closed loop power control in a code division multiple access system
US5583869A (en) 1994-09-30 1996-12-10 Motorola, Inc. Method for dynamically allocating wireless communication resources
KR100211426B1 (en) 1994-10-27 1999-08-02 포만 제프리 엘 Method and apparatus for secure identification of a mobile user in a communication network
JP3437291B2 (en) 1994-11-14 2003-08-18 キヤノン株式会社 Reproduction device and reproduction method
US6169910B1 (en) * 1994-12-30 2001-01-02 Focused Energy Holding Inc. Focused narrow beam communication system
US5684491A (en) 1995-01-27 1997-11-04 Hazeltine Corporation High gain antenna systems for cellular use
JPH08288927A (en) 1995-04-17 1996-11-01 Oki Electric Ind Co Ltd Spread spectrum communication system and spread spectrum communication equipment
US5612978A (en) 1995-05-30 1997-03-18 Motorola, Inc. Method and apparatus for real-time adaptive interference cancellation in dynamic environments
US6535666B1 (en) 1995-06-02 2003-03-18 Trw Inc. Method and apparatus for separating signals transmitted over a waveguide
US6018317A (en) 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US6215983B1 (en) 1995-06-02 2001-04-10 Trw Inc. Method and apparatus for complex phase equalization for use in a communication system
US5726978A (en) 1995-06-22 1998-03-10 Telefonaktiebolaget L M Ericsson Publ. Adaptive channel allocation in a frequency division multiplexed system
FI99252C (en) 1995-07-03 1997-12-29 Nokia Mobile Phones Ltd Combined radio signal modulation and multi-use method
US6154484A (en) 1995-09-06 2000-11-28 Solana Technology Development Corporation Method and apparatus for embedding auxiliary data in a primary data signal using frequency and time domain processing
US5815488A (en) 1995-09-28 1998-09-29 Cable Television Laboratories, Inc. Multiple user access method using OFDM
JPH09139725A (en) 1995-11-16 1997-05-27 Matsushita Electric Ind Co Ltd Multiplex communication equipment
EP0774850B1 (en) 1995-11-16 2004-10-27 Ntt Mobile Communications Network Inc. Digital signal detecting method and detector
JP2812318B2 (en) 1995-11-29 1998-10-22 日本電気株式会社 Spread spectrum communication method and apparatus
US5815116A (en) 1995-11-29 1998-09-29 Trw Inc. Personal beam cellular communication system
US5887023A (en) 1995-11-29 1999-03-23 Nec Corporation Method and apparatus for a frequency hopping-spread spectrum communication system
KR0150275B1 (en) 1995-12-22 1998-11-02 양승택 Congestion control method for multicast communication
EP0786889B1 (en) 1996-02-02 2002-04-17 Deutsche Thomson-Brandt Gmbh Method for the reception of multicarrier signals and related apparatus
US6134215A (en) 1996-04-02 2000-10-17 Qualcomm Incorpoated Using orthogonal waveforms to enable multiple transmitters to share a single CDM channel
US5822368A (en) 1996-04-04 1998-10-13 Lucent Technologies Inc. Developing a channel impulse response by using distortion
JPH09281508A (en) * 1996-04-12 1997-10-31 Semiconductor Energy Lab Co Ltd Liquid crystal display device and its manufacture
GB9609148D0 (en) 1996-05-01 1996-07-03 Plessey Telecomm Multi-party communication
US5790537A (en) 1996-05-15 1998-08-04 Mcgill University Interference suppression in DS-CDMA systems
DE69705356T2 (en) 1996-05-17 2002-05-02 Motorola Ltd Method and device for weighting a transmission path
US5926470A (en) 1996-05-22 1999-07-20 Qualcomm Incorporated Method and apparatus for providing diversity in hard handoff for a CDMA system
GB9611146D0 (en) 1996-05-29 1996-07-31 Philips Electronics Nv Method of, and system for, transmitting messages
US5732113A (en) 1996-06-20 1998-03-24 Stanford University Timing and frequency synchronization of OFDM signals
KR980007105A (en) 1996-06-28 1998-03-30 김광호 Method for controlling transmission power of mobile station
US6909797B2 (en) 1996-07-10 2005-06-21 R2 Technology, Inc. Density nodule detection in 3-D digital images
US6058309A (en) 1996-08-09 2000-05-02 Nortel Networks Corporation Network directed system selection for cellular and PCS enhanced roaming
US6141317A (en) 1996-08-22 2000-10-31 Tellabs Operations, Inc. Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system
US6233456B1 (en) 1996-09-27 2001-05-15 Qualcomm Inc. Method and apparatus for adjacent coverage area handoff in communication systems
JP3444114B2 (en) 1996-11-22 2003-09-08 ソニー株式会社 Communication method, base station and terminal device
US5956642A (en) 1996-11-25 1999-09-21 Telefonaktiebolaget L M Ericsson Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system
US6061337A (en) 1996-12-02 2000-05-09 Lucent Technologies Inc. System and method for CDMA handoff using telemetry to determine the need for handoff and to select the destination cell site
KR19980063990A (en) 1996-12-11 1998-10-07 윌리엄비.켐플러 How to allocate and deallocate transmission resources within the local multipoint distribution service system
KR100221336B1 (en) * 1996-12-28 1999-09-15 전주범 Frame harmonic apparatus and method of multi-receiver system
US5953325A (en) 1997-01-02 1999-09-14 Telefonaktiebolaget L M Ericsson (Publ) Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas
US6232918B1 (en) 1997-01-08 2001-05-15 Us Wireless Corporation Antenna array calibration in wireless communication systems
US6173007B1 (en) 1997-01-15 2001-01-09 Qualcomm Inc. High-data-rate supplemental channel for CDMA telecommunications system
US5933421A (en) 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
US5920571A (en) * 1997-02-07 1999-07-06 Lucent Technologies Inc. Frequency channel and time slot assignments in broadband access networks
US6335922B1 (en) * 1997-02-11 2002-01-01 Qualcomm Incorporated Method and apparatus for forward link rate scheduling
EP0925693A4 (en) 1997-02-21 2002-01-02 Motorola Inc Method and apparatus for allocating spectral resources in a wireless communication system
US6359923B1 (en) 1997-12-18 2002-03-19 At&T Wireless Services, Inc. Highly bandwidth efficient communications
US6584144B2 (en) * 1997-02-24 2003-06-24 At&T Wireless Services, Inc. Vertical adaptive antenna array for a discrete multitone spread spectrum communications system
US5838268A (en) 1997-03-14 1998-11-17 Orckit Communications Ltd. Apparatus and methods for modulation and demodulation of data
US5974310A (en) 1997-03-20 1999-10-26 Omnipoint Corporation Communication control for a user of a central communication center
FI104610B (en) 1997-03-27 2000-02-29 Nokia Networks Oy Allocation of a control channel in a packet radio network
US6175550B1 (en) * 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
KR100242421B1 (en) 1997-04-14 2000-02-01 윤종용 Method for assigning pilot pn offset of digital mobile communication system
FI106605B (en) 1997-04-16 2001-02-28 Nokia Networks Oy authentication method
US6076114A (en) 1997-04-18 2000-06-13 International Business Machines Corporation Methods, systems and computer program products for reliable data transmission over communications networks
FI105136B (en) 1997-04-21 2000-06-15 Nokia Mobile Phones Ltd General packet radio service
FI104939B (en) 1997-04-23 2000-04-28 Nokia Networks Oy Implementation of signaling in a telecommunications network
WO1998048528A1 (en) * 1997-04-24 1998-10-29 Ntt Mobile Communications Network Inc. Mobile communication method and mobile communication system
KR100241894B1 (en) 1997-05-07 2000-02-01 윤종용 Software managing method in cdma base station system of personal communication system
US6075814A (en) 1997-05-09 2000-06-13 Broadcom Homenetworking, Inc. Method and apparatus for reducing signal processing requirements for transmitting packet-based data with a modem
JP2879030B2 (en) 1997-05-16 1999-04-05 株式会社次世代デジタルテレビジョン放送システム研究所 OFDM transmitting apparatus and receiving apparatus, and OFDM transmitting method and receiving method
FI105063B (en) 1997-05-16 2000-05-31 Nokia Networks Oy Procedure for determining the direction of transmission and radio system
US6374115B1 (en) * 1997-05-28 2002-04-16 Transcrypt International/E.F. Johnson Method and apparatus for trunked radio repeater communications with backwards compatibility
PL206000B1 (en) 1997-05-30 2010-06-30 Qualcomm Inc Method of and apparatus for transmitting messages to a wireless terminal of a wireless communication system
SE9702271D0 (en) 1997-06-13 1997-06-13 Ericsson Telefon Ab L M Reuse of physical control channel in a distributed cellular radio communication system
US6052364A (en) 1997-06-13 2000-04-18 Comsat Corporation CDMA system architecture for satcom terminals
US6151296A (en) 1997-06-19 2000-11-21 Qualcomm Incorporated Bit interleaving for orthogonal frequency division multiplexing in the transmission of digital signals
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6240129B1 (en) 1997-07-10 2001-05-29 Alcatel Method and windowing unit to reduce leakage, fourier transformer and DMT modem wherein the unit is used
US6038150A (en) 1997-07-23 2000-03-14 Yee; Hsian-Pei Transistorized rectifier for a multiple output converter
US6038263A (en) 1997-07-31 2000-03-14 Motorola, Inc. Method and apparatus for transmitting signals in a communication system
US6307849B1 (en) 1997-09-08 2001-10-23 Qualcomm Incorporated Method and system for changing forward traffic channel power allocation during soft handoff
KR100365346B1 (en) 1997-09-09 2003-04-11 삼성전자 주식회사 Apparatus and method for generating quasi-orthogonal code of mobile communication system and diffusing band by using quasi-orthogonal code
US6038450A (en) 1997-09-12 2000-03-14 Lucent Technologies, Inc. Soft handover system for a multiple sub-carrier communication system and method thereof
US6377809B1 (en) 1997-09-16 2002-04-23 Qualcomm Incorporated Channel structure for communication systems
US6577739B1 (en) 1997-09-19 2003-06-10 University Of Iowa Research Foundation Apparatus and methods for proportional audio compression and frequency shifting
US6075797A (en) 1997-10-17 2000-06-13 3Com Corporation Method and system for detecting mobility of a wireless-capable modem to minimize data transfer rate renegotiations
US7184426B2 (en) * 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
KR100369602B1 (en) 1997-11-03 2003-04-11 삼성전자 주식회사 Power control bit inserting method of cdma mobile communication system
US5995992A (en) 1997-11-17 1999-11-30 Bull Hn Information Systems Inc. Conditional truncation indicator control for a decimal numeric processor employing result truncation
US6108323A (en) 1997-11-26 2000-08-22 Nokia Mobile Phones Limited Method and system for operating a CDMA cellular system having beamforming antennas
US5971484A (en) * 1997-12-03 1999-10-26 Steelcase Development Inc. Adjustable armrest for chairs
US6067315A (en) 1997-12-04 2000-05-23 Telefonaktiebolaget Lm Ericsson Method and apparatus for coherently-averaged power estimation
US6563806B1 (en) 1997-12-12 2003-05-13 Hitachi, Ltd. Base station for multi-carrier TDMA mobile communication system and method for assigning communication channels
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US6393008B1 (en) 1997-12-23 2002-05-21 Nokia Movile Phones Ltd. Control structures for contention-based packet data services in wideband CDMA
JPH11191756A (en) 1997-12-25 1999-07-13 Nec Corp Equipment and method for data communication with phs (r)
JPH11196109A (en) 1997-12-26 1999-07-21 Canon Inc Radio information communication system
DE19800653A1 (en) 1998-01-09 1999-07-15 Albert M Huber Device for separating particles, or of particles and gases, or of fluids of different densities from liquids, or suspensions, or emulsions, which has a fixed housing and is separated by means of centrifugal force and also conveys the above-mentioned media through this device and possibly downstream means
DE19800953C1 (en) 1998-01-13 1999-07-29 Siemens Ag Resource allocation in radio interface of radio communications system
US6175650B1 (en) * 1998-01-26 2001-01-16 Xerox Corporation Adaptive quantization compatible with the JPEG baseline sequential mode
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
RU2216101C2 (en) 1998-02-14 2003-11-10 Самсунг Электроникс Ко., Лтд. Data transmission device and method for mobile communication system with allocated control channel
JP3589851B2 (en) 1998-02-20 2004-11-17 株式会社日立製作所 Packet communication system and packet communication device
WO1999044383A1 (en) 1998-02-27 1999-09-02 Siemens Aktiengesellschaft Telecommunications system with wireless code and time-division multiplex based telecommuncation between mobile and/or stationary transmitting/receiving devices
DE59907450D1 (en) 1998-02-27 2003-11-27 Siemens Ag TELECOMMUNICATION SYSTEMS WITH WIRELESS TELECOMMUNICATION BASED ON CODE AND TIME MULTIPLEX
JP3199020B2 (en) 1998-02-27 2001-08-13 日本電気株式会社 Audio music signal encoding device and decoding device
JP3917194B2 (en) 1998-03-14 2007-05-23 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for transmitting and receiving frame messages of different lengths in a CDMA communication system
JP2002508620A (en) * 1998-03-23 2002-03-19 サムスン エレクトロニクス カンパニー リミテッド Power control apparatus and method for reverse link common channel in code division multiple access communication system
CA2327678C (en) 1998-04-03 2007-12-18 Tellabs Operations, Inc. Filter for impulse response shortening, with addition spectral constraints, for multicarrier transmission
US6112094A (en) 1998-04-06 2000-08-29 Ericsson Inc. Orthogonal frequency hopping pattern re-use scheme
JPH11298954A (en) 1998-04-08 1999-10-29 Hitachi Ltd Method and system for radio communication
US6353620B1 (en) 1998-04-09 2002-03-05 Ericsson Inc. System and method for facilitating inter-nodal protocol agreement in a telecommunications
US6567425B1 (en) 1998-04-23 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Bearer independent signaling protocol
US6075350A (en) 1998-04-24 2000-06-13 Lockheed Martin Energy Research Corporation Power line conditioner using cascade multilevel inverters for voltage regulation, reactive power correction, and harmonic filtering
US6198775B1 (en) 1998-04-28 2001-03-06 Ericsson Inc. Transmit diversity method, systems, and terminals using scramble coding
JP3955680B2 (en) 1998-05-12 2007-08-08 株式会社エヌ・ティ・ティ・ドコモ Radio channel access method in mobile communication system of time division communication system, base station and mobile station using the method
BR9906499A (en) 1998-05-12 2000-09-26 Samsung Electronics Co Ltd Soc Process and device for the reduction of the peak energy ratio to average of the transmission energy of a mobile station in a mobile communication system.
KR100383575B1 (en) 1998-05-12 2004-06-26 삼성전자주식회사 Spreading modulation method for reducing peak to average power ratio in transmission power of terminal, and apparatus therefor
GB2337414A (en) 1998-05-14 1999-11-17 Fujitsu Ltd Soft handoff in cellular communications networks
US6643275B1 (en) 1998-05-15 2003-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
KR100291476B1 (en) 1998-05-25 2001-07-12 윤종용 A method and a system for controlling a pilot measurement request order in cellular system
JP2000004215A (en) * 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd Transmission/reception system
JP3092798B2 (en) 1998-06-30 2000-09-25 日本電気株式会社 Adaptive transceiver
RU2141706C1 (en) 1998-07-06 1999-11-20 Военная академия связи Method and device for adaptive spatial filtering of signals
KR100318959B1 (en) 1998-07-07 2002-04-22 윤종용 Apparatus and method for eliminating interference between different codes in a CDMA communication system
WO2000003508A1 (en) 1998-07-13 2000-01-20 Sony Corporation Communication method, transmitter, and receiver
RU2183387C2 (en) 1998-07-16 2002-06-10 Самсунг Электроникс Ко., Лтд. Processing of packaged data in mobile communication system
US6636525B1 (en) 1998-08-19 2003-10-21 International Business Machines Corporation Destination dependent coding for discrete multi-tone modulation
KR100429540B1 (en) 1998-08-26 2004-08-09 삼성전자주식회사 Packet data communication apparatus and method of mobile communication system
US6798736B1 (en) 1998-09-22 2004-09-28 Qualcomm Incorporated Method and apparatus for transmitting and receiving variable rate data
JP2000102065A (en) 1998-09-24 2000-04-07 Toshiba Corp Radio communication base station unit
CA2282942A1 (en) 1998-11-09 2000-05-09 Lucent Technologies Inc. Efficient authentication with key update
US6542485B1 (en) 1998-11-25 2003-04-01 Lucent Technologies Inc. Methods and apparatus for wireless communication using time division duplex time-slotted CDMA
US6473399B1 (en) 1998-11-30 2002-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining an optimum timeout under varying data rates in an RLC wireless system which uses a PDU counter
US6590881B1 (en) 1998-12-04 2003-07-08 Qualcomm, Incorporated Method and apparatus for providing wireless communication system synchronization
EP1006665B1 (en) 1998-12-04 2003-05-28 Lucent Technologies Inc. Error concealment or correction of speech, image and video signals
KR100315670B1 (en) 1998-12-07 2001-11-29 윤종용 Apparatus and method for gating transmission of cdma communication system
JP2000184425A (en) 1998-12-15 2000-06-30 Toshiba Corp Radio communication base station equipment
GB2345612B (en) 1998-12-31 2003-09-03 Nokia Mobile Phones Ltd Measurement report transmission in a telecommunications system
US6654429B1 (en) 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
EP1530336B1 (en) 1999-01-08 2009-06-10 Sony Deutschland GmbH Synchronization preamble structure for OFDM system
US6393012B1 (en) 1999-01-13 2002-05-21 Qualcomm Inc. System for allocating resources in a communication system
US6229795B1 (en) 1999-01-13 2001-05-08 Qualcomm Incorporated System for allocating resources in a communication system
EP1021019A1 (en) 1999-01-15 2000-07-19 Sony International (Europe) GmbH Quasi-differential modulation/demodulation method for multi-amplitude digital modulated signals and OFDM system
US6584140B1 (en) 1999-01-22 2003-06-24 Systems Information And Electronic Systems Integration Inc. Spectrum efficient fast frequency-hopped modem with coherent demodulation
US6219161B1 (en) 1999-01-25 2001-04-17 Telcordia Technologies, Inc. Optical layer survivability and security system
US6388998B1 (en) 1999-02-04 2002-05-14 Lucent Technologies Inc. Reuse of codes and spectrum in a CDMA system with multiple-sector cells
US6256478B1 (en) 1999-02-18 2001-07-03 Eastman Kodak Company Dynamic packet sizing in an RF communications system
US6597746B1 (en) 1999-02-18 2003-07-22 Globespanvirata, Inc. System and method for peak to average power ratio reduction
CA2262315A1 (en) 1999-02-19 2000-08-19 Northern Telecom Limited Joint optimal power balance for coded/tdm constituent data channels
US6317435B1 (en) 1999-03-08 2001-11-13 Qualcomm Incorporated Method and apparatus for maximizing the use of available capacity in a communication system
US6487243B1 (en) 1999-03-08 2002-11-26 International Business Machines Corporation Modems, methods, and computer program products for recovering from errors in a tone reversal sequence between two modems
US6987746B1 (en) * 1999-03-15 2006-01-17 Lg Information & Communications, Ltd. Pilot signals for synchronization and/or channel estimation
KR20000060428A (en) 1999-03-16 2000-10-16 윤종용 Method for enhancing soft/softer handoff using direct connection between BTSs in a CDMA system
US6693952B1 (en) * 1999-03-16 2004-02-17 Lucent Technologies Inc. Dynamic code allocation for downlink shared channels
US7151761B1 (en) 1999-03-19 2006-12-19 Telefonaktiebolaget L M Ericsson (Publ) Code reservation for interference measurement in a CDMA radiocommunication system
US6483820B1 (en) 1999-03-22 2002-11-19 Ericsson Inc. System and method for dynamic radio resource allocation for non-transparent high-speed circuit-switched data services
US6430401B1 (en) 1999-03-29 2002-08-06 Lucent Technologies Inc. Technique for effectively communicating multiple digital representations of a signal
GB2348776B (en) 1999-04-06 2003-07-09 Motorola Ltd A communications network and method of allocating resource thefor
US6249683B1 (en) 1999-04-08 2001-06-19 Qualcomm Incorporated Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel
EP1047209A1 (en) 1999-04-19 2000-10-25 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for multiuser transmission
US6937665B1 (en) 1999-04-19 2005-08-30 Interuniversitaire Micron Elektronica Centrum Method and apparatus for multi-user transmission
JP4224168B2 (en) 1999-04-23 2009-02-12 パナソニック株式会社 Base station apparatus and peak power suppression method
US6614857B1 (en) 1999-04-23 2003-09-02 Lucent Technologies Inc. Iterative channel estimation and compensation based thereon
BRPI0006117B1 (en) 1999-05-12 2015-11-17 Samsung Electronics Co Ltd method for performing base station channel authorization for mobile communication system
JP3236273B2 (en) 1999-05-17 2001-12-10 三菱電機株式会社 Multi-carrier transmission system and multi-carrier modulation method
US6445917B1 (en) 1999-05-19 2002-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Mobile station measurements with event-based reporting
US6674787B1 (en) * 1999-05-19 2004-01-06 Interdigital Technology Corporation Raising random access channel packet payload
US6674810B1 (en) * 1999-05-27 2004-01-06 3Com Corporation Method and apparatus for reducing peak-to-average power ratio in a discrete multi-tone signal
EP1063780A3 (en) 1999-06-02 2003-11-26 Texas Instruments Incorporated Spread spectrum channel estimation sequences
US6631126B1 (en) 1999-06-11 2003-10-07 Lucent Technologies Inc. Wireless communications using circuit-oriented and packet-oriented frame selection/distribution functions
US6539213B1 (en) 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
FR2794915A1 (en) 1999-06-14 2000-12-15 Canon Kk TRANSMITTING METHOD AND DEVICE, RECEIVING METHOD AND DEVICE, AND SYSTEMS USING THE SAME
US7095708B1 (en) 1999-06-23 2006-08-22 Cingular Wireless Ii, Llc Methods and apparatus for use in communicating voice and high speed data in a wireless communication system
JP3518426B2 (en) 1999-06-30 2004-04-12 Kddi株式会社 Code allocation method in CDMA mobile communication system
US6363060B1 (en) 1999-06-30 2002-03-26 Qualcomm Incorporated Method and apparatus for fast WCDMA acquisition
US6657949B1 (en) 1999-07-06 2003-12-02 Cisco Technology, Inc. Efficient request access for OFDM systems
WO2001009276A1 (en) 1999-07-28 2001-02-08 Ciba Specialty Chemicals Holding Inc. Water-soluble granules of salen-type manganese complexes
US6831943B1 (en) 1999-08-13 2004-12-14 Texas Instruments Incorporated Code division multiple access wireless system with closed loop mode using ninety degree phase rotation and beamformer verification
JP2001069046A (en) 1999-08-30 2001-03-16 Fujitsu Ltd Transmission reception system and receiver
US6542743B1 (en) 1999-08-31 2003-04-01 Qualcomm, Incorporated Method and apparatus for reducing pilot search times utilizing mobile station location information
US6765969B1 (en) 1999-09-01 2004-07-20 Motorola, Inc. Method and device for multi-user channel estimation
US6928047B1 (en) 1999-09-11 2005-08-09 The University Of Delaware Precoded OFDM systems robust to spectral null channels and vector OFDM systems with reduced cyclic prefix length
US6449246B1 (en) 1999-09-15 2002-09-10 Telcordia Technologies, Inc. Multicarrier personal access communication system
JP3961829B2 (en) 1999-10-02 2007-08-22 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for intermittent transmission / reception of control channel signal in code division multiple access communication system
RU2242091C2 (en) 1999-10-02 2004-12-10 Самсунг Электроникс Ко., Лтд. Device and method for gating data transferred over control channel in cdma communication system
US6870882B1 (en) * 1999-10-08 2005-03-22 At&T Corp. Finite-length equalization over multi-input multi-output channels
US6337659B1 (en) * 1999-10-25 2002-01-08 Gamma Nu, Inc. Phased array base station antenna system having distributed low power amplifiers
US6985466B1 (en) * 1999-11-09 2006-01-10 Arraycomm, Inc. Downlink signal processing in CDMA systems utilizing arrays of antennae
US6721568B1 (en) 1999-11-10 2004-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Admission control in a mobile radio communications system
KR100602022B1 (en) 1999-12-15 2006-07-20 유티스타콤코리아 유한회사 Method for transmitting parameter use handoff to synchronous cell site from asynchronous cell site in a mobile communication system
WO2001037587A2 (en) 1999-11-17 2001-05-25 Telefonaktiebolaget Lm Ericsson (Publ) Acceleration dependent channel switching in mobile telecommunications
US6466800B1 (en) 1999-11-19 2002-10-15 Siemens Information And Communication Mobile, Llc Method and system for a wireless communication system incorporating channel selection algorithm for 2.4 GHz direct sequence spread spectrum cordless telephone system
JP3289718B2 (en) 1999-11-24 2002-06-10 日本電気株式会社 Time division multiple access method, reference station device, terminal station device
EP1232575B1 (en) 1999-11-29 2009-06-03 Samsung Electronics Co., Ltd. method for assigning a common packet channel in a cdma communication system
DE19957288C1 (en) 1999-11-29 2001-05-10 Siemens Ag Channel structure signalling in radio communications system
US6763009B1 (en) 1999-12-03 2004-07-13 Lucent Technologies Inc. Down-link transmission scheduling in CDMA data networks
US6351499B1 (en) 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6690951B1 (en) * 1999-12-20 2004-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic size allocation system and method
CA2327734A1 (en) 1999-12-21 2001-06-21 Eta Sa Fabriques D'ebauches Ultra-thin piezoelectric resonator
US6628673B1 (en) 1999-12-29 2003-09-30 Atheros Communications, Inc. Scalable communication system using overlaid signals and multi-carrier frequency communication
US6678318B1 (en) * 2000-01-11 2004-01-13 Agere Systems Inc. Method and apparatus for time-domain equalization in discrete multitone transceivers
US6907020B2 (en) 2000-01-20 2005-06-14 Nortel Networks Limited Frame structures supporting voice or streaming communications with high speed data communications in wireless access networks
US7463600B2 (en) 2000-01-20 2008-12-09 Nortel Networks Limited Frame structure for variable rate wireless channels transmitting high speed data
US6804307B1 (en) 2000-01-27 2004-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient transmit diversity using complex space-time block codes
KR100387034B1 (en) 2000-02-01 2003-06-11 삼성전자주식회사 Apparatus and method for scheduling packet data service in wireless communication system
FI117465B (en) 2000-02-03 2006-10-31 Danisco Sweeteners Oy Procedure for hard coating of chewable cores
US6754511B1 (en) 2000-02-04 2004-06-22 Harris Corporation Linear signal separation using polarization diversity
WO2001059968A1 (en) * 2000-02-09 2001-08-16 Golden Bridge Technology, Inc. Collision avoidance
GB0002985D0 (en) 2000-02-09 2000-03-29 Travelfusion Limited Integrated journey planner
US6546248B1 (en) 2000-02-10 2003-04-08 Qualcomm, Incorporated Method and apparatus for generating pilot strength measurement messages
JP3826653B2 (en) 2000-02-25 2006-09-27 Kddi株式会社 Subcarrier allocation method for wireless communication system
JP2001245355A (en) 2000-03-01 2001-09-07 Mitsubishi Electric Corp Packet transmission system in mobile communications
JP2001249802A (en) 2000-03-07 2001-09-14 Sony Corp Transmitting method, transmission system, transmission controller and input device
KR100493068B1 (en) 2000-03-08 2005-06-02 삼성전자주식회사 Method and apparatus for semi-blind transmit antenna array using feedback information in mobile communication system
EP1266463B1 (en) 2000-03-15 2006-06-21 Nokia Corporation Transmit diversity method and system
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6940845B2 (en) 2000-03-23 2005-09-06 At & T, Corp. Asymmetric measurement-based dynamic packet assignment system and method for wireless data services
JP2001285927A (en) 2000-03-29 2001-10-12 Matsushita Electric Ind Co Ltd Communication terminal and wireless communication method
US6493331B1 (en) 2000-03-30 2002-12-10 Qualcomm Incorporated Method and apparatus for controlling transmissions of a communications systems
AU2000238190A1 (en) 2000-04-07 2001-10-23 Nokia Corporation Multi-antenna transmission method and system
US7289570B2 (en) 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
US6934275B1 (en) 2000-04-17 2005-08-23 Motorola, Inc. Apparatus and method for providing separate forward dedicated and shared control channels in a communications system
US6961364B1 (en) 2000-04-18 2005-11-01 Flarion Technologies, Inc. Base station identification in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US6954481B1 (en) 2000-04-18 2005-10-11 Flarion Technologies, Inc. Pilot use in orthogonal frequency division multiplexing based spread spectrum multiple access systems
US6807146B1 (en) 2000-04-21 2004-10-19 Atheros Communications, Inc. Protocols for scalable communication system using overland signals and multi-carrier frequency communication
WO2001082543A2 (en) 2000-04-22 2001-11-01 Atheros Communications, Inc. Multi-carrier communication systems employing variable ofdm-symbol rates and number of carriers
BR0006719A (en) 2000-05-04 2001-09-25 Cristiano Alberto Ribeiro Sant Composition in the form of cream, gel and cream gel applied in the treatment of peyronie's disease, collagen and fibrotic pathologies based on vitamin-e, papain 2% and hyaluronidase
US6748220B1 (en) 2000-05-05 2004-06-08 Nortel Networks Limited Resource allocation in wireless networks
US6519462B1 (en) * 2000-05-11 2003-02-11 Lucent Technologies Inc. Method and apparatus for multi-user resource management in wireless communication systems
FI20001133A (en) 2000-05-12 2001-11-13 Nokia Corp Method for arranging data transfer between data terminals and a link station in a communication system
FI20001160A (en) 2000-05-15 2001-11-16 Nokia Networks Oy Procedure for realizing a pilot signal
EP2375612B1 (en) 2000-05-17 2013-01-23 Panasonic Corporation Hybrid ARQ transmission apparatus and method for packet data transmission
US6529525B1 (en) 2000-05-19 2003-03-04 Motorola, Inc. Method for supporting acknowledged transport layer protocols in GPRS/edge host application
CA2310188A1 (en) 2000-05-30 2001-11-30 Mark J. Frazer Communication structure with channels configured responsive to reception quality
KR100370746B1 (en) 2000-05-30 2003-02-05 한국전자통신연구원 Multi-Dimensional Orthogonal Resource Hopping Multiplexing Communications Method and Apparatus thereof
US8223867B2 (en) * 2000-06-09 2012-07-17 Texas Instruments Incorporated Wireless communications with efficient channel coding
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6337983B1 (en) * 2000-06-21 2002-01-08 Motorola, Inc. Method for autonomous handoff in a wireless communication system
US6701165B1 (en) 2000-06-21 2004-03-02 Agere Systems Inc. Method and apparatus for reducing interference in non-stationary subscriber radio units using flexible beam selection
US20020015405A1 (en) * 2000-06-26 2002-02-07 Risto Sepponen Error correction of important fields in data packet communications in a digital mobile radio network
JP2002016531A (en) 2000-06-27 2002-01-18 Nec Corp Cdma communication system and its method
JP2002026790A (en) 2000-07-03 2002-01-25 Matsushita Electric Ind Co Ltd Wireless communication unit and wireless communication method
DE10032426B4 (en) 2000-07-04 2006-01-12 Siemens Ag Beamforming method
JP4212353B2 (en) 2000-07-11 2009-01-21 財団法人神奈川科学技術アカデミー Probe for mass spectrometry of liquid samples
FR2814301B1 (en) 2000-07-17 2004-11-12 Telediffusion De France Tdf SYNCHRONIZATION OF AN AMRF SIGNAL
US7418043B2 (en) 2000-07-19 2008-08-26 Lot 41 Acquisition Foundation, Llc Software adaptable high performance multicarrier transmission protocol
US7164696B2 (en) * 2000-07-26 2007-01-16 Mitsubishi Denki Kabushiki Kaisha Multi-carrier CDMA communication device, multi-carrier CDMA transmitting device, and multi-carrier CDMA receiving device
GB2366938B (en) * 2000-08-03 2004-09-01 Orange Personal Comm Serv Ltd Authentication in a mobile communications network
DE10039429A1 (en) 2000-08-11 2002-03-07 Siemens Ag Method for signal transmission in a radio communication system
US6980540B1 (en) 2000-08-16 2005-12-27 Lucent Technologies Inc. Apparatus and method for acquiring an uplink traffic channel, in wireless communications systems
US6487184B1 (en) 2000-08-25 2002-11-26 Motorola, Inc. Method and apparatus for supporting radio acknowledgement information for a uni-directional user data channel
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6937592B1 (en) 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US6898441B1 (en) 2000-09-12 2005-05-24 Lucent Technologies Inc. Communication system having a flexible transmit configuration
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US6694147B1 (en) 2000-09-15 2004-02-17 Flarion Technologies, Inc. Methods and apparatus for transmitting information between a basestation and multiple mobile stations
US6802035B2 (en) 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6842487B1 (en) * 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US6496790B1 (en) 2000-09-29 2002-12-17 Intel Corporation Management of sensors in computer systems
US6658258B1 (en) 2000-09-29 2003-12-02 Lucent Technologies Inc. Method and apparatus for estimating the location of a mobile terminal
US7349371B2 (en) 2000-09-29 2008-03-25 Arraycomm, Llc Selecting random access channels
US6778513B2 (en) 2000-09-29 2004-08-17 Arraycomm, Inc. Method and apparatus for separting multiple users in a shared-channel communication system
KR100452536B1 (en) 2000-10-02 2004-10-12 가부시키가이샤 엔.티.티.도코모 Mobile communication base station equipment
US7072315B1 (en) 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
FR2815507B1 (en) 2000-10-16 2003-01-31 Cit Alcatel METHOD FOR MANAGING RADIO RESOURCES IN AN INTERACTIVE TELECOMMUNICATION NETWORK
US6704571B1 (en) 2000-10-17 2004-03-09 Cisco Technology, Inc. Reducing data loss during cell handoffs
US6870808B1 (en) 2000-10-18 2005-03-22 Adaptix, Inc. Channel allocation in broadband orthogonal frequency-division multiple-access/space-division multiple-access networks
BR0107355A (en) 2000-10-20 2002-09-10 Samsung Electronics Co Ltd Apparatus and method for determining a packet data rate in a mobile communication system
WO2002032906A1 (en) 2000-10-20 2002-04-25 Biochemie Gesellschaft M.B.H. Pharmaceutical compositions
US6907270B1 (en) 2000-10-23 2005-06-14 Qualcomm Inc. Method and apparatus for reduced rank channel estimation in a communications system
US6788959B2 (en) 2000-10-30 2004-09-07 Nokia Corporation Method and apparatus for transmitting and receiving dynamic configuration parameters in a third generation cellular telephone network
DE60044436D1 (en) 2000-11-03 2010-07-01 Sony Deutschland Gmbh Transmission power control for OFDM communication links
US6567387B1 (en) 2000-11-07 2003-05-20 Intel Corporation System and method for data transmission from multiple wireless base transceiver stations to a subscriber unit
ATE354923T1 (en) 2000-11-07 2007-03-15 Nokia Corp METHOD AND SYSTEM FOR UPWARD PLANNING OF PACKET DATA TRAFFIC IN WIRELESS SYSTEMS
US20020090024A1 (en) 2000-11-15 2002-07-11 Tan Keng Tiong Method and apparatus for non-linear code-division multiple access technology
DE60028838T2 (en) 2000-11-17 2006-12-07 Nokia Corp. METHOD, DEVICES AND TELECOMMUNICATIONS NETWORK FOR CONTROLLING THE ANTENNA WEIGHTS OF A TRANSCEIVER
ATE383723T1 (en) 2000-11-28 2008-01-15 Ericsson Telefon Ab L M SUBSCRIBE EQUIPMENT REMOVAL USING A CALL PROCEDURE IN A CELLULAR COMMUNICATIONS SYSTEM
JP4625611B2 (en) 2000-12-11 2011-02-02 シャープ株式会社 Wireless communication system
AU2002235217A1 (en) 2000-12-15 2002-06-24 Broadstorm Telecommunications, Inc. Multi-carrier communications with adaptive cluster configuration and switching
MXPA03005307A (en) 2000-12-15 2004-12-02 Adaptix Inc Multi-carrier communications with group-based subcarrier allocation.
US20020077152A1 (en) 2000-12-15 2002-06-20 Johnson Thomas J. Wireless communication methods and systems using multiple overlapping sectored cells
US6947748B2 (en) 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
US6862268B2 (en) 2000-12-29 2005-03-01 Nortel Networks, Ltd Method and apparatus for managing a CDMA supplemental channel
US6920119B2 (en) 2001-01-09 2005-07-19 Motorola, Inc. Method for scheduling and allocating data transmissions in a broad-band communications system
US6829293B2 (en) 2001-01-16 2004-12-07 Mindspeed Technologies, Inc. Method and apparatus for line probe signal processing
US6813284B2 (en) 2001-01-17 2004-11-02 Qualcomm Incorporated Method and apparatus for allocating data streams given transmission time interval (TTI) constraints
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
EP1227601A1 (en) 2001-01-25 2002-07-31 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Downlink scheduling using parallel code trees
US6954448B2 (en) * 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
RU2192094C1 (en) 2001-02-05 2002-10-27 Гармонов Александр Васильевич Method for coherent staggered signal transmission
FR2820574B1 (en) 2001-02-08 2005-08-05 Wavecom Sa METHOD FOR EXTRACTING A REFERENCE SYMBOL PATTERN FOR ESTIMATING THE TRANSFER FUNCTION OF A TRANSMIT CHANNEL, SIGNAL, DEVICE AND CORRESPONDING METHODS
US6985453B2 (en) 2001-02-15 2006-01-10 Qualcomm Incorporated Method and apparatus for link quality feedback in a wireless communication system
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US6975868B2 (en) 2001-02-21 2005-12-13 Qualcomm Incorporated Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
US20020160781A1 (en) 2001-02-23 2002-10-31 Gunnar Bark System, method and apparatus for facilitating resource allocation in a communication system
US6937641B2 (en) 2001-02-28 2005-08-30 Golden Bridge Technology, Inc. Power-controlled random access
US6930470B2 (en) 2001-03-01 2005-08-16 Nortel Networks Limited System and method for code division multiple access communication in a wireless communication environment
US6675012B2 (en) * 2001-03-08 2004-01-06 Nokia Mobile Phones, Ltd. Apparatus, and associated method, for reporting a measurement summary in a radio communication system
US6940827B2 (en) 2001-03-09 2005-09-06 Adaptix, Inc. Communication system using OFDM for one direction and DSSS for another direction
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6934340B1 (en) 2001-03-19 2005-08-23 Cisco Technology, Inc. Adaptive control system for interference rejections in a wireless communications system
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US6748024B2 (en) 2001-03-28 2004-06-08 Nokia Corporation Non-zero complex weighted space-time code for multiple antenna transmission
US7042897B1 (en) 2001-04-05 2006-05-09 Arcwave, Inc Medium access control layer protocol in a distributed environment
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
US7145959B2 (en) 2001-04-25 2006-12-05 Magnolia Broadband Inc. Smart antenna based spectrum multiplexing using existing pilot signals for orthogonal frequency division multiplexing (OFDM) modulations
US7230941B2 (en) 2001-04-26 2007-06-12 Qualcomm Incorporated Preamble channel decoding
US6625172B2 (en) 2001-04-26 2003-09-23 Joseph P. Odenwalder Rescheduling scheduled transmissions
US6611231B2 (en) * 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7188300B2 (en) 2001-05-01 2007-03-06 Telefonaktiebolaget Lm Ericsson (Publ) Flexible layer one for radio interface to PLMN
US7042856B2 (en) 2001-05-03 2006-05-09 Qualcomm, Incorporation Method and apparatus for controlling uplink transmissions of a wireless communication system
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) * 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7047016B2 (en) 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US7079514B2 (en) 2001-05-17 2006-07-18 Samsung Electronics Co., Ltd. Mobile communication apparatus with antenna array and mobile communication method thereof
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
FR2825208B1 (en) 2001-05-22 2004-07-09 Cit Alcatel COMMUNICATION RESOURCE ALLOCATION METHOD IN A TELECOMMUNICATIONS SYSTEM OF THE MF-TDMA TYPE
EP1393486B1 (en) 2001-05-25 2008-07-09 Regents of the University of Minnesota Space-time coded transmissions within a wireless communication network
US6904097B2 (en) 2001-06-01 2005-06-07 Motorola, Inc. Method and apparatus for adaptive signaling in a QAM communication system
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
CA2390253A1 (en) 2001-06-11 2002-12-11 Unique Broadband Systems, Inc. Ofdm multiple sub-channel communication system
AU2002322131A1 (en) 2001-06-21 2003-01-08 Flarion Technologies, Inc. Method of tone allocation for tone hopping sequences
US7027523B2 (en) 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
CN1547861A (en) 2001-06-27 2004-11-17 ���˹���Ѷ��� Communication of control information in wireless communication systems
US6963543B2 (en) 2001-06-29 2005-11-08 Qualcomm Incorporated Method and system for group call service
WO2003001981A2 (en) 2001-06-29 2003-01-09 The Government Of The United State Of America As Represent By The Secretary Of The Department Of Health And Human Services Method of promoting engraftment of a donor transplant in a recipient host
GB0116015D0 (en) 2001-06-29 2001-08-22 Simoco Digital Systems Ltd Communications systems
JP2003018054A (en) 2001-07-02 2003-01-17 Ntt Docomo Inc Radio communication method and system, and communication device
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
DE10132492A1 (en) 2001-07-03 2003-01-23 Hertz Inst Heinrich Adaptive signal processing method for bidirectional radio transmission in a MIMO channel and MIMO system for performing the method
JP3607643B2 (en) * 2001-07-13 2005-01-05 松下電器産業株式会社 Multicarrier transmission apparatus, multicarrier reception apparatus, and multicarrier radio communication method
US7197282B2 (en) * 2001-07-26 2007-03-27 Ericsson Inc. Mobile station loop-back signal processing
US7236536B2 (en) 2001-07-26 2007-06-26 Lucent Technologies Inc. Method and apparatus for detection and decoding of signals received from a linear propagation channel
US20030027579A1 (en) * 2001-08-03 2003-02-06 Uwe Sydon System for and method of providing an air interface with variable data rate by switching the bit time
JP4318412B2 (en) 2001-08-08 2009-08-26 富士通株式会社 Transmission / reception apparatus and transmission / reception method in communication system
JP4127757B2 (en) * 2001-08-21 2008-07-30 株式会社エヌ・ティ・ティ・ドコモ Wireless communication system, communication terminal apparatus, and burst signal transmission method
US20030039344A1 (en) * 2001-08-21 2003-02-27 Michael Mercer Selective caller identification method and apparatus
US6776765B2 (en) 2001-08-21 2004-08-17 Synovis Life Technologies, Inc. Steerable stylet
KR100459557B1 (en) 2001-08-23 2004-12-03 삼성전자주식회사 Method for allocating hybrid automatic retransmission request channel number for indicating state information of data in high speed downlink packet access communication system
JP2003069472A (en) 2001-08-24 2003-03-07 Matsushita Electric Ind Co Ltd Reception terminal device and communication system
KR100474689B1 (en) 2001-08-30 2005-03-08 삼성전자주식회사 Method for power control during soft handoff in mobile communication system
DE60131576T2 (en) 2001-09-05 2008-09-25 Nokia Corp. RETRACTED PROCEDURE FOR MULTIPLE TRANSMITTER NECKS AND CORRESPONDING TRANSCEIVER
EP1428356B1 (en) * 2001-09-07 2007-04-25 Telefonaktiebolaget LM Ericsson (publ) Method and arrangements to achieve a dynamic resource distribution policy in packet based communication networks
FR2829642B1 (en) 2001-09-12 2004-01-16 Eads Defence & Security Ntwk MULTI-CARRIER SIGNAL, METHOD FOR TRACKING A TRANSMISSION CHANNEL FROM SUCH A SIGNAL AND DEVICE FOR IMPLEMENTING SAME
US7106319B2 (en) 2001-09-14 2006-09-12 Seiko Epson Corporation Power supply circuit, voltage conversion circuit, semiconductor device, display device, display panel, and electronic equipment
WO2003028302A2 (en) 2001-09-24 2003-04-03 Atheros Communications, Inc. Method and system for variable rate acknowledgement for wireless communication protocols
JP2003101515A (en) 2001-09-25 2003-04-04 Sony Corp Radio communication system, base station, mobile station, transmission control method and program storage medium
KR100440182B1 (en) 2001-09-29 2004-07-14 삼성전자주식회사 Quick paging method in shadowing area
RU2207723C1 (en) 2001-10-01 2003-06-27 Военный университет связи Method of distribution of resources in electric communication system with multiple access
US7218906B2 (en) 2001-10-04 2007-05-15 Wisconsin Alumni Research Foundation Layered space time processing in a multiple antenna system
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7248559B2 (en) * 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
KR100533205B1 (en) 2001-10-17 2005-12-05 닛본 덴끼 가부시끼가이샤 Mobile communication system, communication control method, base station and mobile station to be used in the same
US7773699B2 (en) 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
JP3675433B2 (en) 2001-10-17 2005-07-27 日本電気株式会社 Mobile communication system, communication control method, and base station and mobile station used therefor
US7349667B2 (en) 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
KR100452639B1 (en) 2001-10-20 2004-10-14 한국전자통신연구원 Common Packet Channel Access Method for Mobile Satellite Communication System
KR100547847B1 (en) 2001-10-26 2006-01-31 삼성전자주식회사 Apparatus and method for controlling reverse link in mobile communication system
US7164649B2 (en) * 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US20030086393A1 (en) 2001-11-02 2003-05-08 Subramanian Vasudevan Method for allocating wireless communication resources
US6909707B2 (en) 2001-11-06 2005-06-21 Motorola, Inc. Method and apparatus for pseudo-random noise offset reuse in a multi-sector CDMA system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US7453801B2 (en) 2001-11-08 2008-11-18 Qualcomm Incorporated Admission control and resource allocation in a communication system supporting application flows having quality of service requirements
US20030108191A1 (en) 2001-11-13 2003-06-12 Kerpez Kenneth James Method and system for spectrally compatible remote terminal ADSL deployment
GB2382265B (en) 2001-11-14 2004-06-09 Toshiba Res Europ Ltd Emergency rescue aid
SE0103853D0 (en) * 2001-11-15 2001-11-15 Ericsson Telefon Ab L M Method and system of retransmission
JP3637965B2 (en) 2001-11-22 2005-04-13 日本電気株式会社 Wireless communication system
JP3756110B2 (en) 2001-11-29 2006-03-15 シャープ株式会社 Wireless communication device
TW595857U (en) 2001-11-29 2004-06-21 Us 091219345
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
JP3895165B2 (en) 2001-12-03 2007-03-22 株式会社エヌ・ティ・ティ・ドコモ Communication control system, communication control method, communication base station, and mobile terminal
EP1451974B1 (en) 2001-12-03 2009-08-05 Nokia Corporation Policy based mechanisms for selecting access routers and mobile context
US6799043B2 (en) 2001-12-04 2004-09-28 Qualcomm, Incorporated Method and apparatus for a reverse link supplemental channel scheduling
JP3955463B2 (en) 2001-12-05 2007-08-08 ソフトバンクテレコム株式会社 Orthogonal frequency division multiplexing communication system
US20030112745A1 (en) 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
US7054301B1 (en) 2001-12-31 2006-05-30 Arraycomm, Llc. Coordinated hopping in wireless networks using adaptive antenna arrays
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
EP1467508B1 (en) 2002-01-10 2011-05-11 Fujitsu Limited Pilot multiplex method in ofdm system and ofdm receiving method
DE10240138A1 (en) 2002-01-18 2003-08-14 Siemens Ag Dynamic resource allocation in radio communications system, exchanges resources and makes changes to unoccupied sub-bands, selecting allocation of highest radio capacity
US6954622B2 (en) 2002-01-29 2005-10-11 L-3 Communications Corporation Cooperative transmission power control method and system for CDMA communication systems
US20030142648A1 (en) 2002-01-31 2003-07-31 Samsung Electronics Co., Ltd. System and method for providing a continuous high speed packet data handoff
US7006557B2 (en) 2002-01-31 2006-02-28 Qualcomm Incorporated Time tracking loop for diversity pilots
GB2386513B (en) 2002-02-07 2004-08-25 Samsung Electronics Co Ltd Apparatus and method for transmitting/receiving serving hs-scch set information in an hsdpa communication system
US7031742B2 (en) 2002-02-07 2006-04-18 Qualcomm Incorporation Forward and reverse link power control of serving and non-serving base stations in a wireless communication system
RU2237379C2 (en) 2002-02-08 2004-09-27 Самсунг Электроникс Method and device for shaping directivity pattern of base-station adaptive antenna array
US7009500B2 (en) 2002-02-13 2006-03-07 Ford Global Technologies, Llc Method for operating a pre-crash sensing system in a vehicle having a countermeasure system using stereo cameras
IL151937A0 (en) 2002-02-13 2003-07-31 Witcom Ltd Near-field spatial multiplexing
WO2003069832A1 (en) 2002-02-13 2003-08-21 Siemens Aktiengesellschaft Method for beamforming a multi-use receiver with channel estimation
US7050759B2 (en) 2002-02-19 2006-05-23 Qualcomm Incorporated Channel quality feedback mechanism and method
JP2003249907A (en) 2002-02-22 2003-09-05 Hitachi Kokusai Electric Inc Transmitting device of ofdm system
US6862271B2 (en) 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US7099299B2 (en) 2002-03-04 2006-08-29 Agency For Science, Technology And Research CDMA system with frequency domain equalization
US7039356B2 (en) 2002-03-12 2006-05-02 Blue7 Communications Selecting a set of antennas for use in a wireless communication system
KR100464014B1 (en) 2002-03-21 2004-12-30 엘지전자 주식회사 Closed -Loop Signal Processing Method of Multi Input, Multi Output Mobile Communication System
US7197084B2 (en) 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
JP2003292667A (en) 2002-03-29 2003-10-15 Jsr Corp Thermoplastic elastomer composition for crosslinking foaming, method for manufacturing molded article, and molded article
US6741587B2 (en) 2002-04-02 2004-05-25 Nokia Corporation Inter-frequency measurements with MIMO terminals
US6850741B2 (en) 2002-04-04 2005-02-01 Agency For Science, Technology And Research Method for selecting switched orthogonal beams for downlink diversity transmission
KR100896682B1 (en) 2002-04-09 2009-05-14 삼성전자주식회사 Mobile communication apparatus and method having transmitting/receiving multiantenna
US7424072B2 (en) 2002-04-15 2008-09-09 Matsushita Electric Industrial Co., Ltd. Receiving apparatus and receiving method
US7522673B2 (en) 2002-04-22 2009-04-21 Regents Of The University Of Minnesota Space-time coding using estimated channel information
JP2003318857A (en) 2002-04-25 2003-11-07 Mitsubishi Electric Corp Digital broadcast receiver
ES2351438T3 (en) 2002-04-25 2011-02-04 Powerwave Cognition, Inc. DYNAMIC USE OF WIRELESS RESOURCES.
US6839336B2 (en) 2002-04-29 2005-01-04 Qualcomm, Incorporated Acknowledging broadcast transmissions
US7161971B2 (en) * 2002-04-29 2007-01-09 Qualcomm, Incorporated Sending transmission format information on dedicated channels
US7170876B2 (en) 2002-04-30 2007-01-30 Qualcomm, Inc. Outer-loop scheduling design for communication systems with channel quality feedback mechanisms
US7170937B2 (en) * 2002-05-01 2007-01-30 Texas Instruments Incorporated Complexity-scalable intra-frame prediction technique
US7127241B2 (en) 2002-05-09 2006-10-24 Casabyte, Inc. Method, apparatus and article to remotely associate wireless communications devices with subscriber identities and/or proxy wireless communications devices
JP4334274B2 (en) 2002-05-16 2009-09-30 株式会社エヌ・ティ・ティ・ドコモ Multi-carrier transmission transmitter and multi-carrier transmission method
KR100689399B1 (en) 2002-05-17 2007-03-08 삼성전자주식회사 Apparatus and method for control of forward-link beamforming in mobile communication system
JP2003347985A (en) 2002-05-22 2003-12-05 Fujitsu Ltd Radio base station apparatus and power saving method thereof
JP4067873B2 (en) 2002-05-24 2008-03-26 三菱電機株式会社 Wireless transmission device
GB0212165D0 (en) * 2002-05-27 2002-07-03 Nokia Corp A wireless system
US6917602B2 (en) 2002-05-29 2005-07-12 Nokia Corporation System and method for random access channel capture with automatic retransmission request
US8699505B2 (en) 2002-05-31 2014-04-15 Qualcomm Incorporated Dynamic channelization code allocation
US7899067B2 (en) 2002-05-31 2011-03-01 Cisco Technology, Inc. Method and apparatus for generating and using enhanced tree bitmap data structures in determining a longest prefix match
US7366223B1 (en) 2002-06-06 2008-04-29 Arraycomm, Llc Modifying hopping sequences in wireless networks
US7356005B2 (en) 2002-06-07 2008-04-08 Nokia Corporation Apparatus and associated method, by which to facilitate scheduling of data communications in a radio communications system
KR100548311B1 (en) 2002-06-07 2006-02-02 엘지전자 주식회사 Transmission diversity apparatus and method for mobile communication system
JP3751265B2 (en) 2002-06-20 2006-03-01 松下電器産業株式会社 Wireless communication system and scheduling method
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US7483408B2 (en) * 2002-06-26 2009-01-27 Nortel Networks Limited Soft handoff method for uplink wireless communications
US20040077379A1 (en) 2002-06-27 2004-04-22 Martin Smith Wireless transmitter, transceiver and method
EP1376920B1 (en) 2002-06-27 2005-10-26 Siemens Aktiengesellschaft Apparatus and method for data transmission in a multi-input multi-output radio communication system
US7551546B2 (en) * 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
CN1666448B (en) 2002-06-27 2010-12-22 皇家飞利浦电子股份有限公司 Measurement of channel characteristics in a communication system
US7372911B1 (en) 2002-06-28 2008-05-13 Arraycomm, Llc Beam forming and transmit diversity in a multiple array radio communications system
US7043274B2 (en) 2002-06-28 2006-05-09 Interdigital Technology Corporation System for efficiently providing coverage of a sectorized cell for common and dedicated channels utilizing beam forming and sweeping
KR100640470B1 (en) 2002-06-29 2006-10-30 삼성전자주식회사 Apparatus for transferring data using transmit antenna diversity scheme in packet service communication system and method thereof
CN1219372C (en) 2002-07-08 2005-09-14 华为技术有限公司 Transmission method for implementing multimedia broadcast and multicast service
KR100630112B1 (en) 2002-07-09 2006-09-27 삼성전자주식회사 Apparatus and method for adaptive channel estimation in a mobile communication system
US7243150B2 (en) * 2002-07-10 2007-07-10 Radwin Ltd. Reducing the access delay for transmitting processed data over transmission data
US20040017785A1 (en) * 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
US7570626B2 (en) 2002-07-16 2009-08-04 Panasonic Corporation Communication method, transmitting device using the same, and receiving device using the same
KR20050021477A (en) 2002-07-17 2005-03-07 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Time-frequency interleaved mc-cdma for quasi-synchronous systems
CN1682507A (en) 2002-07-17 2005-10-12 索马网络公司 Frequency domain equalization in communications systems with scrambling
WO2004010591A2 (en) 2002-07-18 2004-01-29 Interdigital Technology Corporation Orthogonal variable spreading factor (ovsf) code assignment
US7020446B2 (en) 2002-07-31 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems
JP4022744B2 (en) 2002-08-01 2007-12-19 日本電気株式会社 Mobile communication system, best cell changing method, and base station control apparatus used therefor
JP4047655B2 (en) 2002-08-07 2008-02-13 京セラ株式会社 Wireless communication system
US6788963B2 (en) 2002-08-08 2004-09-07 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple a states
US7418241B2 (en) 2002-08-09 2008-08-26 Qualcomm Incorporated System and techniques for enhancing the reliability of feedback in a wireless communications system
US7558193B2 (en) 2002-08-12 2009-07-07 Starent Networks Corporation Redundancy in voice and data communications systems
US7180627B2 (en) * 2002-08-16 2007-02-20 Paxar Corporation Hand-held portable printer with RFID read/write capability
US7050405B2 (en) * 2002-08-23 2006-05-23 Qualcomm Incorporated Method and system for a data transmission in a communication system
DE10238796B4 (en) 2002-08-23 2006-09-14 Siemens Ag Method for determining the position of a mobile station relative to a base station, mobile radio system and direction determination device
JP3999605B2 (en) 2002-08-23 2007-10-31 株式会社エヌ・ティ・ティ・ドコモ Base station, mobile communication system, and communication method
US6985498B2 (en) * 2002-08-26 2006-01-10 Flarion Technologies, Inc. Beacon signaling in a wireless system
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
JP2004096142A (en) 2002-08-29 2004-03-25 Hitachi Kokusai Electric Inc Area polling system
US7167916B2 (en) * 2002-08-30 2007-01-23 Unisys Corporation Computer OS dispatcher operation with virtual switching queue and IP queues
KR100831987B1 (en) 2002-08-30 2008-05-23 삼성전자주식회사 Transmitter and receiver using multiple antenna system for multiuser
US7519032B2 (en) 2002-09-04 2009-04-14 Koninklijke Philips Electronics N.V. Apparatus and method for providing QoS service schedule and bandwidth allocation to a wireless station
IL151644A (en) 2002-09-05 2008-11-26 Fazan Comm Llc Allocation of radio resources in a cdma 2000 cellular system
US7227854B2 (en) 2002-09-06 2007-06-05 Samsung Electronics Co., Ltd. Apparatus and method for transmitting CQI information in a CDMA communication system employing an HSDPA scheme
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US6776165B2 (en) 2002-09-12 2004-08-17 The Regents Of The University Of California Magnetic navigation system for diagnosis, biopsy and drug delivery vehicles
US7209712B2 (en) 2002-09-23 2007-04-24 Qualcomm, Incorporated Mean square estimation of channel quality measure
GB0222555D0 (en) 2002-09-28 2002-11-06 Koninkl Philips Electronics Nv Packet data transmission system
KR100933155B1 (en) 2002-09-30 2009-12-21 삼성전자주식회사 Device and Method for Allocating Virtual Cells in Frequency Division Multiple Access Mobile Communication System
US7317680B2 (en) 2002-10-01 2008-01-08 Nortel Networks Limited Channel mapping for OFDM
US7412212B2 (en) 2002-10-07 2008-08-12 Nokia Corporation Communication system
JP4602641B2 (en) 2002-10-18 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ Signal transmission system, signal transmission method and transmitter
KR100461547B1 (en) 2002-10-22 2004-12-16 한국전자통신연구원 Transceiver for ds/cdma mimo antenna systems utilizing full receiver diversity
US7477618B2 (en) 2002-10-25 2009-01-13 Qualcomm Incorporated Method and apparatus for stealing power or code for data channel operations
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
CN1723647B (en) 2002-10-26 2010-08-25 韩国电子通信研究院 Frequency hopping of DMA method using symbols of COMB pattern
US7023880B2 (en) 2002-10-28 2006-04-04 Qualcomm Incorporated Re-formatting variable-rate vocoder frames for inter-system transmissions
US6928062B2 (en) 2002-10-29 2005-08-09 Qualcomm, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US7042857B2 (en) 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US7330701B2 (en) 2002-10-29 2008-02-12 Nokia Corporation Low complexity beamformers for multiple transmit and receive antennas
EP1576734A1 (en) 2002-10-30 2005-09-21 Koninklijke Philips Electronics N.V. Trellis-based receiver
JP2004153676A (en) 2002-10-31 2004-05-27 Mitsubishi Electric Corp Communication equipment, transmitter, and receiver
US6963959B2 (en) 2002-10-31 2005-11-08 International Business Machines Corporation Storage system and method for reorganizing data to improve prefetch effectiveness and reduce seek distance
JP2004158901A (en) 2002-11-01 2004-06-03 Kddi Corp Transmission apparatus, system, and method using ofdm and mc-cdma
US7680507B2 (en) 2002-11-04 2010-03-16 Alcatel-Lucent Usa Inc. Shared control and signaling channel for users subscribing to data services in a communication system
JP4095881B2 (en) 2002-11-13 2008-06-04 株式会社 サンウェイ Evaluation method of road surface plan
DE10254384B4 (en) 2002-11-17 2005-11-17 Siemens Ag Bidirectional signal processing method for a MIMO system with a rate-adaptive adaptation of the data transmission rate
JP4084639B2 (en) 2002-11-19 2008-04-30 株式会社エヌ・ティ・ティ・ドコモ Admission control method in mobile communication, mobile communication system, mobile station, admission control device, and admission control program
JP3796212B2 (en) 2002-11-20 2006-07-12 松下電器産業株式会社 Base station apparatus and transmission allocation control method
US20040098505A1 (en) 2002-11-20 2004-05-20 Clemmensen Daniel G. Forwarding system with multiple logical sub-system functionality
KR100479864B1 (en) 2002-11-26 2005-03-31 학교법인 중앙대학교 Method and apparatus embodying and synchronizing downlink signal in mobile communication system and method for searching cell using the same
SG2011088952A (en) 2002-12-04 2015-01-29 Signal Trust For Wireless Innovation Detection of channel quality indicator
JP4350491B2 (en) 2002-12-05 2009-10-21 パナソニック株式会社 Wireless communication system, wireless communication method, and wireless communication apparatus
US8179833B2 (en) 2002-12-06 2012-05-15 Qualcomm Incorporated Hybrid TDM/OFDM/CDM reverse link transmission
EP1429488B1 (en) * 2002-12-09 2016-03-09 Broadcom Corporation Incremental redundancy support in an EDGE cellular wireless terminal
KR100507519B1 (en) 2002-12-13 2005-08-17 한국전자통신연구원 Method and Apparatus for Signal Constitution for Downlink of OFDMA Based Cellular Systems
US7508798B2 (en) 2002-12-16 2009-03-24 Nortel Networks Limited Virtual mimo communication system
KR100552669B1 (en) 2002-12-26 2006-02-20 한국전자통신연구원 Adaptive Modulation Method for MIMO System using Layered Time-Space detector
US6904550B2 (en) 2002-12-30 2005-06-07 Motorola, Inc. Velocity enhancement for OFDM systems
KR100606008B1 (en) 2003-01-04 2006-07-26 삼성전자주식회사 Apparatus for transmitting/receiving uplink data retransmission request in code division multiple access communication system and method thereof
JP4098096B2 (en) 2003-01-06 2008-06-11 三菱電機株式会社 Spread spectrum receiver
CN1302671C (en) 2003-01-07 2007-02-28 华为技术有限公司 Payment method for receiving multimedia short message by utilizing third side as receiving side
US8400979B2 (en) 2003-01-07 2013-03-19 Qualcomm Incorporated Forward link handoff for wireless communication systems with OFDM forward link and CDMA reverse link
US7280467B2 (en) 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
JP4139230B2 (en) 2003-01-15 2008-08-27 松下電器産業株式会社 Transmitting apparatus and transmitting method
US7346018B2 (en) 2003-01-16 2008-03-18 Qualcomm, Incorporated Margin control in a data communication system
CN100417269C (en) 2003-01-20 2008-09-03 中兴通讯股份有限公司 Method for switvhing wave packet of intelligent antenna
KR100580244B1 (en) 2003-01-23 2006-05-16 삼성전자주식회사 A handoff method in wirelessLAN
US20060068848A1 (en) 2003-01-28 2006-03-30 Celletra Ltd. System and method for load distribution between base station sectors
JP4276009B2 (en) 2003-02-06 2009-06-10 株式会社エヌ・ティ・ティ・ドコモ Mobile station, base station, radio transmission program, and radio transmission method
JP4514463B2 (en) 2003-02-12 2010-07-28 パナソニック株式会社 Transmitting apparatus and wireless communication method
JP3740471B2 (en) 2003-02-13 2006-02-01 株式会社東芝 OFDM receiving apparatus, semiconductor integrated circuit, and OFDM receiving method
EP1593246A1 (en) 2003-02-14 2005-11-09 DoCoMo Communications Laboratories Europe GmbH Two-dimensional channel estimation for multicarrier multiple input multiple outpout communication systems
RU2368106C2 (en) 2003-02-18 2009-09-20 Квэлкомм Инкорпорейтед Planned and autonomous transmission and receipt confirmation
US8391249B2 (en) 2003-02-18 2013-03-05 Qualcomm Incorporated Code division multiplexing commands on a code division multiplexed channel
US7660282B2 (en) 2003-02-18 2010-02-09 Qualcomm Incorporated Congestion control in a wireless data network
US7155236B2 (en) * 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US7813322B2 (en) 2003-02-19 2010-10-12 Qualcomm Incorporated Efficient automatic repeat request methods and apparatus
CA2516359C (en) 2003-02-19 2013-03-19 Flarion Technologies, Inc. Methods and apparatus of enhanced coding in multi-user communications systems
US7167708B2 (en) 2003-02-24 2007-01-23 Autocell Laboratories Inc. Wireless channel selection apparatus including scanning logic
US9544860B2 (en) 2003-02-24 2017-01-10 Qualcomm Incorporated Pilot signals for use in multi-sector cells
KR100539230B1 (en) 2003-02-26 2005-12-27 삼성전자주식회사 Physical layer unit providing for transmitting and receiving signals of several protocols, wireless Local Area Network system by the unit and wireless Local Area Network method
JP2004260658A (en) 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd Wireless lan device
EP1602244A4 (en) 2003-02-27 2006-07-26 Interdigital Tech Corp Method for implementing fast-dynamic channel allocation radio resource management procedures
KR100547758B1 (en) 2003-02-28 2006-01-31 삼성전자주식회사 Preamble transmitting and receiving device and method of ultra wideband communication system
US7486735B2 (en) 2003-02-28 2009-02-03 Nortel Networks Limited Sub-carrier allocation for OFDM
US7746816B2 (en) * 2003-03-13 2010-06-29 Qualcomm Incorporated Method and system for a power control in a communication system
US20040179480A1 (en) * 2003-03-13 2004-09-16 Attar Rashid Ahmed Method and system for estimating parameters of a link for data transmission in a communication system
US20040181569A1 (en) * 2003-03-13 2004-09-16 Attar Rashid Ahmed Method and system for a data transmission in a communication system
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US7130580B2 (en) 2003-03-20 2006-10-31 Lucent Technologies Inc. Method of compensating for correlation between multiple antennas
US7016319B2 (en) 2003-03-24 2006-03-21 Motorola, Inc. Method and apparatus for reducing co-channel interference in a communication system
SE527445C2 (en) 2003-03-25 2006-03-07 Telia Ab Position-adjusted protection interval for OFDM communication
JP4181906B2 (en) 2003-03-26 2008-11-19 富士通株式会社 Transmitter and receiver
US20040192386A1 (en) 2003-03-26 2004-09-30 Naveen Aerrabotu Method and apparatus for multiple subscriber identities in a mobile communication device
JP4218387B2 (en) 2003-03-26 2009-02-04 日本電気株式会社 Radio communication system, base station, radio link quality information correction method used therefor, and program thereof
JP4162522B2 (en) 2003-03-26 2008-10-08 三洋電機株式会社 Radio base apparatus, transmission directivity control method, and transmission directivity control program
US7233634B1 (en) 2003-03-27 2007-06-19 Nortel Networks Limited Maximum likelihood decoding
DE60301270T2 (en) 2003-03-27 2006-07-20 Nnt Docomo, Inc. DEVICE AND METHOD FOR ESTIMATING A MULTIPLE OF CHANNELS
GB2400271B (en) 2003-04-02 2005-03-02 Matsushita Electric Ind Co Ltd Dynamic resource allocation in packet data transfer
US7085574B2 (en) 2003-04-15 2006-08-01 Qualcomm, Incorporated Grant channel assignment
EP1617568B1 (en) 2003-04-21 2013-09-04 Mitsubishi Denki Kabushiki Kaisha Radio communication apparatus, transmitter apparatus, receiver apparatus and radio communication system
CN101771445B (en) 2003-04-23 2013-05-01 高通股份有限公司 Methods and apparatus of enhancing performance in wireless communication systems
US7640373B2 (en) 2003-04-25 2009-12-29 Motorola, Inc. Method and apparatus for channel quality feedback within a communication system
KR100942645B1 (en) 2003-04-29 2010-02-17 엘지전자 주식회사 Method for transmitting signal in mobile communication system
US6824416B2 (en) 2003-04-30 2004-11-30 Agilent Technologies, Inc. Mounting arrangement for plug-in modules
US7013143B2 (en) 2003-04-30 2006-03-14 Motorola, Inc. HARQ ACK/NAK coding for a communication device during soft handoff
US20040219919A1 (en) 2003-04-30 2004-11-04 Nicholas Whinnett Management of uplink scheduling modes in a wireless communication system
US6993342B2 (en) * 2003-05-07 2006-01-31 Motorola, Inc. Buffer occupancy used in uplink scheduling for a communication device
US6882855B2 (en) 2003-05-09 2005-04-19 Motorola, Inc. Method and apparatus for CDMA soft handoff for dispatch group members
US7177297B2 (en) 2003-05-12 2007-02-13 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
US7254158B2 (en) 2003-05-12 2007-08-07 Qualcomm Incorporated Soft handoff with interference cancellation in a wireless frequency hopping communication system
US6950319B2 (en) 2003-05-13 2005-09-27 Delta Electronics, Inc. AC/DC flyback converter
US7545867B1 (en) 2003-05-14 2009-06-09 Marvell International, Ltd. Adaptive channel bandwidth selection for MIMO wireless systems
WO2004102829A1 (en) * 2003-05-15 2004-11-25 Lg Electronics Inc. Method and apparatus for allocating channelization codes for wireless communications
US7181196B2 (en) 2003-05-15 2007-02-20 Lucent Technologies Inc. Performing authentication in a communications system
KR100526542B1 (en) 2003-05-15 2005-11-08 삼성전자주식회사 Apparatus for transmitting/receiving data using transmit diversity scheme with multiple antenna in mobile communication system and method thereof
US20040228313A1 (en) 2003-05-16 2004-11-18 Fang-Chen Cheng Method of mapping data for uplink transmission in communication systems
JP4235181B2 (en) 2003-05-20 2009-03-11 富士通株式会社 Application data transfer method in mobile communication system, mobility management node and mobile node used in the mobile communication system
US7454510B2 (en) 2003-05-29 2008-11-18 Microsoft Corporation Controlled relay of media streams across network perimeters
US7366137B2 (en) 2003-05-31 2008-04-29 Qualcomm Incorporated Signal-to-noise estimation in wireless communication devices with receive diversity
US8018902B2 (en) * 2003-06-06 2011-09-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for channel quality indicator determination
US7079870B2 (en) 2003-06-09 2006-07-18 Ipr Licensing, Inc. Compensation techniques for group delay effects in transmit beamforming radio communication
KR100547734B1 (en) 2003-06-13 2006-01-31 삼성전자주식회사 Operation state control method of media access control layer in mobile communication system using orthogonal frequency division multiplexing
WO2004114549A1 (en) 2003-06-13 2004-12-29 Nokia Corporation Enhanced data only code division multiple access (cdma) system
RU2313909C2 (en) 2003-06-18 2007-12-27 Самсунг Электроникс Ко., Лтд. Device and method for transmitting and receiving a pilot-signal template for identification of base station in ofdm communication system
US7236747B1 (en) 2003-06-18 2007-06-26 Samsung Electronics Co., Ltd. (SAIT) Increasing OFDM transmit power via reduction in pilot tone
EP1512258B1 (en) 2003-06-22 2008-12-03 NTT DoCoMo, Inc. Apparatus and method for estimating a channel in a multiple input transmission system
KR20050000709A (en) 2003-06-24 2005-01-06 삼성전자주식회사 Apparatus and method for transmitting/receiving data according to channel states in communication systems using multiple access scheme
US7433661B2 (en) 2003-06-25 2008-10-07 Lucent Technologies Inc. Method for improved performance and reduced bandwidth channel state information feedback in communication systems
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
NZ526669A (en) * 2003-06-25 2006-03-31 Ind Res Ltd Narrowband interference suppression for OFDM systems
ATE354211T1 (en) * 2003-06-26 2007-03-15 Mitsubishi Electric Corp IMPROVED BULLET DECODING OF SYMBOLS TRANSMITTED IN A TELECOMMUNICATIONS SYSTEM
JP3746280B2 (en) 2003-06-27 2006-02-15 株式会社東芝 COMMUNICATION METHOD, COMMUNICATION SYSTEM, AND COMMUNICATION DEVICE
CN100473213C (en) 2003-06-30 2009-03-25 日本电气株式会社 Radio communication system and transmission mode selecting method
US7522919B2 (en) 2003-07-14 2009-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Enhancements to periodic silences in wireless communication systems
KR100987286B1 (en) * 2003-07-31 2010-10-12 삼성전자주식회사 A multiple access method in a wireless communication system and controlling system thereof
US8140980B2 (en) * 2003-08-05 2012-03-20 Verizon Business Global Llc Method and system for providing conferencing services
CN1820438B (en) 2003-08-05 2010-09-22 意大利电信股份公司 Method for providing extra-traffic paths with connection protection in communication network, related network and computer program product therefor
US7126928B2 (en) * 2003-08-05 2006-10-24 Qualcomm Incorporated Grant, acknowledgement, and rate control active sets
US7315527B2 (en) * 2003-08-05 2008-01-01 Qualcomm Incorporated Extended acknowledgement and rate control channel
US7969857B2 (en) * 2003-08-07 2011-06-28 Nortel Networks Limited OFDM system and method employing OFDM symbols with known or information-containing prefixes
US7460494B2 (en) 2003-08-08 2008-12-02 Intel Corporation Adaptive signaling in multiple antenna systems
CN105577344B (en) 2003-08-12 2019-03-08 知识产权之桥一号有限责任公司 Reception device, terminal installation, method of reseptance and integrated circuit
KR100979589B1 (en) 2003-08-13 2010-09-01 콸콤 인코포레이티드 Methods and apparatus of power control in wireless communication systems
ATE332061T1 (en) 2003-08-14 2006-07-15 Matsushita Electric Ind Co Ltd SYNCHRONIZATION OF BASE STATIONS DURING SOFT HANDOVER
CN1284795C (en) 2003-08-15 2006-11-15 上海师范大学 Magnetic nano particle nucleic acid separator, and its preparing method and use
RU2235429C1 (en) 2003-08-15 2004-08-27 Федеральное государственное унитарное предприятие "Воронежский научно-исследовательский институт связи" Method and device for time-and-frequency synchronization of communication system
US7257167B2 (en) * 2003-08-19 2007-08-14 The University Of Hong Kong System and method for multi-access MIMO channels with feedback capacity constraint
MXPA06001808A (en) 2003-08-20 2006-05-04 Matsushita Electric Ind Co Ltd Radio communication apparatus and subcarrier assignment method.
US6925145B2 (en) * 2003-08-22 2005-08-02 General Electric Company High speed digital radiographic inspection of piping
US20050063298A1 (en) 2003-09-02 2005-03-24 Qualcomm Incorporated Synchronization in a broadcast OFDM system using time division multiplexed pilots
US7221680B2 (en) 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
JP4194091B2 (en) 2003-09-02 2008-12-10 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Wireless communication system and wireless communication apparatus
US7400856B2 (en) 2003-09-03 2008-07-15 Motorola, Inc. Method and apparatus for relay facilitated communications
US20050047517A1 (en) 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US8908496B2 (en) 2003-09-09 2014-12-09 Qualcomm Incorporated Incremental redundancy transmission in a MIMO communication system
US7356073B2 (en) 2003-09-10 2008-04-08 Nokia Corporation Method and apparatus providing an advanced MIMO receiver that includes a signal-plus-residual-interference (SPRI) detector
US6917821B2 (en) 2003-09-23 2005-07-12 Qualcomm, Incorporated Successive interference cancellation receiver processing with selection diversity
US20050068921A1 (en) 2003-09-29 2005-03-31 Jung-Tao Liu Multiplexing of physical channels on the uplink
KR100950668B1 (en) 2003-09-30 2010-04-02 삼성전자주식회사 Apparatus and method for transmitting/receiving uplink pilot signal in a communication system using an orthogonal frequency division multiple access scheme
KR20060097720A (en) 2003-09-30 2006-09-14 텔레폰악티에볼라겟엘엠에릭슨(펍) Method and apparatus for congestion control in high speed wireless packet data networks
JP2005110130A (en) * 2003-10-01 2005-04-21 Samsung Electronics Co Ltd Common channel transmission system, common channel transmission method and communication program
US7230942B2 (en) 2003-10-03 2007-06-12 Qualcomm, Incorporated Method of downlink resource allocation in a sectorized environment
EP1521414B1 (en) 2003-10-03 2008-10-29 Kabushiki Kaisha Toshiba Method and apparatus for sphere decoding
US7039370B2 (en) 2003-10-16 2006-05-02 Flarion Technologies, Inc. Methods and apparatus of providing transmit and/or receive diversity with multiple antennas in wireless communication systems
US7242722B2 (en) 2003-10-17 2007-07-10 Motorola, Inc. Method and apparatus for transmission and reception within an OFDM communication system
US7120395B2 (en) 2003-10-20 2006-10-10 Nortel Networks Limited MIMO communications
DE60315301T2 (en) 2003-10-21 2009-04-09 Alcatel Lucent Method for assigning the subcarriers and for selecting the modulation scheme in a wireless multicarrier transmission system
US7508748B2 (en) 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
KR20050040988A (en) 2003-10-29 2005-05-04 삼성전자주식회사 Communication method for frequency hopping ofdm based cellular system
KR100957415B1 (en) 2003-10-31 2010-05-11 삼성전자주식회사 Apparatus for transmitting/receiving a pilot signal for distinguish a base station in a communication using orthogonal frequency division multiplexing scheme and method thereof
KR101023330B1 (en) 2003-11-05 2011-03-18 한국과학기술원 Hybrid automatic repeat request method for supporting quality of service in wireless communication systems
US7664533B2 (en) 2003-11-10 2010-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for a multi-beam antenna system
KR100981554B1 (en) * 2003-11-13 2010-09-10 한국과학기술원 APPARATUS AND METHOD FOR GROUPING ANTENNAS OF Tx IN MIMO SYSTEM WHICH CONSIDERS A SPATIAL MULTIPLEXING AND BEAMFORMING
US7356000B2 (en) * 2003-11-21 2008-04-08 Motorola, Inc. Method and apparatus for reducing call setup delay
EP1533950A1 (en) 2003-11-21 2005-05-25 Sony International (Europe) GmbH Method for connecting a mobile terminal to a wireless communication system, wireless communication system and mobile terminal for a wireless communication system
JP3908723B2 (en) 2003-11-28 2007-04-25 Tdk株式会社 Method for producing dielectric ceramic composition
JP2005167502A (en) 2003-12-01 2005-06-23 Ntt Docomo Inc Wireless communication system, control apparatus for transmission wireless station, control apparatus for reception wireless station, and subcarrier selecting method
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
TWI232040B (en) 2003-12-03 2005-05-01 Chung Shan Inst Of Science CDMA transmitting and receiving apparatus with multiply applied interface functions and a method thereof
KR20050053907A (en) 2003-12-03 2005-06-10 삼성전자주식회사 Method for assigning sub-carrier in a mobile communication system using orthogonal frequency division multiple access scheme
US20070110172A1 (en) 2003-12-03 2007-05-17 Australian Telecommunications Cooperative Research Channel estimation for ofdm systems
US7145940B2 (en) 2003-12-05 2006-12-05 Qualcomm Incorporated Pilot transmission schemes for a multi-antenna system
JP4188372B2 (en) 2003-12-05 2008-11-26 日本電信電話株式会社 Wireless communication apparatus, wireless communication method, and wireless communication system
AU2004310933B2 (en) 2003-12-05 2008-06-12 Qualcomm Incorporated Apparatus and method for transmitting data by selected eigenvector in closed loop MIMO mobile communication system
EP1542488A1 (en) 2003-12-12 2005-06-15 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for allocating a pilot signal adapted to the channel characteristics
KR100856227B1 (en) 2003-12-15 2008-09-03 삼성전자주식회사 Apparatus and method for transmitting/receiving in a mobile communication system
KR100560386B1 (en) 2003-12-17 2006-03-13 한국전자통신연구원 An apparatus for OFDMA transmission and reception for the coherent detection in the uplink, and a method thereof
EP1545082A3 (en) 2003-12-17 2005-08-03 Kabushiki Kaisha Toshiba Signal decoding methods and apparatus
US7302009B2 (en) 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
KR20050063826A (en) 2003-12-19 2005-06-28 엘지전자 주식회사 Method for allocating radio resource in radio communication system
KR100507541B1 (en) 2003-12-19 2005-08-09 삼성전자주식회사 Data and pilot carrier allocation method and receiving method, receiving apparatus and, sending method, sending apparatus in ofdm system
US7406336B2 (en) 2003-12-22 2008-07-29 Telefonaktiebolaget L M Ericsson (Publ) Method for determining transmit weights
US7181170B2 (en) 2003-12-22 2007-02-20 Motorola Inc. Apparatus and method for adaptive broadcast transmission
KR100943572B1 (en) 2003-12-23 2010-02-24 삼성전자주식회사 Apparatus for allocating subchannel adaptively considering frequency reuse in orthogonal frequency division multiple access system and method thereof
US7352819B2 (en) 2003-12-24 2008-04-01 Intel Corporation Multiantenna communications apparatus, methods, and system
JP2005197772A (en) 2003-12-26 2005-07-21 Toshiba Corp Adaptive array antenna device
JP4425925B2 (en) 2003-12-27 2010-03-03 韓國電子通信研究院 MIMO-OFDM system using eigenbeamforming technique
US7489621B2 (en) * 2003-12-30 2009-02-10 Alexander A Maltsev Adaptive puncturing technique for multicarrier systems
WO2005069538A1 (en) 2004-01-07 2005-07-28 Deltel, Inc./Pbnext Method and apparatus for telecommunication system
CN1642051A (en) 2004-01-08 2005-07-20 电子科技大学 Method for obtaining optimum guide symbolic power
EP1704664B1 (en) 2004-01-09 2013-10-23 LG Electronics Inc. Packet transmission method
US7289585B2 (en) 2004-01-12 2007-10-30 Intel Corporation Multicarrier receivers and methods for separating transmitted signals in a multiple antenna system
JP4167183B2 (en) 2004-01-14 2008-10-15 株式会社国際電気通信基礎技術研究所 Array antenna control device
US20050159162A1 (en) 2004-01-20 2005-07-21 Samsung Electronics Co., Ltd. Method for transmitting data in mobile communication network
ES2348415T3 (en) 2004-01-20 2010-12-03 Qualcomm, Incorporated SYNCHRONIZED DIFFUSION / MULTIDIFUSION COMMUNICATION.
WO2005069505A1 (en) 2004-01-20 2005-07-28 Lg Electronics Inc. Method for transmitting/receiving signal in mimo system
US8611283B2 (en) 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
WO2005081439A1 (en) 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
CA2555360A1 (en) 2004-02-05 2005-09-22 Motorika Inc. Rehabilitation with music
US8144735B2 (en) 2004-02-10 2012-03-27 Qualcomm Incorporated Transmission of signaling information for broadcast and multicast services
GB2412541B (en) 2004-02-11 2006-08-16 Samsung Electronics Co Ltd Method of operating TDD/virtual FDD hierarchical cellular telecommunication system
KR100827105B1 (en) 2004-02-13 2008-05-02 삼성전자주식회사 Method and apparatus for ranging to support fast handover in broadband wireless communication system
US7564906B2 (en) 2004-02-17 2009-07-21 Nokia Siemens Networks Oy OFDM transceiver structure with time-domain scrambling
EP1763932A4 (en) 2004-02-17 2010-01-06 Huawei Tech Co Ltd Multiplexing scheme in a communication system
US8169889B2 (en) * 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
JP2005236678A (en) 2004-02-19 2005-09-02 Toyota Motor Corp Receiver for mobile object
EP1721475A1 (en) 2004-02-27 2006-11-15 Nokia Corporation Constrained optimization based mimo lmmse-sic receiver for cdma downlink
US7421041B2 (en) 2004-03-01 2008-09-02 Qualcomm, Incorporated Iterative channel and interference estimation and decoding
US20050195886A1 (en) 2004-03-02 2005-09-08 Nokia Corporation CPICH processing for SINR estimation in W-CDMA system
US7290195B2 (en) 2004-03-05 2007-10-30 Microsoft Corporation Adaptive acknowledgment delay
KR101084113B1 (en) 2004-03-05 2011-11-17 엘지전자 주식회사 Method for Transmitting Service Information Applying to Handover in Mobile Broadband Wireless Access System
EP1726111B1 (en) 2004-03-15 2019-05-29 Apple Inc. Pilot design for ofdm systems with four transmit antennas
US20050201296A1 (en) 2004-03-15 2005-09-15 Telefonaktiebolaget Lm Ericsson (Pu Reduced channel quality feedback
US7706350B2 (en) 2004-03-19 2010-04-27 Qualcomm Incorporated Methods and apparatus for flexible spectrum allocation in communication systems
US20050207367A1 (en) 2004-03-22 2005-09-22 Onggosanusi Eko N Method for channel quality indicator computation and feedback in a multi-carrier communications system
US7907898B2 (en) * 2004-03-26 2011-03-15 Qualcomm Incorporated Asynchronous inter-piconet routing
JP2005284751A (en) 2004-03-30 2005-10-13 Fujitsu Ltd Logic verification system, logic verification method, and logic verification program
JP4288368B2 (en) 2004-04-09 2009-07-01 Okiセミコンダクタ株式会社 Reception control method and wireless LAN apparatus
US7684507B2 (en) 2004-04-13 2010-03-23 Intel Corporation Method and apparatus to select coding mode
US7047006B2 (en) 2004-04-28 2006-05-16 Motorola, Inc. Method and apparatus for transmission and reception of narrowband signals within a wideband communication system
KR100594084B1 (en) 2004-04-30 2006-06-30 삼성전자주식회사 Channel estimation method and channel estimator in ofdm/ofdma receiver
GB0409704D0 (en) 2004-04-30 2004-06-02 Nokia Corp A method for verifying a first identity and a second identity of an entity
CA2506267A1 (en) 2004-05-04 2005-11-04 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Multi-subband frequency hopping communication system and method
US7411898B2 (en) 2004-05-10 2008-08-12 Infineon Technologies Ag Preamble generator for a multiband OFDM transceiver
JP4447372B2 (en) 2004-05-13 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ RADIO COMMUNICATION SYSTEM, RADIO COMMUNICATION DEVICE, RADIO RECEPTION DEVICE, RADIO COMMUNICATION METHOD, AND CHANNEL ESTIMATION METHOD
KR20050109789A (en) 2004-05-17 2005-11-22 삼성전자주식회사 Beamforming method for sdm/mimo system
US7157351B2 (en) * 2004-05-20 2007-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Ozone vapor clean method
US20050259005A1 (en) 2004-05-20 2005-11-24 Interdigital Technology Corporation Beam forming matrix-fed circular array system
US8000377B2 (en) 2004-05-24 2011-08-16 General Dynamics C4 Systems, Inc. System and method for variable rate multiple access short message communications
JP4398791B2 (en) 2004-05-25 2010-01-13 株式会社エヌ・ティ・ティ・ドコモ Transmitter and transmission control method
US7551564B2 (en) 2004-05-28 2009-06-23 Intel Corporation Flow control method and apparatus for single packet arrival on a bidirectional ring interconnect
KR100754794B1 (en) 2004-05-29 2007-09-03 삼성전자주식회사 Apparatus and method for transmitting /receiving cell identification code in mobile communication system
US7437164B2 (en) 2004-06-08 2008-10-14 Qualcomm Incorporated Soft handoff for reverse link in a wireless communication system with frequency reuse
US7769107B2 (en) 2004-06-10 2010-08-03 Intel Corporation Semi-blind analog beamforming for multiple-antenna systems
US8619907B2 (en) 2004-06-10 2013-12-31 Agere Systems, LLC Method and apparatus for preamble training in a multiple antenna communication system
JP2005352205A (en) 2004-06-10 2005-12-22 Fujinon Corp Illuminator
US7773950B2 (en) 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
US8068530B2 (en) 2004-06-18 2011-11-29 Qualcomm Incorporated Signal acquisition in a wireless communication system
US7724777B2 (en) 2004-06-18 2010-05-25 Qualcomm Incorporated Quasi-orthogonal multiplexing for a multi-carrier communication system
US7599327B2 (en) 2004-06-24 2009-10-06 Motorola, Inc. Method and apparatus for accessing a wireless communication system
US7299048B2 (en) 2004-06-25 2007-11-20 Samsung Electronics Co., Ltd. System and method for performing soft handover in broadband wireless access communication system
KR101053610B1 (en) 2004-06-25 2011-08-03 엘지전자 주식회사 Radio resource allocation method of OPDM / OPDM system
US8000268B2 (en) * 2004-06-30 2011-08-16 Motorola Mobility, Inc. Frequency-hopped IFDMA communication system
CN102655446B (en) 2004-06-30 2016-12-14 亚马逊科技公司 Apparatus and method and communication means for control signal transmission
RU2007104027A (en) 2004-07-02 2008-08-10 Вайбрейшн Рисерч Корпорейшн (Us) SYSTEM AND METHOD FOR SIMULTANEOUS CONTROL OF SPECTRUM AND EXCESS OF RANDOM VIBRATION
WO2006002550A1 (en) * 2004-07-07 2006-01-12 Nortel Networks Limited System and method for mapping symbols for mimo transmission
JP4181093B2 (en) * 2004-07-16 2008-11-12 株式会社東芝 Wireless communication system
US7567621B2 (en) * 2004-07-21 2009-07-28 Qualcomm Incorporated Capacity based rank prediction for MIMO design
US8477710B2 (en) 2004-07-21 2013-07-02 Qualcomm Incorporated Method of providing a gap indication during a sticky assignment
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US7676007B1 (en) 2004-07-21 2010-03-09 Jihoon Choi System and method for interpolation based transmit beamforming for MIMO-OFDM with partial feedback
US10355825B2 (en) * 2004-07-21 2019-07-16 Qualcomm Incorporated Shared signaling channel for a communication system
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US7257406B2 (en) 2004-07-23 2007-08-14 Qualcomm, Incorporated Restrictive reuse set management
WO2006014143A1 (en) 2004-08-03 2006-02-09 Agency For Science, Technology And Research Method for transmitting a digital data stream, transmitter, method for receiving a digital data stream and receiver
JP2006050326A (en) 2004-08-05 2006-02-16 Toshiba Corp Information processing apparatus and scene change detecting method thereof
US7428426B2 (en) 2004-08-06 2008-09-23 Qualcomm, Inc. Method and apparatus for controlling transmit power in a wireless communications device
US7499393B2 (en) 2004-08-11 2009-03-03 Interdigital Technology Corporation Per stream rate control (PSRC) for improving system efficiency in OFDM-MIMO communication systems
US20060040655A1 (en) 2004-08-12 2006-02-23 Lg Electronics Inc. Timing of point-to-multipoint control channel information
US20060218459A1 (en) * 2004-08-13 2006-09-28 David Hedberg Coding systems and methods
JP4440971B2 (en) 2004-08-17 2010-03-24 サムスン エレクトロニクス カンパニー リミテッド Spatio-temporal frequency block coding apparatus and method for improving performance
US20060039332A1 (en) 2004-08-17 2006-02-23 Kotzin Michael D Mechanism for hand off using subscriber detection of synchronized access point beacon transmissions
CN1296682C (en) 2004-08-17 2007-01-24 广东省基础工程公司 Device and its method for monitoring river bed sedimentation in tunnel pass through river construction
US7899497B2 (en) 2004-08-18 2011-03-01 Ruckus Wireless, Inc. System and method for transmission parameter control for an antenna apparatus with selectable elements
US7336727B2 (en) 2004-08-19 2008-02-26 Nokia Corporation Generalized m-rank beamformers for MIMO systems using successive quantization
US20060039344A1 (en) 2004-08-20 2006-02-23 Lucent Technologies, Inc. Multiplexing scheme for unicast and broadcast/multicast traffic
US7852746B2 (en) 2004-08-25 2010-12-14 Qualcomm Incorporated Transmission of signaling in an OFDM-based system
KR100856249B1 (en) 2004-08-26 2008-09-03 삼성전자주식회사 Method for detecting initial action mode in a wireless communication system
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7362822B2 (en) 2004-09-08 2008-04-22 Intel Corporation Recursive reduction of channel state feedback
US7613423B2 (en) 2004-09-10 2009-11-03 Samsung Electronics Co., Ltd. Method of creating active multipaths for mimo wireless systems
GB0420164D0 (en) 2004-09-10 2004-10-13 Nokia Corp A scheduler
KR100715910B1 (en) 2004-09-20 2007-05-08 삼성전자주식회사 Apparatus and method for cell search in mobile communication system using multiple access scheme
RU2285388C2 (en) 2004-09-27 2006-10-20 Оао "Онежский Тракторный Завод" Chokerless tree skidding machine
WO2006034577A1 (en) 2004-09-30 2006-04-06 Nortel Networks Limited Channel sounding in ofdma system
US8325863B2 (en) 2004-10-12 2012-12-04 Qualcomm Incorporated Data detection and decoding with considerations for channel estimation errors due to guard subbands
US7969858B2 (en) 2004-10-14 2011-06-28 Qualcomm Incorporated Wireless terminal methods and apparatus for use in wireless communications systems supporting different size frequency bands
US7636328B2 (en) 2004-10-20 2009-12-22 Qualcomm Incorporated Efficient transmission of signaling using channel constraints
US7616955B2 (en) 2004-11-12 2009-11-10 Broadcom Corporation Method and system for bits and coding assignment utilizing Eigen beamforming with fixed rates for closed loop WLAN
US7139328B2 (en) 2004-11-04 2006-11-21 Motorola, Inc. Method and apparatus for closed loop data transmission
US7627051B2 (en) 2004-11-08 2009-12-01 Samsung Electronics Co., Ltd. Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing
CA2588144C (en) 2004-11-16 2013-03-12 Qualcomm Incorporated Closed-loop rate control for a mimo communication system
US20060104333A1 (en) 2004-11-18 2006-05-18 Motorola, Inc. Acknowledgment for a time division channel
US20060111054A1 (en) 2004-11-22 2006-05-25 Interdigital Technology Corporation Method and system for selecting transmit antennas to reduce antenna correlation
US7512096B2 (en) 2004-11-24 2009-03-31 Alcatel-Lucent Usa Inc. Communicating data between an access point and multiple wireless devices over a link
US7593473B2 (en) 2004-12-01 2009-09-22 Bae Systems Information And Electronic Systems Integration Inc. Tree structured multicarrier multiple access systems
US7822128B2 (en) 2004-12-03 2010-10-26 Intel Corporation Multiple antenna multicarrier transmitter and method for adaptive beamforming with transmit-power normalization
MX2007007760A (en) 2004-12-22 2007-08-17 Qualcomm Inc Methods and apparatus for flexible hopping in a multiple-access communication network.
US8238923B2 (en) 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US7543197B2 (en) 2004-12-22 2009-06-02 Qualcomm Incorporated Pruned bit-reversal interleaver
US7940710B2 (en) 2004-12-22 2011-05-10 Qualcomm Incorporated Methods and apparatus for efficient paging in a wireless communication system
US8179876B2 (en) 2004-12-22 2012-05-15 Qualcomm Incorporated Multiple modulation technique for use in a communication system
US20060140289A1 (en) 2004-12-27 2006-06-29 Mandyam Giridhar D Method and apparatus for providing an efficient pilot scheme for channel estimation
US7778826B2 (en) 2005-01-13 2010-08-17 Intel Corporation Beamforming codebook generation system and associated methods
WO2006077696A1 (en) 2005-01-18 2006-07-27 Sharp Kabushiki Kaisha Wireless communication apparatus, mobile terminal and wireless communication method
JP2006211537A (en) 2005-01-31 2006-08-10 Nec Corp Code state change apparatus, code state change method, and code state change program
KR100966044B1 (en) 2005-02-24 2010-06-28 삼성전자주식회사 System and method for allocating frequency resource in a multicell communication system
KR20060096365A (en) 2005-03-04 2006-09-11 삼성전자주식회사 User scheduling method for multiuser mimo communication system
US8135088B2 (en) 2005-03-07 2012-03-13 Q1UALCOMM Incorporated Pilot transmission and channel estimation for a communication system utilizing frequency division multiplexing
US8095141B2 (en) * 2005-03-09 2012-01-10 Qualcomm Incorporated Use of supplemental assignments
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US20060203794A1 (en) 2005-03-10 2006-09-14 Qualcomm Incorporated Systems and methods for beamforming in multi-input multi-output communication systems
US7720162B2 (en) 2005-03-10 2010-05-18 Qualcomm Incorporated Partial FFT processing and demodulation for a system with multiple subcarriers
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US7512412B2 (en) 2005-03-15 2009-03-31 Qualcomm, Incorporated Power control and overlapping control for a quasi-orthogonal communication system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US20090213950A1 (en) 2005-03-17 2009-08-27 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US8031583B2 (en) 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US7797018B2 (en) 2005-04-01 2010-09-14 Interdigital Technology Corporation Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7768979B2 (en) 2005-05-18 2010-08-03 Qualcomm Incorporated Separating pilot signatures in a frequency hopping OFDM system by selecting pilot symbols at least hop away from an edge of a hop region
US7916681B2 (en) 2005-05-20 2011-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication channel error rate estimation
US8077692B2 (en) 2005-05-20 2011-12-13 Qualcomm Incorporated Enhanced frequency division multiple access for wireless communication
US20070183303A1 (en) 2005-05-26 2007-08-09 Zhouyue Pi Method and apparatus for specifying channel state information for multiple carriers
JP4599228B2 (en) 2005-05-30 2010-12-15 株式会社日立製作所 Wireless transceiver
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8842693B2 (en) 2005-05-31 2014-09-23 Qualcomm Incorporated Rank step-down for MIMO SCW design employing HARQ
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8565194B2 (en) * 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8126066B2 (en) 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US7403470B2 (en) 2005-06-13 2008-07-22 Qualcomm Incorporated Communications system, methods and apparatus
JP4869724B2 (en) 2005-06-14 2012-02-08 株式会社エヌ・ティ・ティ・ドコモ Transmission device, transmission method, reception device, and reception method
EP1734773A1 (en) 2005-06-14 2006-12-20 Alcatel A method for uplink interference coordination in single frequency networks, a base station a mobile terminal and a mobile network therefor
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8599945B2 (en) * 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8254924B2 (en) 2005-06-16 2012-08-28 Qualcomm Incorporated Method and apparatus for adaptive registration and paging area determination
US20070071147A1 (en) 2005-06-16 2007-03-29 Hemanth Sampath Pseudo eigen-beamforming with dynamic beam selection
US8503371B2 (en) * 2005-06-16 2013-08-06 Qualcomm Incorporated Link assignment messages in lieu of assignment acknowledgement messages
US8098667B2 (en) 2005-06-16 2012-01-17 Qualcomm Incorporated Methods and apparatus for efficient providing of scheduling information
DE102005028179A1 (en) 2005-06-17 2006-12-28 Siemens Ag Method for establishing a connection by mobile terminals in communication networks with variable bandwidths
WO2007002032A2 (en) * 2005-06-20 2007-01-04 Texas Instruments Incorporated Slow uplink power control
KR100606099B1 (en) 2005-06-22 2006-07-31 삼성전자주식회사 Method and apparatus for configuration of ack/nack channel in a frequency division multiplexing system
FR2888018A1 (en) * 2005-07-01 2007-01-05 Medience Sa METHOD AND SYSTEM FOR REALIZING A VIRTUAL DATABASE FROM DATA SOURCES HAVING HETEROGENEOUS SCHEMES
WO2007004788A1 (en) * 2005-07-04 2007-01-11 Samsung Electronics Co., Ltd. Position measuring system and method using wireless broadband (wibro) signal
US8249192B2 (en) 2005-07-18 2012-08-21 Nokia Corporation Techniques to transmit data rate control signals for multi-carrier wireless systems
US20070025345A1 (en) 2005-07-27 2007-02-01 Bachl Rainer W Method of increasing the capacity of enhanced data channel on uplink in a wireless communications systems
US7403745B2 (en) 2005-08-02 2008-07-22 Lucent Technologies Inc. Channel quality predictor and method of estimating a channel condition in a wireless communications network
US20070183386A1 (en) 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US7508842B2 (en) 2005-08-18 2009-03-24 Motorola, Inc. Method and apparatus for pilot signal transmission
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US8331463B2 (en) 2005-08-22 2012-12-11 Qualcomm Incorporated Channel estimation in communications
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
MY151145A (en) 2005-08-24 2014-04-30 Qualcomm Inc Varied transmission time intervals for wireless communication system
US20070047495A1 (en) 2005-08-29 2007-03-01 Qualcomm Incorporated Reverse link soft handoff in a wireless multiple-access communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
DE102005041273B4 (en) 2005-08-31 2014-05-08 Intel Mobile Communications GmbH A method of computer-aided forming of system information medium access control log messages, medium access control unit and computer program element
CN101258693B (en) * 2005-09-21 2012-12-19 Lg电子株式会社 A method of distributing feedback information in a wireless communication system
US20090022098A1 (en) * 2005-10-21 2009-01-22 Robert Novak Multiplexing schemes for ofdma
US8134977B2 (en) 2005-10-27 2012-03-13 Qualcomm Incorporated Tune-away protocols for wireless systems
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US20070165738A1 (en) 2005-10-27 2007-07-19 Barriac Gwendolyn D Method and apparatus for pre-coding for a mimo system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8045512B2 (en) * 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US7835460B2 (en) 2005-10-27 2010-11-16 Qualcomm Incorporated Apparatus and methods for reducing channel estimation noise in a wireless transceiver
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8582509B2 (en) 2005-10-27 2013-11-12 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US8649362B2 (en) 2005-11-02 2014-02-11 Texas Instruments Incorporated Methods for determining the location of control channels in the uplink of communication systems
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
WO2007065272A1 (en) 2005-12-08 2007-06-14 Nortel Networks Limited Resource assignment systems and methods
US8437251B2 (en) 2005-12-22 2013-05-07 Qualcomm Incorporated Methods and apparatus for communicating transmission backlog information
US9148795B2 (en) 2005-12-22 2015-09-29 Qualcomm Incorporated Methods and apparatus for flexible reporting of control information
US9451491B2 (en) 2005-12-22 2016-09-20 Qualcomm Incorporated Methods and apparatus relating to generating and transmitting initial and additional control information report sets in a wireless system
KR100793315B1 (en) 2005-12-31 2008-01-11 포스데이타 주식회사 Method and apparatus for measuring carrier to interference and noise ratio using downlink preamble
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US7486408B2 (en) 2006-03-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with reduced scribe lane usage for substrate measurement
US20070242653A1 (en) 2006-04-13 2007-10-18 Futurewei Technologies, Inc. Method and apparatus for sharing radio resources in an ofdma-based communication system
EP1855424B1 (en) 2006-05-12 2013-07-10 Panasonic Corporation Reservation of radio resources for users in a mobile communications system
US8259695B2 (en) 2007-04-30 2012-09-04 Alcatel Lucent Method and apparatus for packet wireless telecommunications
US8254487B2 (en) 2007-08-09 2012-08-28 Samsung Electronics Co., Ltd. Method and apparatus of codebook-based single-user closed-loop transmit beamforming (SU-CLTB) for OFDM wireless systems
US20090180459A1 (en) 2008-01-16 2009-07-16 Orlik Philip V OFDMA Frame Structures for Uplinks in MIMO Networks
WO2010017628A1 (en) 2008-08-12 2010-02-18 Nortel Networks Limited Apparatus and method for enabling downlink transparent relay in a wireless communications network
US8228862B2 (en) 2008-12-03 2012-07-24 Samsung Electronics Co., Ltd. Method and system for reference signal pattern design
US8238483B2 (en) 2009-02-27 2012-08-07 Marvell World Trade Ltd. Signaling of dedicated reference signal (DRS) precoding granularity
US20100232384A1 (en) 2009-03-13 2010-09-16 Qualcomm Incorporated Channel estimation based upon user specific and common reference signals
KR200471652Y1 (en) 2013-08-07 2014-03-12 남경탁 Furniture having chair

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150326444A1 (en) * 2014-05-06 2015-11-12 Silicon Image, Inc. Network topology discovery
US9660836B2 (en) * 2014-05-06 2017-05-23 Lattice Semiconductor Corporation Network topology discovery
US10079722B2 (en) 2014-05-09 2018-09-18 Lattice Semiconductor Corporation Stream creation with limited topology information
US10158557B2 (en) 2014-05-09 2018-12-18 Lattice Semiconductor Corporation Stream creation with limited topology information

Also Published As

Publication number Publication date
KR20120069751A (en) 2012-06-28
KR101302590B1 (en) 2013-09-02
KR20130054460A (en) 2013-05-24
US20070211667A1 (en) 2007-09-13
US8879511B2 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
US8879511B2 (en) Assignment acknowledgement for a wireless communication system
US10805038B2 (en) Puncturing signaling channel for a wireless communication system
EP1897395B1 (en) Assignment acknowledgement for a wireless communication system
JP5016044B2 (en) Variable control channel for wireless communication systems
US8477684B2 (en) Acknowledgement of control messages in a wireless communication system
EP1832024B1 (en) Allocating data bursts and supporting hybrid auto retransmission request in orthogonal frequency division multiplexing access radio access system
EP2104986A2 (en) Method for acquiring resource region information for phich and method of receiving pdcch
CN101213865B (en) Assignment acknowledgement for a wireless communication system
RU2385545C2 (en) Confirmation of resource dedication for wireless communication system

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AGRAWAL, AVNEESH;KHANDEKAR, AAMOD;GOROKHOV, ALEXEI;SIGNING DATES FROM 20060510 TO 20060512;REEL/FRAME:017729/0414

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AGRAWAL, AVNEESH;KHANDEKAR, AAMOD;GOROKHOV, ALEXEI;REEL/FRAME:017729/0414;SIGNING DATES FROM 20060510 TO 20060512

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20181104