US20140136682A1 - Automatically addressing performance issues in a distributed database - Google Patents

Automatically addressing performance issues in a distributed database Download PDF

Info

Publication number
US20140136682A1
US20140136682A1 US13/675,032 US201213675032A US2014136682A1 US 20140136682 A1 US20140136682 A1 US 20140136682A1 US 201213675032 A US201213675032 A US 201213675032A US 2014136682 A1 US2014136682 A1 US 2014136682A1
Authority
US
United States
Prior art keywords
database
distributed
database performance
performance issue
distributed database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/675,032
Other versions
US8943198B2 (en
Inventor
Joshua Lukas
Gary R. Ricard
Timothy L. Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo International Ltd
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUKAS, JOSHUA, RICARD, GARY R., THOMPSON, TIMOTHY L.
Priority to US13/675,032 priority Critical patent/US8943198B2/en
Priority to US13/707,683 priority patent/US8966067B2/en
Publication of US20140136682A1 publication Critical patent/US20140136682A1/en
Assigned to LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD. reassignment LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Publication of US8943198B2 publication Critical patent/US8943198B2/en
Application granted granted Critical
Assigned to LENOVO INTERNATIONAL LIMITED reassignment LENOVO INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.
Assigned to LENOVO INTERNATIONAL LIMITED reassignment LENOVO INTERNATIONAL LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT DOCUMENT CONTAINING TYPO ERRORS PREVIOUSLY RECORDED AT REEL: 037101 FRAME: 0969. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.
Assigned to LENOVO INTERNATIONAL LIMITED reassignment LENOVO INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE LTD.
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/25Integrating or interfacing systems involving database management systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3466Performance evaluation by tracing or monitoring
    • G06F11/3495Performance evaluation by tracing or monitoring for systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
    • G06F11/3433Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment for load management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/217Database tuning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/23Updating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/082Configuration setting characterised by the conditions triggering a change of settings the condition being updates or upgrades of network functionality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0876Aspects of the degree of configuration automation
    • H04L41/0886Fully automatic configuration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/508Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
    • H04L41/5096Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to distributed or central networked applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/80Database-specific techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/815Virtual

Definitions

  • This disclosure generally relates to computer systems, and more specifically relates to management of a distributed database.
  • Distributed databases have been developed that include multiple computer systems or nodes that each include a portion of data in the distributed database. Many distributed databases need to be highly available, so they are implemented in a cloud-based manner that uses advanced virtualization techniques to mask the underlying hardware implementation. These virtualization techniques, by masking the underlying hardware implementation, can make it more difficult to identify and address some performance issues in the distributed database.
  • a database performance monitor monitors performance of a distributed database, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism which physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and applies the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
  • FIG. 1 is a block diagram of an apparatus that includes a distributed virtual network mechanism and a database performance monitor;
  • FIG. 2 is a block diagram of a distributed virtual Ethernet switch
  • FIG. 3 is a block diagram of the network monitor mechanism shown in FIG. 1 ;
  • FIG. 4 is a block diagram of a sample distributed database
  • FIG. 5 is a block diagram showing database performance for the four nodes in FIG. 4 monitored by the database performance monitor in FIG. 1 ;
  • FIG. 6 is a flow diagram of a method for identifying a performance issue in a distributed database and attempting to automatically address the performance issue based on virtual network information available in a distributed virtual network mechanism;
  • FIG. 7 is a flow diagram of a method for identifying a performance issue in a distributed database and attempting to automatically address the performance issue based on both virtual and physical network information available in a distributed virtual network mechanism;
  • FIG. 8 is a block diagram showing one sample database performance issue
  • FIG. 9 is a block diagram showing monitored database cluster performance on Tuesday afternoons.
  • FIG. 10 is a block diagram showing one potential solution to the database performance issue shown in FIG. 8 ;
  • FIG. 11 is a block diagram showing database cluster performance after applying the potential solution in FIG. 10 ;
  • FIG. 12 is a block diagram showing a second potential solution to the database performance issue shown in FIG. 8 ;
  • FIG. 13 is a block diagram showing database cluster performance on Tuesday afternoons that includes hardware link utilization for a hardware network related to the identified performance issue.
  • FIG. 14 is a block diagram sowing a first potential solution to the database performance issue shown in FIG. 8 based on the network utilization for a hardware link shown in FIG. 13 .
  • the disclosure and claims herein disclose a database performance monitor that monitors performance of a distributed database, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism which physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and applies the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
  • a computer system 100 is one suitable implementation of a server computer system that includes a distributed virtual Ethernet mechanism and a database performance monitor.
  • Server computer system 100 is an IBM zEnterprise System computer system.
  • computer system 100 comprises one or more processors 110 , a main memory 120 , a mass storage interface 130 , a display interface 140 , and a network interface 150 . These system components are interconnected through the use of a system bus 160 .
  • Mass storage interface 130 is used to connect mass storage devices, such as local mass storage device 155 , to computer system 100 .
  • mass storage devices such as local mass storage device 155
  • One specific type of local mass storage device 155 is a readable and writable CD-RW drive, which may store data to and read data from a CD-RW 195 .
  • Main memory 120 preferably contains data 121 , an operating system 122 , a distributed virtual Ethernet mechanism 123 , and a distributed database 126 .
  • Data 121 represents any data that serves as input to or output from any program in computer system 100 .
  • Operating system 122 is a multitasking operating system.
  • Distributed virtual Ethernet mechanism 123 is a distributed virtual networking mechanism that virtualizes underlying hardware for a variety of different types of network connections into a single virtual view that allows easy interaction between components connected to the distributed virtual Ethernet mechanism 123 .
  • the representation of distributed virtual Ethernet mechanism 123 shown in the main memory 120 in FIG. 1 is a logical representation showing an implementation in software that resides in the main memory 120 . In actual implementation, the distributed virtual Ethernet mechanism 123 could be any suitable combination of hardware and software.
  • the distributed virtual Ethernet mechanism 123 includes a distributed virtual Ethernet switch 124 and a network monitor mechanism 125 .
  • the distributed virtual Ethernet switch 124 provides a single virtualized view of underlying potentially disparate hardware networks.
  • the network monitor mechanism 125 monitors network usage of both the virtual networks and the hardware networks in the distributed virtual Ethernet switch 124 . By monitoring network usage of both virtual and hardware networks, the distributed virtual Ethernet mechanism 123 has information that may be used by a distributed database to potentially automatically resolve a performance issue that arises in the distributed database.
  • the distributed virtual Ethernet mechanism 123 solves this problem by providing a network monitor mechanism 125 that not only monitors usage of virtual networks, but underlying hardware networks as well. The distributed virtual Ethernet mechanism 123 thus provides a convenient single point where performance of both virtual and hardware networks may be managed.
  • the distributed database 126 in FIG. 1 is a logical representation of a distributed database that resides in memory of multiple nodes in a networked computer system, such as distributed database 400 shown in FIG. 4 .
  • the distributed database 126 includes a distributed database manager 127 and a database performance monitor 128 .
  • the distributed database manager 127 manages allocation of jobs to the distributed database, manages configuration of the distributed database, and performs other management functions with respect to the distributed database 126 .
  • the database performance monitor 128 monitors performance of the distributed database 126 , detects a performance issue, determines from the network monitor mechanism 125 in the distributed virtual Ethernet mechanism 123 which hardware and virtual networks are related to the performance issue, and attempts to reconfigure the distributed database 126 to resolve the performance issue.
  • the database performance monitor 128 may determine performance of both virtual networks and hardware networks by accessing the network monitor mechanism 125 .
  • the database performance monitor 128 can thus address performance issues in the distributed database that are caused by congestion of hardware networks instead of by looking only at virtual network utilization.
  • Computer system 100 utilizes well known virtual addressing mechanisms that allow the programs of computer system 100 to behave as if they only have access to a large, contiguous address space instead of access to multiple, smaller storage entities such as main memory 120 and local mass storage device 155 . Therefore, while data 121 , operating system 122 , distributed virtual Ethernet mechanism 123 and distributed database 126 are shown to reside in main memory 120 , those skilled in the art will recognize that these items are not necessarily all completely contained in main memory 120 at the same time. It should also be noted that the term “memory” is used herein generically to refer to the entire virtual memory of computer system 100 , and may include the virtual memory of other computer systems coupled to computer system 100 .
  • Processor 110 may be constructed from one or more microprocessors and/or integrated circuits. Processor 110 executes program instructions stored in main memory 120 . Main memory 120 stores programs and data that processor 110 may access. When computer system 100 starts up, processor 110 initially executes the program instructions that make up operating system 122 . Processor 110 also executes the distributed virtual Ethernet mechanism 123 , the distributed database manager 127 , and the database performance monitor 128 .
  • computer system 100 is shown to contain only a single processor and a single system bus, those skilled in the art will appreciate that a database performance monitor may be practiced using a computer system that has multiple processors and/or multiple buses.
  • the interfaces that are used preferably each include separate, fully programmed microprocessors that are used to off-load compute-intensive processing from processor 110 .
  • these functions may be performed using I/O adapters as well.
  • Display interface 140 is used to directly connect one or more displays 165 to computer system 100 .
  • These displays 165 which may be non-intelligent (i.e., dumb) terminals or fully programmable workstations, are used to provide system administrators and users the ability to communicate with computer system 100 . Note, however, that while display interface 140 is provided to support communication with one or more displays 165 , computer system 100 does not necessarily require a display 165 , because all needed interaction with users and other processes may occur via network interface 150 .
  • Network interface 150 is used to connect computer system 100 to other computer systems or workstations 175 via network 170 .
  • Network interface 150 thus connects the apparatus 100 to other computer systems (e.g., 175 in FIG. 1 ) in a networked computer system.
  • Network interface 150 broadly represents any suitable way to interconnect electronic devices, regardless of whether the network 170 comprises present-day analog and/or digital techniques or via some networking mechanism of the future.
  • Network interface 150 preferably includes a combination of hardware and software that allow communicating on the network 170 .
  • Software in the network interface 150 preferably includes a communication manager that manages communication with other computer systems 175 via network 170 using a suitable network protocol. Many different network protocols can be used to implement a network. These protocols are specialized computer programs that allow computers to communicate across a network.
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • TCP/IP Transmission Control Protocol/Internet Protocol
  • aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • LAN local area network
  • WAN wide area network
  • Internet Service Provider for example, AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • the computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • a distributed virtual Ethernet switch 210 is shown, which is one suitable implementation for the distributed virtual Ethernet switch 124 shown in FIG. 1 .
  • the distributed virtual Ethernet switch 210 includes a virtual to hardware mapping 220 that correlates multiple virtual networks 230 , shown in FIG. 2 as NW1, NW2, . . . , NWM, to multiple hardware networks 240 , shown in FIG. 2 as Link1, Link2, . . . , LinkN. Note there is not necessarily a one-to-one correspondence between virtual networks 230 and hardware networks 240 because a single hardware network can implement multiple virtual networks.
  • the virtual networks 230 provide a virtualized view of the networks interconnecting the distributed database.
  • a virtual network may be represented as a virtual Ethernet network even when the underlying hardware is something other than an Ethernet network, such as a specialized network chip.
  • the distributed virtual Ethernet switch 210 includes the virtual to hardware mapping 220 , this makes the distributed virtual Ethernet switch 210 a central place where information regarding the topology of hardware networks may be accessed.
  • the network monitor mechanism 125 shown in FIG. 1 determines both virtual network utilization 310 and hardware network utilization 320 . This makes the distributed virtual Ethernet mechanism 123 a central repository for determining network utilization of not only virtual networks but hardware networks as well.
  • FIG. 4 shows one sample implementation of a distributed database 400 running on four nodes 410 , 430 , 450 and 470 .
  • the database is distributed by virtue of having different portions of the database distributed in the memory of different nodes.
  • the memory in each node may include any suitable memory in the memory hierarchy, including mass storage.
  • node1 410 includes a first database portion 420 ;
  • node2 430 includes a second database portion 440 ;
  • node3 450 includes a third database portion 460 ;
  • node4 470 includes a fourth database portion 480 .
  • Node1 410 is connected to the distributed virtual Ethernet switch 124 via a virtual network denoted NW1 in FIG. 4 .
  • node2, node3 and node4 are connected to the distributed virtual Ethernet switch 124 via virtual networks NW2, NW3 and NW4, respectively.
  • NW2, NW3 and NW4 virtual networks
  • the database performance monitor 128 collects performance parameters for each node in a distributed database.
  • the database performance monitor 128 collects performance information for each of the four nodes.
  • Database performance monitor 128 thus includes Node1 performance 510 A, Node2 performance 510 B, Node3 performance 510 C, and Node4 performance 510 D.
  • the performance for each node includes CPU usage, memory usage, disk storage status, storage area network (SAN) links and performance, and network topology and utilization.
  • SAN storage area network
  • node1 performance 510 A includes CPU usage 520 A, memory usage 522 A, disk storage status 524 A, SAN links/performance 526 A, and network topology and utilization 528 A
  • node2 performance 510 B includes CPU usage 520 B, memory usage 522 B, disk storage status 524 B, SAN links/performance 526 B, and network topology and utilization 528 B
  • node3 performance 510 C includes CPU usage 520 C, memory usage 522 C, disk storage status 524 C, SAN links/performance 526 C, and network topology and utilization 528 C
  • node4 performance 510 D includes CPU usage 520 D, memory usage 522 D, disk storage status 524 D, SAN links/performance 526 D, and network topology and utilization 528 D.
  • the database performance monitor 128 By monitoring performance of the nodes in a distributed database, the database performance monitor 128 has information needed to reconfigure automatically the distributed database when a performance issue arises.
  • CPU usage relates to how much of the CPU capacity in a node is being used.
  • Memory usage relates to how much of the memory capacity in a node is being used.
  • Disk storage status relates to the status of any disk that is part of the node.
  • SAN links/performance relates to whether or not the node is connected to a SAN, and if so, the performance of the SAN.
  • Network topology and utilization relates to the topology and utilization of both virtual networks and hardware networks. In the most preferred implementation, the network topology and utilization for each node is determined by querying the distributed virtual Ethernet mechanism 123 .
  • the network monitor mechanism 125 monitors network utilization for both virtual networks and hardware networks (see FIG. 3 ), and because the distributed virtual Ethernet switch 124 includes information related to network topology for both virtual networks and hardware networks, querying the distributed virtual Ethernet mechanism 123 allows the database performance monitor 128 to determine which virtual networks and which hardware networks are related to the identified database performance issue, and to determine performance for both virtual and hardware networks for a given node that are related to the identified database performance issue.
  • a method 600 shows one way to automatically address performance issues in a distributed database.
  • a database performance issue is identified (step 610 ).
  • Various database performance issues may be identified in step 610 , including database performance issues detected by heuristic analysis, database performance issues due to network traffic, database performance issues due to network utilization, database performance issues due to database security issues, and database performance issues caused by hardware failures.
  • Performance for the database cluster is determined, including network utilization for virtual networks (step 620 ).
  • a potential solution is identified based on the database cluster performance, including the network utilization for related virtual networks (step 630 ).
  • a virtual network is related to the database performance issue when performance of the virtual network may affect the database performance issue.
  • step 640 The database is then automatically reconfigured without intervention of a user (step 640 ) to apply the potential solution identified in step 630 .
  • step 650 YES
  • step 650 YES
  • step 670 a notification is sent to a system administrator of the performance issue that could not be resolved automatically.
  • Method 600 is then done. Note that method 600 uses database cluster information, including utilization for virtual networks, in identifying potential solutions and reconfiguring the distributed database accordingly.
  • method 700 identifies a database performance issue (step 710 ). As described above with respect to step 610 in FIG. 6 , the disclosure and claims herein extend to identifying any suitable database performance issue whatever the cause or how the database performance issue is identified or detected.
  • Database cluster performance is determined, including network utilization for virtual networks and network utilization for hardware networks (step 720 ).
  • a potential solution is identified based on the database cluster performance, including network utilization for related virtual networks and network utilization for related hardware networks (step 740 ).
  • a virtual network or hardware network is related to the database performance issue when performance of the network may affect the database performance issue.
  • the distributed database is then reconfigured (step 750 ) according to the identified potential solution in step 740 .
  • step 760 YES
  • a database performance issue is identified (step 610 ).
  • One possible database performance issue is shown in FIG. 8 , where workload X slows down 200% on Tuesday afternoons. This means workload X takes twice as long to run on Tuesday afternoons that it normally does at other times.
  • the database cluster performance is determined (step 620 ).
  • Ethernet network #1 is related to the identified database performance issue, which means Ethernet network #1 affects the identified database performance issue.
  • FIG. 9 which indicates CPU usage for Host Group #1 is 90% and network utilization for virtual Ethernet network #1 is 10%.
  • step 630 in FIG. 6 One potential solution that could be identified in step 630 in FIG. 6 is to move data for workload X to nodes with less CPU usage, as shown in FIG. 10 .
  • the distributed database is reconfigured in step 640 to move data for workload X to nodes with less CPU usage.
  • step 660 YES
  • step 660 YES
  • step 640 The database is reconfigured to implement the second potential solution
  • step 650 NO
  • step 650 NO
  • step 650 NO
  • step 670 the system administrator is notified of the performance issue that could not be resolved automatically
  • the database cluster performance including network utilization for both virtual networks and hardware networks, is determined (step 720 ).
  • the network utilization for both virtual and hardware networks is preferably determined by querying the network monitor mechanism 125 in the distributed virtual Ethernet mechanism 123 shown in FIG. 1 .
  • FIG. 13 shows the CPU usage for Host Group #1 is 90%, and the network utilization for virtual Ethernet Network #1 is 10%, similar to that shown in FIG. 9 .
  • the hardware link #1 is also related to the database performance issue, and the network utilization for hardware link #1 is shown at 100% in FIG. 13 .
  • a potential solution is identified in step 740 , which is shown in FIG.
  • step 750 to implement the potential solution shown in FIG. 14 .
  • the database reconfiguration is returned to its previous configuration.
  • the change in the database configuration is made permanent.
  • the presence of a distributed virtual Ethernet switch provides a single point in a database system or cluster where network utilization for both virtual and hardware networks may be determined.
  • the distributed virtual Ethernet switch can thus provide its virtualization functions, effectively hiding the underlying implementation of hardware networks when needed, while also providing detailed information regarding hardware network topology and performance that allows a database performance monitor to automatically reconfigure a distributed database to address performance issues at either the virtual network level or at the hardware network level.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • a database performance monitor monitors performance of a distributed database, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism which physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and applies the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.

Abstract

A database performance monitor monitors performance of a distributed database, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism which physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and applies the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.

Description

    BACKGROUND
  • 1. Technical Field
  • This disclosure generally relates to computer systems, and more specifically relates to management of a distributed database.
  • 2. Background Art
  • Distributed databases have been developed that include multiple computer systems or nodes that each include a portion of data in the distributed database. Many distributed databases need to be highly available, so they are implemented in a cloud-based manner that uses advanced virtualization techniques to mask the underlying hardware implementation. These virtualization techniques, by masking the underlying hardware implementation, can make it more difficult to identify and address some performance issues in the distributed database.
  • BRIEF SUMMARY
  • A database performance monitor monitors performance of a distributed database, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism which physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and applies the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
  • The foregoing and other features and advantages will be apparent from the following more particular description, as illustrated in the accompanying drawings.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
  • The disclosure will be described in conjunction with the appended drawings, where like designations denote like elements, and:
  • FIG. 1 is a block diagram of an apparatus that includes a distributed virtual network mechanism and a database performance monitor;
  • FIG. 2 is a block diagram of a distributed virtual Ethernet switch;
  • FIG. 3 is a block diagram of the network monitor mechanism shown in FIG. 1;
  • FIG. 4 is a block diagram of a sample distributed database;
  • FIG. 5 is a block diagram showing database performance for the four nodes in FIG. 4 monitored by the database performance monitor in FIG. 1;
  • FIG. 6 is a flow diagram of a method for identifying a performance issue in a distributed database and attempting to automatically address the performance issue based on virtual network information available in a distributed virtual network mechanism;
  • FIG. 7 is a flow diagram of a method for identifying a performance issue in a distributed database and attempting to automatically address the performance issue based on both virtual and physical network information available in a distributed virtual network mechanism;
  • FIG. 8 is a block diagram showing one sample database performance issue;
  • FIG. 9 is a block diagram showing monitored database cluster performance on Tuesday afternoons;
  • FIG. 10 is a block diagram showing one potential solution to the database performance issue shown in FIG. 8;
  • FIG. 11 is a block diagram showing database cluster performance after applying the potential solution in FIG. 10;
  • FIG. 12 is a block diagram showing a second potential solution to the database performance issue shown in FIG. 8;
  • FIG. 13 is a block diagram showing database cluster performance on Tuesday afternoons that includes hardware link utilization for a hardware network related to the identified performance issue; and
  • FIG. 14 is a block diagram sowing a first potential solution to the database performance issue shown in FIG. 8 based on the network utilization for a hardware link shown in FIG. 13.
  • DETAILED DESCRIPTION
  • The disclosure and claims herein disclose a database performance monitor that monitors performance of a distributed database, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism which physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and applies the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
  • Referring to FIG. 1, a computer system 100 is one suitable implementation of a server computer system that includes a distributed virtual Ethernet mechanism and a database performance monitor. Server computer system 100 is an IBM zEnterprise System computer system. However, those skilled in the art will appreciate that the disclosure herein applies equally to any computer system, regardless of whether the computer system is a complicated multi-user computing apparatus, a single user workstation, or an embedded control system. As shown in FIG. 1, computer system 100 comprises one or more processors 110, a main memory 120, a mass storage interface 130, a display interface 140, and a network interface 150. These system components are interconnected through the use of a system bus 160. Mass storage interface 130 is used to connect mass storage devices, such as local mass storage device 155, to computer system 100. One specific type of local mass storage device 155 is a readable and writable CD-RW drive, which may store data to and read data from a CD-RW 195.
  • Main memory 120 preferably contains data 121, an operating system 122, a distributed virtual Ethernet mechanism 123, and a distributed database 126. Data 121 represents any data that serves as input to or output from any program in computer system 100. Operating system 122 is a multitasking operating system. Distributed virtual Ethernet mechanism 123 is a distributed virtual networking mechanism that virtualizes underlying hardware for a variety of different types of network connections into a single virtual view that allows easy interaction between components connected to the distributed virtual Ethernet mechanism 123. The representation of distributed virtual Ethernet mechanism 123 shown in the main memory 120 in FIG. 1 is a logical representation showing an implementation in software that resides in the main memory 120. In actual implementation, the distributed virtual Ethernet mechanism 123 could be any suitable combination of hardware and software. The distributed virtual Ethernet mechanism 123 includes a distributed virtual Ethernet switch 124 and a network monitor mechanism 125. The distributed virtual Ethernet switch 124 provides a single virtualized view of underlying potentially disparate hardware networks. The network monitor mechanism 125 monitors network usage of both the virtual networks and the hardware networks in the distributed virtual Ethernet switch 124. By monitoring network usage of both virtual and hardware networks, the distributed virtual Ethernet mechanism 123 has information that may be used by a distributed database to potentially automatically resolve a performance issue that arises in the distributed database.
  • There is an inherent problem that arises from virtualizing all underlying hardware networks in the distributed virtual Ethernet switch 124. This virtualization provides a very convenient single point of contact for managing network communications in a networked computer system such as a distributed database. However, by virtualizing the underlying hardware networks, the specific implementation and even performance of the hardware networks are not visible to software that uses the distributed virtual Ethernet mechanism. Thus, the convenient virtualized interface provided by the distributed virtual Ethernet mechanism comes at the cost of masking performance of the underlying hardware. The distributed virtual Ethernet mechanism 123 solves this problem by providing a network monitor mechanism 125 that not only monitors usage of virtual networks, but underlying hardware networks as well. The distributed virtual Ethernet mechanism 123 thus provides a convenient single point where performance of both virtual and hardware networks may be managed.
  • The distributed database 126 in FIG. 1 is a logical representation of a distributed database that resides in memory of multiple nodes in a networked computer system, such as distributed database 400 shown in FIG. 4. The distributed database 126 includes a distributed database manager 127 and a database performance monitor 128. The distributed database manager 127 manages allocation of jobs to the distributed database, manages configuration of the distributed database, and performs other management functions with respect to the distributed database 126. The database performance monitor 128 monitors performance of the distributed database 126, detects a performance issue, determines from the network monitor mechanism 125 in the distributed virtual Ethernet mechanism 123 which hardware and virtual networks are related to the performance issue, and attempts to reconfigure the distributed database 126 to resolve the performance issue. Because all the network performance related to the distributed database is available at a single point in the distributed virtual Ethernet mechanism 123, the database performance monitor 128 may determine performance of both virtual networks and hardware networks by accessing the network monitor mechanism 125. The database performance monitor 128 can thus address performance issues in the distributed database that are caused by congestion of hardware networks instead of by looking only at virtual network utilization.
  • Computer system 100 utilizes well known virtual addressing mechanisms that allow the programs of computer system 100 to behave as if they only have access to a large, contiguous address space instead of access to multiple, smaller storage entities such as main memory 120 and local mass storage device 155. Therefore, while data 121, operating system 122, distributed virtual Ethernet mechanism 123 and distributed database 126 are shown to reside in main memory 120, those skilled in the art will recognize that these items are not necessarily all completely contained in main memory 120 at the same time. It should also be noted that the term “memory” is used herein generically to refer to the entire virtual memory of computer system 100, and may include the virtual memory of other computer systems coupled to computer system 100.
  • Processor 110 may be constructed from one or more microprocessors and/or integrated circuits. Processor 110 executes program instructions stored in main memory 120. Main memory 120 stores programs and data that processor 110 may access. When computer system 100 starts up, processor 110 initially executes the program instructions that make up operating system 122. Processor 110 also executes the distributed virtual Ethernet mechanism 123, the distributed database manager 127, and the database performance monitor 128.
  • Although computer system 100 is shown to contain only a single processor and a single system bus, those skilled in the art will appreciate that a database performance monitor may be practiced using a computer system that has multiple processors and/or multiple buses. In addition, the interfaces that are used preferably each include separate, fully programmed microprocessors that are used to off-load compute-intensive processing from processor 110. However, those skilled in the art will appreciate that these functions may be performed using I/O adapters as well.
  • Display interface 140 is used to directly connect one or more displays 165 to computer system 100. These displays 165, which may be non-intelligent (i.e., dumb) terminals or fully programmable workstations, are used to provide system administrators and users the ability to communicate with computer system 100. Note, however, that while display interface 140 is provided to support communication with one or more displays 165, computer system 100 does not necessarily require a display 165, because all needed interaction with users and other processes may occur via network interface 150.
  • Network interface 150 is used to connect computer system 100 to other computer systems or workstations 175 via network 170. Network interface 150 thus connects the apparatus 100 to other computer systems (e.g., 175 in FIG. 1) in a networked computer system. Network interface 150 broadly represents any suitable way to interconnect electronic devices, regardless of whether the network 170 comprises present-day analog and/or digital techniques or via some networking mechanism of the future. Network interface 150 preferably includes a combination of hardware and software that allow communicating on the network 170. Software in the network interface 150 preferably includes a communication manager that manages communication with other computer systems 175 via network 170 using a suitable network protocol. Many different network protocols can be used to implement a network. These protocols are specialized computer programs that allow computers to communicate across a network. TCP/IP (Transmission Control Protocol/Internet Protocol) is an example of a suitable network protocol that may be used by the communication manager within the network interface 150.
  • As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
  • Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
  • Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
  • The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
  • Referring to FIG. 2, a distributed virtual Ethernet switch 210 is shown, which is one suitable implementation for the distributed virtual Ethernet switch 124 shown in FIG. 1. The distributed virtual Ethernet switch 210 includes a virtual to hardware mapping 220 that correlates multiple virtual networks 230, shown in FIG. 2 as NW1, NW2, . . . , NWM, to multiple hardware networks 240, shown in FIG. 2 as Link1, Link2, . . . , LinkN. Note there is not necessarily a one-to-one correspondence between virtual networks 230 and hardware networks 240 because a single hardware network can implement multiple virtual networks. The virtual networks 230 provide a virtualized view of the networks interconnecting the distributed database. This allows the underlying hardware implementation of multiple different hardware networks to be hidden or masked via the virtual networks. Thus, a virtual network may be represented as a virtual Ethernet network even when the underlying hardware is something other than an Ethernet network, such as a specialized network chip. However, because the distributed virtual Ethernet switch 210 includes the virtual to hardware mapping 220, this makes the distributed virtual Ethernet switch 210 a central place where information regarding the topology of hardware networks may be accessed.
  • Referring to FIG. 3, the network monitor mechanism 125 shown in FIG. 1 determines both virtual network utilization 310 and hardware network utilization 320. This makes the distributed virtual Ethernet mechanism 123 a central repository for determining network utilization of not only virtual networks but hardware networks as well.
  • FIG. 4 shows one sample implementation of a distributed database 400 running on four nodes 410, 430, 450 and 470. The database is distributed by virtue of having different portions of the database distributed in the memory of different nodes. Note the memory in each node may include any suitable memory in the memory hierarchy, including mass storage. Thus, node1 410 includes a first database portion 420; node2 430 includes a second database portion 440; node3 450 includes a third database portion 460; and node4 470 includes a fourth database portion 480. Node1 410 is connected to the distributed virtual Ethernet switch 124 via a virtual network denoted NW1 in FIG. 4. In similar fashion, node2, node3 and node4 are connected to the distributed virtual Ethernet switch 124 via virtual networks NW2, NW3 and NW4, respectively. Note the combination of hardware and software in a distributed database, such as distributed database 400 in FIG. 4, is shown logically for the sake of simplicity as distributed database 126 in FIG. 1.
  • Referring to FIG. 5, the database performance monitor 128 (also shown in FIG. 1) collects performance parameters for each node in a distributed database. In one suitable implementation, there is a separate database performance monitor for each cluster in a distributed database. We assume the four nodes shown in FIG. 4 are in the same cluster, and the database performance monitor 128 collects performance information for each of the four nodes. Database performance monitor 128 thus includes Node1 performance 510A, Node2 performance 510B, Node3 performance 510C, and Node4 performance 510D. The performance for each node includes CPU usage, memory usage, disk storage status, storage area network (SAN) links and performance, and network topology and utilization. Thus, node1 performance 510A includes CPU usage 520A, memory usage 522A, disk storage status 524A, SAN links/performance 526A, and network topology and utilization 528A; node2 performance 510B includes CPU usage 520B, memory usage 522B, disk storage status 524B, SAN links/performance 526B, and network topology and utilization 528B; node3 performance 510C includes CPU usage 520C, memory usage 522C, disk storage status 524C, SAN links/performance 526C, and network topology and utilization 528C; and node4 performance 510D includes CPU usage 520D, memory usage 522D, disk storage status 524D, SAN links/performance 526D, and network topology and utilization 528D. By monitoring performance of the nodes in a distributed database, the database performance monitor 128 has information needed to reconfigure automatically the distributed database when a performance issue arises. CPU usage relates to how much of the CPU capacity in a node is being used. Memory usage relates to how much of the memory capacity in a node is being used. Disk storage status relates to the status of any disk that is part of the node. SAN links/performance relates to whether or not the node is connected to a SAN, and if so, the performance of the SAN. Network topology and utilization relates to the topology and utilization of both virtual networks and hardware networks. In the most preferred implementation, the network topology and utilization for each node is determined by querying the distributed virtual Ethernet mechanism 123. Because the network monitor mechanism 125 monitors network utilization for both virtual networks and hardware networks (see FIG. 3), and because the distributed virtual Ethernet switch 124 includes information related to network topology for both virtual networks and hardware networks, querying the distributed virtual Ethernet mechanism 123 allows the database performance monitor 128 to determine which virtual networks and which hardware networks are related to the identified database performance issue, and to determine performance for both virtual and hardware networks for a given node that are related to the identified database performance issue.
  • Referring to FIG. 6, a method 600 shows one way to automatically address performance issues in a distributed database. A database performance issue is identified (step 610). Various database performance issues may be identified in step 610, including database performance issues detected by heuristic analysis, database performance issues due to network traffic, database performance issues due to network utilization, database performance issues due to database security issues, and database performance issues caused by hardware failures. Of course, other database performance issues not listed herein are within the scope of the disclosure and claims. Performance for the database cluster is determined, including network utilization for virtual networks (step 620). A potential solution is identified based on the database cluster performance, including the network utilization for related virtual networks (step 630). A virtual network is related to the database performance issue when performance of the virtual network may affect the database performance issue. The database is then automatically reconfigured without intervention of a user (step 640) to apply the potential solution identified in step 630. When the database performance issue is resolved (step 650=YES), method 600 is done. When the database performance issue is not resolved (step 650=NO), method 600 determines whether there are any other potential solutions to the identified database performance issue (step 660). If so (step 660=YES), method 600 loops back to step 630 and continues. When there is no other potential solution (step 660=NO), a notification is sent to a system administrator of the performance issue that could not be resolved automatically (step 670). Method 600 is then done. Note that method 600 uses database cluster information, including utilization for virtual networks, in identifying potential solutions and reconfiguring the distributed database accordingly. Note, however, that considering only virtual network utilization can mask network problems in the hardware networks. Thus, even though a virtual network NW1 may have only 40% utilization, its underlying hardware link could be used by other virtual networks as well, resulting in the hardware link having 100% utilization. Thus, in the most preferred implementation, utilization of both virtual networks and hardware networks is considered, as shown in method 700 in FIG. 7.
  • Referring to FIG. 7, method 700 identifies a database performance issue (step 710). As described above with respect to step 610 in FIG. 6, the disclosure and claims herein extend to identifying any suitable database performance issue whatever the cause or how the database performance issue is identified or detected. Database cluster performance is determined, including network utilization for virtual networks and network utilization for hardware networks (step 720). A potential solution is identified based on the database cluster performance, including network utilization for related virtual networks and network utilization for related hardware networks (step 740). A virtual network or hardware network is related to the database performance issue when performance of the network may affect the database performance issue. The distributed database is then reconfigured (step 750) according to the identified potential solution in step 740. When the issue is resolved (step 760=YES), method 700 is done. When the issue is not resolved (step 760=NO), method 700 determines whether there are any other potential solutions to the identified database performance issue (step 770). If so (step 770=YES), method 700 loops back to step 740 and continues. When there is no other potential solution (step 770=NO), a notification is sent to a system administrator of the performance issue that could not be resolved automatically (step 780). Method 700 is then done. Because network utilization information can be retrieved from the distributed virtual Ethernet mechanism for both virtual and hardware networks, method 700 allows applying potential solutions according to both virtual and hardware network utilization.
  • A simple example will illustrate the concepts in FIGS. 6 and 7 discussed above. Referring to FIG. 6, a database performance issue is identified (step 610). One possible database performance issue is shown in FIG. 8, where workload X slows down 200% on Tuesday afternoons. This means workload X takes twice as long to run on Tuesday afternoons that it normally does at other times. The database cluster performance, including utilization for virtual networks, is determined (step 620). We assume for this example Ethernet network #1 is related to the identified database performance issue, which means Ethernet network #1 affects the identified database performance issue. We assume the database cluster performance on Tuesday afternoons is shown in FIG. 9, which indicates CPU usage for Host Group #1 is 90% and network utilization for virtual Ethernet network #1 is 10%. Because the CPU usage is relatively high, one potential solution that could be identified in step 630 in FIG. 6 is to move data for workload X to nodes with less CPU usage, as shown in FIG. 10. We assume the distributed database is reconfigured in step 640 to move data for workload X to nodes with less CPU usage. Method 600 then determines whether the issue is resolved by looking at the database cluster performance on Tuesday afternoons shown in FIG. 11. While the CPU usage for Host Group #1 has dropped from 90% to 50%, we assume the database performance issue shown in FIG. 8 was not resolved (step 650=NO), meaning the reconfiguration of the distributed database did not sufficiently improve the execution time of workload X. The distributed database would then be returned to its previous configuration. We assume a second potential solution exists (step 660=YES), to move workload X to a second SAN in nodes with access to a second SAN, as shown in FIG. 12 (step 630). The database is reconfigured to implement the second potential solution (step 640), but we assume for this example the database performance issue shown in FIG. 8 was not resolved (step 650=NO). The distributed database would then be returned to its previous configuration. We assume there are no other potential solutions that could be automatically applied (step 660=NO), so a system administrator is notified of the performance issue that could not be resolved automatically (step 670). Method 600 is then done.
  • We now assume for the simple example given above that method 700 in FIG. 7 is used instead of method 600 in FIG. 6. The same database performance issue is identified in FIG. 8. The database cluster performance, including network utilization for both virtual networks and hardware networks, is determined (step 720). The network utilization for both virtual and hardware networks is preferably determined by querying the network monitor mechanism 125 in the distributed virtual Ethernet mechanism 123 shown in FIG. 1. FIG. 13 shows the CPU usage for Host Group #1 is 90%, and the network utilization for virtual Ethernet Network #1 is 10%, similar to that shown in FIG. 9. However, we assume the hardware link #1 is also related to the database performance issue, and the network utilization for hardware link #1 is shown at 100% in FIG. 13. A potential solution is identified in step 740, which is shown in FIG. 14, namely to move data for workload X to a cluster segment that does not use hardware link #1. The distributed database is reconfigured in step 750 to implement the potential solution shown in FIG. 14. We assume this reconfiguration of the database resolves the database performance issue in FIG. 8 (step 760=YES), so method 700 is done. Note when a database reconfiguration does not resolve the identified database performance issue, the database reconfiguration is returned to its previous configuration. When a database reconfiguration does resolve the identified database performance issue, the change in the database configuration is made permanent.
  • The presence of a distributed virtual Ethernet switch provides a single point in a database system or cluster where network utilization for both virtual and hardware networks may be determined. The distributed virtual Ethernet switch can thus provide its virtualization functions, effectively hiding the underlying implementation of hardware networks when needed, while also providing detailed information regarding hardware network topology and performance that allows a database performance monitor to automatically reconfigure a distributed database to address performance issues at either the virtual network level or at the hardware network level.
  • The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
  • A database performance monitor monitors performance of a distributed database, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism which physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and applies the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
  • One skilled in the art will appreciate that many variations are possible within the scope of the claims. Thus, while the disclosure is particularly shown and described above, it will be understood by those skilled in the art that these and other changes in form and details may be made therein without departing from the spirit and scope of the claims.

Claims (12)

1. A networked computer system comprising:
a plurality of nodes, each node comprising:
at least one processor; and
a memory coupled to the at least one processor;
a distributed database residing in the memory of the plurality of nodes;
a distributed virtual network mechanism that includes a mapping of a plurality of virtual networks to a plurality of physical networks that interconnect the plurality of nodes in the distributed database; and
a database performance monitor that monitors performance of the distributed database, identifies a database performance issue for the distributed database, determines from the distributed virtual network mechanism which of the plurality of physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and uses the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
2. The networked computer system of claim 1 wherein the database performance monitor, after automatically changing configuration of the distributed database, determines whether the changed configuration of the distributed database addressed the database performance issue for the distributed database.
3. The networked computer system of claim 2 wherein, when the database performance monitor determines the changed configuration of the distributed database did not address the database performance issue for the distributed database, the database performance monitor determines whether a second potential solution exists to address the database performance issue, and when the second potential solution exists, the database performance monitor uses the second potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
4. The networked computer system of claim 1 wherein, when the database performance monitor determines the changed configuration of the distributed database did not address the database performance issue for the distributed database, and when no other potential solution exists to address the database performance issue, the database performance monitor notifies a system administrator that the database performance issue cannot be resolved automatically.
5. The networked computer system of claim 1 wherein the distributed virtual network mechanism comprises a distributed virtual Ethernet mechanism that includes a distributed virtual Ethernet switch.
6-10. (canceled)
11. An article of manufacture comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising:
a database performance monitor that monitors performance of a distributed database residing in memory of a plurality of nodes, identifies a database performance issue for the distributed database, determines from a distributed virtual network mechanism that includes a mapping of a plurality of virtual networks to a plurality of physical networks that interconnect the plurality of nodes in the distributed database which of the plurality of physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and uses the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
12. The article of manufacture of claim 11 wherein the database performance monitor, after automatically changing configuration of the distributed database, determines whether the changed configuration of the distributed database addressed the database performance issue for the distributed database.
13. The article of manufacture of claim 12 wherein, when the database performance monitor determines the changed configuration of the distributed database did not address the database performance issue for the distributed database, the database performance monitor determines whether a second potential solution exists to address the database performance issue, and when the second potential solution exists, the database performance monitor uses the second potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue.
14. The article of manufacture of claim 11 wherein, when the database performance monitor determines the changed configuration of the distributed database did not address the database performance issue for the distributed database, and when no other potential solution exists to address the database performance issue, the database performance monitor notifies a system administrator that the database performance issue cannot be resolved automatically.
15. The article of manufacture of claim 11 wherein the distributed virtual network mechanism comprises a distributed virtual Ethernet mechanism that includes a distributed virtual Ethernet switch.
16. A networked computer system comprising:
a plurality of nodes, each node comprising:
at least one processor; and
a memory coupled to the at least one processor;
a distributed database residing in the memory of the plurality of nodes;
a distributed virtual Ethernet mechanism that includes a distributed virtual Ethernet switch and a mapping of a plurality of virtual networks to a plurality of physical networks that interconnect the plurality of nodes in the distributed database; and
a database performance monitor that monitors performance of the distributed database, identifies a database performance issue for the distributed database, determines from the distributed virtual network mechanism which of the plurality of physical networks are related to the database performance issue, determines a potential solution to the database performance issue that changes configuration of the distributed database, and uses the potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue, wherein the database performance monitor, after automatically changing configuration of the distributed database, determines whether the changed configuration of the distributed database addressed the database performance issue for the distributed database, wherein, when the database performance monitor determines the changed configuration of the distributed database did not address the database performance issue for the distributed database, the database performance monitor determines whether a second potential solution exists to address the database performance issue, and when the second potential solution exists, the database performance monitor uses the second potential solution by automatically changing configuration of the distributed database without intervention of a user to address the database performance issue, and when the database performance monitor determines the changed configuration of the distributed database did not address the database performance issue for the distributed database, and when no other potential solution exists to address the database performance issue, the database performance monitor notifies a system administrator that the database performance issue cannot be resolved automatically.
US13/675,032 2012-11-13 2012-11-13 Automatically addressing performance issues in a distributed database Expired - Fee Related US8943198B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/675,032 US8943198B2 (en) 2012-11-13 2012-11-13 Automatically addressing performance issues in a distributed database
US13/707,683 US8966067B2 (en) 2012-11-13 2012-12-07 Automatically addressing performance issues in a distributed database

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/675,032 US8943198B2 (en) 2012-11-13 2012-11-13 Automatically addressing performance issues in a distributed database

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/707,683 Continuation US8966067B2 (en) 2012-11-13 2012-12-07 Automatically addressing performance issues in a distributed database

Publications (2)

Publication Number Publication Date
US20140136682A1 true US20140136682A1 (en) 2014-05-15
US8943198B2 US8943198B2 (en) 2015-01-27

Family

ID=50682706

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/675,032 Expired - Fee Related US8943198B2 (en) 2012-11-13 2012-11-13 Automatically addressing performance issues in a distributed database
US13/707,683 Active 2033-09-22 US8966067B2 (en) 2012-11-13 2012-12-07 Automatically addressing performance issues in a distributed database

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/707,683 Active 2033-09-22 US8966067B2 (en) 2012-11-13 2012-12-07 Automatically addressing performance issues in a distributed database

Country Status (1)

Country Link
US (2) US8943198B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150003448A1 (en) * 2013-06-28 2015-01-01 Ciena Corporation Method and system for traffic engineered mpls ethernet switch
US20150363291A1 (en) * 2014-06-12 2015-12-17 Oracle International Corporation Optimizing the number of shared processes executing in a computer system
US10523533B2 (en) * 2016-06-21 2019-12-31 International Business Machines Corporation Cloud network assessment based on scoring virtual network performance relative to underlying network performance
US10581637B2 (en) * 2016-03-01 2020-03-03 Paypal, Inc. Computational node adaptive correction system
US20210232593A1 (en) * 2020-01-27 2021-07-29 Acentium Inc Systems and methods for intelligent segmentatioin and rendering of computer environment data
US11283671B2 (en) * 2020-02-28 2022-03-22 Hewlett Packard Enterprise Development Lp Handling issues reported by network devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10614788B2 (en) * 2017-03-15 2020-04-07 Synaptics Incorporated Two channel headset-based own voice enhancement
CN107704490A (en) * 2017-08-22 2018-02-16 贵州白山云科技有限公司 A kind of data processing method and device based on equity storage
US11003641B2 (en) 2017-09-22 2021-05-11 Microsoft Technology Licensing, Llc Automatic database troubleshooting

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030187853A1 (en) * 2002-01-24 2003-10-02 Hensley Roy Austin Distributed data storage system and method
US7403946B1 (en) * 1999-10-01 2008-07-22 Accenture Llp Data management for netcentric computing systems
US7467198B2 (en) * 1999-10-01 2008-12-16 Accenture Llp Architectures for netcentric computing systems
US20100107085A1 (en) * 2008-10-29 2010-04-29 The Go Daddy Group, Inc. Control panel for managing multiple online data management solutions
US20100257258A1 (en) * 2000-07-19 2010-10-07 Zaide Edward Liu Domain name resolution using a distributed dns network
US7957991B2 (en) * 1999-11-22 2011-06-07 Accenture Global Services Limited Technology sharing during demand and supply planning in a network-based supply chain environment
US8135859B1 (en) * 2005-01-19 2012-03-13 Microsoft Corporation System and method for providing infrastructure services without a designated network manager
US20130060782A1 (en) * 2011-09-02 2013-03-07 Bbs Technologies, Inc. Determining indexes for improving database system performance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8032409B1 (en) * 1999-11-22 2011-10-04 Accenture Global Services Limited Enhanced visibility during installation management in a network-based supply chain environment
US20030009540A1 (en) * 2001-06-29 2003-01-09 International Business Machines Corporation Method and system for presentation and specification of distributed multi-customer configuration management within a network management framework
US20030041238A1 (en) * 2001-08-15 2003-02-27 International Business Machines Corporation Method and system for managing resources using geographic location information within a network management framework
US20040252722A1 (en) 2003-06-13 2004-12-16 Samsung Electronics Co., Ltd. Apparatus and method for implementing VLAN bridging and a VPN in a distributed architecture router
US7664798B2 (en) * 2003-09-04 2010-02-16 Oracle International Corporation Database performance baselines
US8458467B2 (en) * 2005-06-21 2013-06-04 Cisco Technology, Inc. Method and apparatus for adaptive application message payload content transformation in a network infrastructure element
US7778257B1 (en) 2007-03-07 2010-08-17 Marvell International Ltd. Virtual ethernet stack
US20090161569A1 (en) 2007-12-24 2009-06-25 Andrew Corlett System and method for facilitating carrier ethernet performance and quality measurements
US20110225495A1 (en) * 2010-03-12 2011-09-15 Salesforce.Com, Inc. Service Cloud Console

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403946B1 (en) * 1999-10-01 2008-07-22 Accenture Llp Data management for netcentric computing systems
US7467198B2 (en) * 1999-10-01 2008-12-16 Accenture Llp Architectures for netcentric computing systems
US7957991B2 (en) * 1999-11-22 2011-06-07 Accenture Global Services Limited Technology sharing during demand and supply planning in a network-based supply chain environment
US20100257258A1 (en) * 2000-07-19 2010-10-07 Zaide Edward Liu Domain name resolution using a distributed dns network
US20030187853A1 (en) * 2002-01-24 2003-10-02 Hensley Roy Austin Distributed data storage system and method
US8135859B1 (en) * 2005-01-19 2012-03-13 Microsoft Corporation System and method for providing infrastructure services without a designated network manager
US20100107085A1 (en) * 2008-10-29 2010-04-29 The Go Daddy Group, Inc. Control panel for managing multiple online data management solutions
US20130060782A1 (en) * 2011-09-02 2013-03-07 Bbs Technologies, Inc. Determining indexes for improving database system performance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150003448A1 (en) * 2013-06-28 2015-01-01 Ciena Corporation Method and system for traffic engineered mpls ethernet switch
US9313121B2 (en) * 2013-06-28 2016-04-12 Ciena Corporation Method and system for traffic engineered MPLS ethernet switch
US9819586B2 (en) 2013-06-28 2017-11-14 Ciena Corporation Network-based ethernet switching packet switch, network, and method
US20150363291A1 (en) * 2014-06-12 2015-12-17 Oracle International Corporation Optimizing the number of shared processes executing in a computer system
US9465715B2 (en) * 2014-06-12 2016-10-11 Oracle International Corporation Optimizing the number of shared processes executing in a computer system
US10581637B2 (en) * 2016-03-01 2020-03-03 Paypal, Inc. Computational node adaptive correction system
US10523533B2 (en) * 2016-06-21 2019-12-31 International Business Machines Corporation Cloud network assessment based on scoring virtual network performance relative to underlying network performance
US20210232593A1 (en) * 2020-01-27 2021-07-29 Acentium Inc Systems and methods for intelligent segmentatioin and rendering of computer environment data
US11283671B2 (en) * 2020-02-28 2022-03-22 Hewlett Packard Enterprise Development Lp Handling issues reported by network devices

Also Published As

Publication number Publication date
US8943198B2 (en) 2015-01-27
US8966067B2 (en) 2015-02-24
US20140136475A1 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
US8943198B2 (en) Automatically addressing performance issues in a distributed database
US11316763B1 (en) Network dashboard with multifaceted utilization visualizations
US11888714B2 (en) Policy controller for distributed virtualization infrastructure element monitoring
US11277315B2 (en) Dashboard for display of state information in a graphic representation of network topology
US11165631B1 (en) Identifying a root cause of alerts within virtualized computing environment monitoring system
US20230308358A1 (en) Monitoring and policy control of distributed data and control planes for virtual nodes
US11323327B1 (en) Virtualization infrastructure element monitoring and policy control in a cloud environment using profiles
US11068314B2 (en) Micro-level monitoring, visibility and control of shared resources internal to a processor of a host machine for a virtual environment
US9647894B2 (en) Mapping relationships among virtual elements across a system
US9552264B1 (en) Server-side failover between dedicated VNIC servers
US8959611B1 (en) Secure packet management for bare metal access
US20150081836A1 (en) Profile-based lifecycle management for data storage servers
US10257049B2 (en) Dynamic highlight
US11765014B2 (en) Intent-based distributed alarm service
EP3679465A1 (en) Networked storage architecture
US11438263B2 (en) Policy application
US10305764B1 (en) Methods, systems, and computer readable mediums for monitoring and managing a computing system using resource chains
US20230336447A1 (en) Machine learning for metric collection
US20240056384A1 (en) Dynamic aggregate id based flow metrics aggregation

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LUKAS, JOSHUA;RICARD, GARY R.;THOMPSON, TIMOTHY L.;SIGNING DATES FROM 20121109 TO 20121112;REEL/FRAME:029284/0973

AS Assignment

Owner name: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD., SINGAPORE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:034194/0111

Effective date: 20140926

Owner name: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:034194/0111

Effective date: 20140926

AS Assignment

Owner name: LENOVO INTERNATIONAL LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.;REEL/FRAME:037101/0969

Effective date: 20151112

AS Assignment

Owner name: LENOVO INTERNATIONAL LIMITED, HONG KONG

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNMENT DOCUMENT CONTAINING TYPO ERRORS PREVIOUSLY RECORDED AT REEL: 037101 FRAME: 0969. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.;REEL/FRAME:037689/0190

Effective date: 20151211

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20190127

AS Assignment

Owner name: LENOVO INTERNATIONAL LIMITED, HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE LTD.;REEL/FRAME:050300/0721

Effective date: 20150401