US20130062966A1 - Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems - Google Patents

Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems Download PDF

Info

Publication number
US20130062966A1
US20130062966A1 US13/612,494 US201213612494A US2013062966A1 US 20130062966 A1 US20130062966 A1 US 20130062966A1 US 201213612494 A US201213612494 A US 201213612494A US 2013062966 A1 US2013062966 A1 US 2013062966A1
Authority
US
United States
Prior art keywords
control
source
vehicle
exemplary
wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/612,494
Inventor
Simon Verghese
Morris P. Kesler
Katherine L. Hall
Herbert Toby Lou
Ron Fiorello
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WiTricity Corp
Original Assignee
WiTricity Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WiTricity Corp filed Critical WiTricity Corp
Priority to US13/612,494 priority Critical patent/US20130062966A1/en
Assigned to WITRICITY CORPORATION reassignment WITRICITY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VERGHESE, SIMON, FIORELLO, RON, HALL, KATHERINE L., KESLER, MORRIS P., LOU, HERBERT T.
Publication of US20130062966A1 publication Critical patent/US20130062966A1/en
Priority to US15/355,143 priority patent/US10424976B2/en
Priority to US16/576,905 priority patent/US11097618B2/en
Priority to US17/407,484 priority patent/US20220144092A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This disclosure relates to wireless energy transfer and methods for controlling the operation and performance of electric vehicle wireless power transmission systems.
  • Energy or power may be transferred wirelessly using a variety of known radiative, or far-field, and non-radiative, or near-field, techniques as detailed, for example, in commonly owned U.S. patent application Ser. No. 12/613,686 published on May 6, 2010 as US 2010/010909445 and entitled “Wireless Energy Transfer Systems,” U.S. patent application Ser. No. 12/860,375 published on Dec. 9, 2010 as 2010/0308939 and entitled “Integrated Resonator-Shield Structures,” U.S. patent application Ser. No. 13/222,915 published on Mar. 15, 2012 as 2012/0062345 and entitled “Low Resistance Electrical Conductor,” U.S. patent application Ser. No. 13/283,811 published on ______ as U.S. Pat. No. ______ and entitled “Multi-Resonator Wireless Energy Transfer for Lighting,” the contents of which are incorporated by reference.
  • Recharging the batteries in full electric vehicles currently requires a user to plug a charging cord into the vehicle.
  • the many disadvantages of using a charging cord including the inconvenience, weight, and awkwardness of the cord, the necessity of remembering to plug-in and un-plug the vehicle, and the potential for cords to be stolen, disconnected, damaged, etc., have motivated makers of electric vehicles to consider wireless recharging scenarios.
  • Using a wireless power transmission system to recharge an electric vehicle has the advantage that no user intervention may be required to recharge the vehicle's batteries. Rather, a user may be able to position a vehicle near a source of wireless electricity and then an automatic control system may recognize that a vehicle in need of charge is present and may initiate, sustain, and control the delivery of wireless power as needed.
  • One of the advantages of wireless recharging of electric vehicles is that the vehicles may be recharged using a variety of wireless power techniques while conforming to a variety of performance criteria.
  • the variety of available wireless power techniques and acceptable performance criteria may present challenges to system designers who may like to provide for interoperability between different wireless sources and wireless devices (usually integrated in the vehicles) and at the same time differentiate their products by offering certain enhanced features. Therefore there is a need for an electric vehicle wireless power system control architecture that may ensure safe, efficient and reliable performance that meets certain industry performance standards and that offers designers and users of the end-system the opportunity to customize their systems to offer differentiated and enhanced features to the drivers of their vehicles.
  • This invention relates to a control architecture for electric vehicle (EV) wireless power transmission systems that may be segmented so that certain essential and/or standardized control circuits, programs, algorithms, and the like, are permanent to the system and so that other non-essential and/or augmentable control circuits, programs, algorithms, and the like, may be reconfigurable and/or customizable by a user of the system.
  • the control architecture may be distributed to various components of the wireless power system so that a combination of local or low-level controls operating at relatively high-speed can protect critical functionality of the system while higher-level and relatively lower speed control loops can be used to control other local and system-wide functionality. This combination of distributed and segmented control may offer flexibility in the design and implementation of higher level functions for end-use applications without the risk of disrupting lower level power electronics control functions.
  • control architecture may comprise both essential and non-essential control functions and may be distributed across at least one wireless source and at least one wireless device.
  • Non-essential control functions may be arranged in a hierarchy so that, for example, more sophisticated users may have access to more, or different reconfigurable control functions than less sophisticated users.
  • control architecture may be scalable so that single sources can interoperate with multiple devices, single devices can interoperate with multiple sources, and so that both sources and devices may communicate with additional processors that may or may not be directly integrated into the wireless power charging system, and so on.
  • the control architecture may enable the wireless power systems to interact with larger networks such as the internet, the power grid, and a variety of other wireless and wired power systems.
  • An example that illustrates some of the advantages of the distributed and segmented architecture we propose is as follows.
  • an original equipment manufacturer (OEM) of an EV wireless power transmission system may need to provide a system with certain guaranteed and/or standardized performance such as certain end-to-end transmission efficiency, certain tolerance to system variations, certain guarantees for reliability and safety and the like.
  • An integrator who integrates the wireless power transmission system into an electric vehicle may wish to distinguish their vehicle by guaranteeing higher efficiency and/or more robust safety features.
  • control architecture is structured in such a way that the integrator can set certain thresholds in the control loops to ensure higher efficiency and/or may add additional hardware (peripherals) to the system to augment the existing safety features, then the integrator may be able to offer significant product differentiation while also guaranteeing that basic system requirements and/or standards are met.
  • control architecture is not segmented to offer some reconfigurable functions while protecting the critical functions of the wireless power system, changing certain control loops and/or adding additional hardware may disrupt the required low-level power delivery, reliability, and safety performance of the system.
  • inventive control architecture described in this disclosure may be applied to wirelessly rechargeable electric vehicles using traditional inductive and magnetic resonance techniques. Because the performance of traditional inductive wireless power transmission systems is limited compared to the performance of magnetic resonance power transmission systems, the exemplary and non-limiting embodiments described in this disclosure will be for magnetic resonance systems. However, it should be understood that where reference is made to source and device resonators of magnetic resonance systems, those components may be replaced by primary coils and secondary coils in traditional inductive systems. It should also be understood that where an exemplary embodiment may refer to components such as amplifiers, rectifiers, power factor correctors and the like, it is to be understood that those are broad descriptions and that amplifiers may comprise additional circuitry for performing operations other than amplification.
  • an amplifier may comprise current and/or voltage and/or impedance sensing circuits, pulse-width modulation circuits, tuning circuits, impedance matching circuits, temperature sensing circuits, input power and output power control circuits and the like.
  • a wireless energy transfer system may include a segmented control architecture.
  • the wireless system may include a primary controller and a user configurable secondary controller that is in communication with the primary controller.
  • the primary controller may be configured to perform the essential control functions for the wireless system.
  • the essential control functions of the primary controller may include maintaining the wireless energy transfer operating safety limits.
  • the primary controller may monitor and control the voltage and currents on the components of the wireless energy transfer system.
  • the user configurable secondary controller may be configured to allow adjustment of non-safety critical parameters of the system such as adjusting the maximum power output, scheduling of on and off times, adjusting the frequency of energy transfer, and the like.
  • the primary and secondary controllers may be implemented on separate hardware or processors. In other exemplary embodiments the primary and secondary controllers may be virtual controllers and implemented on the same hardware.
  • FIG. 1 shows exemplary components in an electric vehicle wireless power transfer system.
  • FIG. 2 shows an exemplary charging system control diagram for an electric vehicle wireless power transfer system. This exemplary embodiment shows that system performance may be monitored with a laptop through the wireless and/or wired “Debug” and “Status” ports.
  • FIG. 3A shows a notional state diagram of the system charging cycle. Activation states are denoted by the rectangles. Conditional statements that enable transitions between states are enclosed in square brackets. Fault detection on either side results in both sides entering the Anomaly state.
  • FIG. 4 shows an exemplary charging cycle use-case.
  • FIG. 5 shows a Sequence Diagram for interaction between a source and an electric vehicle during an exemplary charging engagement.
  • FIG. 6 shows an exemplary embodiment of power factor corrector control loops.
  • FIG. 7 shows an exemplary embodiment of source amplifier control loops.
  • FIG. 8 shows an exemplary embodiment of device rectifier control loops.
  • FIG. 9 shows exemplary interfaces to and from an application source processor.
  • FIG. 10 shows exemplary interfaces to and from an application device processor.
  • FIG. 11 shows exemplary interfaces to and from an amplifier controller.
  • FIG. 12 shows exemplary interfaces to and from a recitfier controller.
  • FIG. 13 shows exemplary ASP control parameters.
  • FIG. 14 shows exemplary ADP control parameters.
  • FIG. 15 shows exemplary amplifier control parameters.
  • FIG. 16 shows exemplary rectifier control parameters.
  • an electric vehicle may be any type of vehicle such as a car, a boat, a plane, a bus, a scooter, a bike, a cart, a moving platform, and the like that comprises a rechargeable battery.
  • the wireless power transmission system may provide power to the battery charging circuit of the electric vehicle and/or it may power the vehicle directly.
  • Wireless power may be provided to the vehicle while it is stationary or while it is moving.
  • the power provided wirelessly to recharge the vehicle battery may be more than 10 Watts (W), more than 100 W, more than a kilowatt (kW), more than 10 kW, and/or more than 100 kW, depending on the storage capacity and power requirements of the vehicle.
  • control loops and/or less distributed and/or less segmented control architectures may be sufficient to ensure safe, reliable and efficient operation of the wireless power transmission system.
  • redundant control loops and/or multi-level control architectures may be required to realize safe, reliable and efficient operation of the wireless power transfer system.
  • This disclosure describes certain control tasks that may be necessary for enabling an electric vehicle charging engagement using a wireless energy transfer system as well as potential control loops, states, and sequences of interactions that may govern the performance of the system.
  • the proposed control architectures and tasks may enable transaction management (e.g. billing, power origination identification, direction of power flow), integration with vehicle electronics, and higher level control tasks for system operation, communications, and anomaly resolution.
  • transaction management e.g. billing, power origination identification, direction of power flow
  • integration with vehicle electronics e.g. billing, power origination identification, direction of power flow
  • integration with vehicle electronics e.g. billing, power origination identification, direction of power flow
  • integration with vehicle electronics e.g. billing, power origination identification, direction of power flow
  • integration with vehicle electronics e.g. billing, power origination identification, direction of power flow
  • integration with vehicle electronics e.g. billing, power origination identification, direction of power flow
  • higher level control tasks for system operation, communications, and anomaly resolution.
  • system parameters, signals and elements may be controlled using hardware control techniques, software control techniques, and/or a combinations of hardware and software control techniques, and that these techniques and the circuits and circuit elements used to implement them may be referred to as controllers and/or system controllers.
  • FIG. 1 A block diagram of an exemplary wireless electric vehicle (EV) battery charging system is shown in FIG. 1 .
  • the system is partitioned into a source module and a device module, with each module consisting of a resonator and module control electronics.
  • the source module may be part of a charging station and the device module may be mounted onto a vehicle.
  • Power may be wirelessly transferred from the source to the device via the resonators. Closed loop control of the transmitted power may be performed through an out-of-band communications link between the source and the device, an in-band communications link between the source and the device, or a combination of in-band and out-of-band signaling protocols between the source and device.
  • system control functions may be realized in a computer, processor, server, network node and the like, separated from the source and device modules.
  • system controller may control more than one source, more than one device and/or more than one system.
  • a wireless power transmission system for electric vehicle charging can be designed so that it may support customization and modifications of the control architecture.
  • Such customizations and modifications may be referred to as reconfigurations, and an architecture designed to support such reconfigurations may be referred to as reconfigurable.
  • the control architecture may be realized in physically separate components, such as multiple microprocessors and some functions, processes, controls, and the like may be reconfigurable by a user of the system, and some may not.
  • the reconfigurable portions of the control architecture may be implemented in certain chips, micro-processors, field programmable gate arrays (FPGAs), Peripheral Interface Controllers (PICs), Digital Signal Processors (DSPs), Application Specific Processors (ASPs), and the like.
  • some reconfigurable portions of the control architecture may reside in ASPs which may be 32-bit microcontrollers with C-language source code.
  • the control code may reside on a single processor and a user may have permission to access certain portions of the code.
  • both hardware and software segmentation of the control functions of an EV wireless power transmission system are contemplated in this disclosure.
  • the system architecture may support ASPs in the source and device modules and these processors may be referred to as Application Source Processors (ASP) and the Application Device Processors (ADP).
  • ASP Application Source Processor
  • ADP Application Device Processors
  • This control architecture may enable different users and/or manufacturers of different vehicles and vehicle systems to be able to add to the source code or customize it for integration with their vehicles and/or in their intended applications.
  • processor, microprocessor, controller, and the like to refer to the ASPs described above and any suitable type of microprocessor, field programmable gate array (FPGA), Peripheral Interface Controller (PIC), Digital Signal Processor (DSP), and the like, that is known to one of skill in the art.
  • FPGA field programmable gate array
  • PIC Peripheral Interface Controller
  • DSP Digital Signal Processor
  • the ASP and ADP may be used to present certain system parameters and control points to wireless power system designers and/or vehicle integrators and to restrict access to certain other system parameters and control points.
  • certain control features may be essential to ensure proper and/or safe operation of a wireless power transmission system, and such control features may be implemented in hardware only loops and/or in physically separated microcontrollers and/or in restricted portions of the ASPs so that they may not be customized and/or modified by certain users of the systems.
  • one, some or all of the control functions of the wireless power system may be based on hardware implementations and/or may be hard-coded into the system and/or may be soft-coded into the system but with restricted access so that only select and verified users may make changes to the various codes, programs, algorithms and the like, that control the system operation.
  • the concept of partitioning the control plane into at least source-side and device-side functions and into at least high-level and low-level functions is what enables the reconfigurability of system operation while guaranteeing certain safety, reliability and efficiency targets are met.
  • the distribution and segmentation of the control plane allows flexibility in the adaptation of the higher level functions for vehicle designer and/or end user applications without the risk of disrupting the operation of the low level power electronics control functions.
  • the partitioning of the control plane allows for variable control loop speeds; fast and medium speeds for the low level critical hardware control functions of the power electronics as well as slower control loop speeds for the high level designer and/or end user control loops.
  • this partitioned control plan architecture may scale to adjust to and support more functionality and applications, at the same time it may be adapted to changing hardware requirements and standardized requirements for the safe and efficient delivery of power.
  • the fast and medium speed control loops may be adapted to support wireless power transmission at a range of operating frequencies and over a range of coupling coefficients, both of which may eventually be set by regulatory agencies.
  • users may access and customize the higher level control functions to implement functionality that may include, but may not be limited to:
  • FIG. 2 shows an exemplary charging system control diagram for an electric vehicle wireless power transfer system.
  • the source components of the system are shown on the left side of the diagram and the device (or vehicle) components of the system are shown on the right.
  • AC line power may flow into a power factor corrector (PFC) and provide a DC voltage to a switching amplifier.
  • the DC voltage provided to the switching amplifier may be variable and may be controlled.
  • a DC voltage may be provided to the amplifier from a DC source of power (not shown) such as a solar cell, a battery, a fuel cell, a power supply, a super capacitor, a fly wheel, and the like.
  • the DC voltage from a DC power source may be variable and may be controlled.
  • the switching amplifier in the source of an electric vehicle wireless power transmission system may be any class of switching amplifier including, but not limited to, a class D amplifier, a class E amplifier and a class D/E amplifier.
  • the switching frequency of the amplifier may be any frequency and may preferably be a frequency previously identified as suitable for driving inductor coils and/or magnetic resonators. In exemplary and non-limiting embodiments, the switching frequency may be between 10 kHz and 50 MHz. In exemplary and non-limiting embodiments, the frequency may be approximately 20 kHz, or approximately 44 kHz, or approximately 85 kHz, or approximately 145 kHz, or approximately 250 kHz.
  • the switching frequency may be between 400 and 600 kHz, between 1 and 3 MHz, between 6 and 7 MHz, and/or between 13 and 14 MHz.
  • the frequency of the switching amplifier may be tunable and may be controlled.
  • an amplifier controller may manage the electronic components in the amplifier and/or in the PFC and/or in the DC power supply (not shown).
  • the amplifier controller may monitor and control so-called local control loops and local interlocks for conditions such as over voltage/current in the source electronics, ground-fault circuit interrupt in the source electronics, and out-of-specification AC impedance changes at the source coil.
  • the amplifier controller may react quickly to shut the system down safely in response to a variety of set point violations.
  • the amplifier controller may expose registers for set-points and control to the ASP through an inter-integrated circuit (I 2 C) interface, referred to in the figure as the “User Interface”.
  • the amplifier controller may also have a watchdog timer (or heartbeat input) to detect if communication with the Application Source Processor (ASP) or with the vehicle has been lost.
  • the ASP may provide high-level control of the source electronics and the overall system charging cycle.
  • the ASP may interface with a foreign-object-debris (FOD) detector that monitors the source module for the presence of FOD and/or excessive temperature.
  • FOD foreign-object-debris
  • the ASP may be connected to an in-band and/or out-of-band communications link that may communicate with the vehicle-side application device processor (ADP) to provide closed loop control of the charging cycle.
  • ADP vehicle-side application device processor
  • a rectifier controller may perform low-level and local functions for the device side that are analogous to those described for the source side.
  • an I 2 C interface may be provided for interfacing with a higher-level ADP.
  • the ADP could be configured to connect via a CAN-bus or equivalent to a battery manager that may control the power delivered from the rectifier to the battery, vehicle engine or any time of power storage or management system on the vehicle.
  • the ADP could communicate that information to the source-side ASP which, in turn, could adjust the power settings on the amplifier controller.
  • control architecture may be partitioned into three types of control loops: fast, medium and slow.
  • the fast control loops may be for time critical functions (less than 1-ms latency) and may be either hardware control loops or interrupt-driven low-level software modules.
  • Medium-speed control loops may be for functions that operate under real-time software control ( ⁇ 500-ms latency).
  • Slow control loops (>500 ms latency) may be for functions with low bandwidth requirements or functions with unpredictable latency, for example, a 802.11-family wireless communication link.
  • FIG. 2 shows the three types of control loops as they may be applied to an exemplary electric vehicle wireless power transmission system.
  • embedded software portions of the control loops may be partitioned between the amplifier and rectifier controllers and the processors (ASP and ADP).
  • the amplifier and rectifier controllers may handle the hardware control and the operation of high-power and/or sensitive electronics components.
  • the ASPs may handle the system control loop and may provide interfaces to external peripherals, such as FOD detectors, communication links, monitoring equipment, and other vehicle and source electronics.
  • some of the functions that may operate under fast feedback-loop control may be based on hardware set-points and/or on software (programmable) set-points which may include but may not be limited to over-current protection, over-voltage protection, over-temperature protection, voltage and current regulation, transistor shoot-through current in the switching amplifier, GFCI (ground fault circuit interrupt) and critical system interlocks.
  • system events that may cause damage to the system itself or to a user of the system in a short period of time may be detected and reacted to using fast feedback-loop control.
  • some of the functions that may operate under medium-speed feedback loops may include, but may not be limited to temperature set-point violations, impedance set points to declare an out-of-range condition for the source coil impedance, FOD detection, monitoring for violations of the minimum efficiency set point, local power control in the source-side electronics and processor heartbeat monitoring (i.e. watchdog-timer expiration).
  • system events that may cause damage to the system itself or to a user of the system in a medium period of time and/or that may cause the system to operate in an undesirable state (e.g. low efficiency) may be detected and reacted to using medium feedback-loop control.
  • some of the functions that may operate under relatively slow-speed loop control may include but may not be limited to system power control loop (e.g. for executing a battery-charging profile), charge request/acknowledge messages between vehicle(s) and source(s), system start/stop messages, system level interlocks, RF communications link heartbeat monitoring (i.e. watchdog-timer expiration), status/GUI updates to a diagnostic laptop and messages for source/vehicle transactions, authentication and configuration.
  • system events that may cause damage to the system itself or to a user of the system in a long period of time and/or that may cause the system to operate in an undesirable state (e.g. low efficiency, insufficient information for closing a transaction) may be detected and reacted to using slow feedback-loop control.
  • FIG. 3 shows a notional state diagram of the system charging cycle.
  • the diagram shows examples of state machines that may be running on the ASPs in the source side and the vehicle side of the EV wireless power transmission system. Potential activation states are shown within each rectangle and potential conditional statements that must be satisfied to enable transitions between states are enclosed in square brackets.
  • in-band, out-of-band, and/or a combination of in-band and out-of-band wireless communication links between the source and the vehicle may provide for messaging and synchronization.
  • the communications required to implement control functions, processes and the like may piggy-back on existing or native communication systems in and around the vehicle.
  • messages may be passed amongst the source(s), the vehicle(s), and any additional networked component(s) using CAN-bus equipment and protocols, Bluetooth equipment and protocols, Zigbee equipment and protocols, 2.4 GHz radio equipment and protocols, 802.11 equipment and protocols, and/or any proprietary signaling scheme equipment and protocols implemented by the user.
  • the charging engagement between the source and vehicle for wireless charging may be similar to that described by SAE J1772 for wired charging, with additional steps added to support wireless charging.
  • a wireless source may be powered and available to supply power to a wireless device and may be referred to as being in the Available state.
  • a wireless source may constantly, periodically, occasionally and/or in response to some trigger, broadcast information regarding any of its availability, position, location, power supply capabilities, power costs, power origination (solar, coal burning plant, renewable, fossil fuel, etc.), resonator type, resonator cross-section (so that a vehicle may calculate and/or look-up an expected coupling coefficient with the source), and the like.
  • a vehicle may be receiving information broadcast by wireless power sources and may search for an available wireless power source, with matching hard-wired and/or use selectable features, over which it may park.
  • the vehicle's communication link may be active so that it is in the Searching state. If vehicle identifies a suitable wireless source, it may approach that source and initiate two way communications with the source so that the source and device side control electronics can exchange configuration information.
  • the source and vehicle sides may switch to their Docking states.
  • both source and device may confirm their compatibility and an alignment error signal may be provided to the vehicle driver so that he/she can maneuver the car into proper position. Once in position, the drive train of the vehicle may be disabled and the source and device may enter the Coupled state.
  • a ‘Charge Request’ may be sent from the vehicle—either automatically or driver initiated, and may be received by the source.
  • the Coupled state there may be further exchange of configuration information, safety checks, and the like. Once those are passed, both sides may enter the Ready to Charge state.
  • the vehicle in the Ready to Charge state, the vehicle may issue a ‘Start Charging’ command and both the source and the vehicle may enter the Charging state as the source power ramps up.
  • both source and vehicle In the Charging state, both source and vehicle may perform monitoring and logging of data, faults, and other diagnostics. Logging and monitoring may include, but may not be limited to an event loop that looks for hazardous and/or restricted Foreign Object Debris (FOD), overloads, unexpected temperature and/or efficiency excursions, and other asynchronous events.
  • FOD Foreign Object Debris
  • hazard and/or restricted object detection that occurs in the source during any of the powered states may cause the source to switch into its Anomaly state. If wireless communication is still working, the vehicle may be notified and may also drop into its Anomaly state. If wireless communication is down, the vehicle may enter its Anomaly state because it didn't ask for the wireless power to be shut down and because the wireless communications watchdog timer expires.
  • the vehicle may send a message to the source that results in the source entering its Anomaly state.
  • the source may send a message to the vehicle that results in the vehicle entering its Anomaly state.
  • the source and/or vehicle may automatically begin a process for handling or disposition of the anomaly.
  • the process may involve the source and vehicle exchanging health and status information to help discover the cause of the anomaly.
  • the source and vehicle may select a pre-planned action that corresponds to the cause. For example, in the event that detection of foreign object debris caused the anomaly, the source may reduce the power transfer level to a safe level where the foreign object debris does not overheat. In another example, in the event that the loss of RF communication was the cause, the source may stop power transfer until RF communication is re-established.
  • the system may automatically communicate to a user that the system is in its Anomaly state. Communication may occur over the internet, over a wireless network, or over another communications link.
  • charging may end when the vehicle sends a stop-charging (DONE) command to the source.
  • the source may immediately de-energize.
  • the source may return to the coupled state and may notify the vehicle of its state change.
  • the vehicle may switch to the Coupled state and may receive additional information about the charge engagement from the source. At this point, the vehicle may either stay put or it may depart. Once the source senses that a vehicle has departed, it may return to the Available state.
  • the figures are exemplary control loops that may perform system safety and hazard monitoring, as well as localized FOD detection, for example.
  • a FOD detector might be used including; prior to a source declaring itself Available, it may run through a series of diagnostic tests including FOD detection, in the Docking and in the Coupled states, the FOD detector could check for potentially hazardous debris falling off of a vehicle and onto a source resonator, and before entering the Ready to Charge state, a FOD detector reading may be part of a final safety check.
  • monitoring for FOD may occur during the Charging state.
  • one, some or any anomalies or failed safety checks may turn down or shut down the amplifier and put both sides (source and vehicle) into their Anomaly states, where additional diagnostics can be safely performed.
  • FIG. 5 shows another representation of some potential steps if a sequence of interactions in an exemplary embodiment of an EV wireless power transfer system.
  • the diagram shows exemplary steps from the charging sequence described above following Unified Modeling Language (UML) conventions:
  • UML Unified Modeling Language
  • control loops may be implemented to govern the operation of the wireless charging and/or powering of the electric vehicle.
  • Some exemplary control loops for the exemplary system shown in FIG. 2 are described below.
  • the control loops described below may be sufficient for some systems or they may need to be modified or added to ensure proper operation of other systems.
  • the description of control loops should not be interpreted as complete, but rather illustrative, to describe some of the issues considered when deciding whether system control loops might be fast, medium or slow in their response time, and whether or not they should be user reconfigurable.
  • a power factor corrector may convert an AC line voltage to a DC voltage for the source. It may provide active power factor correction to the line side and may provide a fixed or variable DC voltage to the source amplifier. Control of a power factor corrector may be performed through a combination of hardware circuits and firmware in the amplifier controller. For example hardware circuits may be used to control against transient or short-duration anomalies, e.g. exceeding hard set-point limits such as local currents or voltages exceeding safety limits for circuit components, such as power MOSFETs, IGBTs, BJTs, diodes, capacitors, inductors, and resistors, and firmware in the amplifier controller may be used to control against longer duration and slower developing anomalies, e.g. temperature warning limits, loss of synchronization of switching circuitry with the line voltage, and other system parameters that may affect power factor controller operation.
  • hardware circuits may be used to control against transient or short-duration anomalies, e.g. exceeding hard set-point limits such as local currents or voltages exceeding safety limits for circuit
  • an amplifier may provide the oscillating electrical drive to the wireless power system source resonator.
  • Hardware circuits may provide high-speed fault monitoring and processing. For example, violations of current and voltage set points and amplifier half-bridge (H-bridge) shoot-through may need to be detected within less than one millisecond in order to prevent catastrophic failures of the source electronics.
  • the amplifier controller may monitor the impedance of the source coil and may react to out-of-range impedance conditions in less than 500 ms. For example, if the impedance is too inductive and out-of-range, the efficiency of power transfer may be reduced and the system may turn down or shut down to prevent components from heating up and/or to prevent inefficient energy transfer. If the impedance is inductive, but low and out of range, the system may react as when the resonator is too inductive, or it may react differently, or more quickly, since transitioning from an inductive load to a capacitive load may damage the source electronics. In exemplary and non-limiting embodiments, a hardware circuit may be used to sense if the load the amplifier is driving has become capacitive and may over-ride other slowed control loops and turn down or shut down the source to prevent the unit from becoming damaged.
  • system-level power requirements may be determined on the vehicle side and may be fed back from the ADP to the ASP.
  • the ASP may request that the amplifier controller increment or decrement the power from the amplifier for example.
  • the bandwidth of the power control loop may be limited by the latency in the wireless link and by the latency in communication between the ADP and the battery manager.
  • a rectifier may convert the AC power received from the device resonator to DC output power for the vehicle, vehicle battery or battery charger.
  • a monitoring circuit for the rectifier output power, current and or voltage, as well as for the battery charge state may provide the feedback for closed-loop control of the system's power transfer.
  • the rectifier may control the output voltage to maintain it within the range desired by the battery management system. Additional fault monitoring and an interface to vehicle charging control processes may be provided by the ADP.
  • a rectifier module may comprise a full-bridge diode rectifier, a solid-state switch (e.g. double pole, single throw (DPST) switch), and a clamp circuit for over-voltage protection.
  • the full-bridge rectifier may send DC power through the closed switch and the inactive clamp circuit to the battery system. If the battery system needs more current, it may request it from the ADP which may forward the request to the ASP on the source side. If the battery needs less current, the corresponding request may be made. The speed with which these conditions must be detected, communicated, and acted upon may be determined by how long the system can safely operate in a non-ideal mode.
  • the system may be fine for the system to operate in a mode where the wireless power system is providing too little power to the vehicle battery, but it may be potentially hazardous to supply too much power.
  • the excess power supplied by the wireless source may heat components in the resonator, clamp circuit and/or battery charge circuit.
  • the speed of the feedback control loop may need to be fast enough to prevent damage to these components but may not need to be faster than that if a faster control loop is more expensive, more complex, and/or less desirable for any reason.
  • a switch and a clamp may provide vehicle-side protection against potential failure modes. For example, if the vehicle side enters its Anomaly state, it may notify the source which may subsequently enter its Anomaly state and may turn down or shut down the source power. In case the wireless link is down or the source is unresponsive, the switch in the rectifier may open to protect the battery system.
  • an ADP could enter its Anomaly state in several ways.
  • a few examples include:
  • control-system information may flow across the following interfaces:
  • the first interface may be used to exchange the messages needed to support the exemplary Sequence Diagram shown in FIG. 5 .
  • standardization activities will specify certain wireless communications protocols, such as the IEEE 802.11p protocol and/or Dedicated Short Range Communications (DSRC) using a licensed band at 5.9 GHz.
  • DSRC Dedicated Short Range Communications
  • both known and proprietary wireless communications protocols may be supported by and used to implement wireless power system controls.
  • a reconfigurable EV wireless power transfer system has been demonstrated using the IEEE 802.11b unlicensed band (Wi-Fi) to implement the system control commands and communication.
  • the second and third diagnostic interfaces may be for running demonstration purposes and to provide diagnostic information in an easily accessible format.
  • the connections with the laptop may also use 802.11b.
  • a Wi-Fi enabled router may be required for simultaneous support of wireless connections for the ASP-ADP, ASP-Laptop, and ADP-Laptop.
  • an 802.11b peer-to-peer connection could be used.
  • the fourth and fifth interfaces may be between the ASPs, other system controllers, and data loggers.
  • Other system controllers may be implemented in physically distinct microcontrollers as described in the exemplary embodiment, or they may be co-located in the same ASPs.
  • an Application Source Processor may be a microprocessor that holds the state information for the source side of the reconfigurable EV wireless power transfer system. Physically, it may be implemented in a PIC-32 microcontroller. The software running on the ASP may execute the state transitions described previously, as well as the wireless communication with the vehicle side and potentially with the diagnostic laptop (if present). It is anticipated that users may modify or replace the software on the ASP and still operate the reconfigurable EV wireless power transfer system. Functional interfaces to the Application Source Processor may include, but may not be limited to:
  • an ASP may have a Wireless Communications Link Interface.
  • the source-side ASP may communicate with the vehicle-side ADP over a wireless communication link.
  • the wireless protocol may be implemented using TCP/IP over a 2.4 GHz Wi-Fi link.
  • the RF module may be IEEE Std. 802.11b compatible with a 4-wire SPI interface to the ASP.
  • a communication interface using the ASP serial UART port may be available as an option.
  • the serial port might interface to an external wireless module to support the link.
  • a standard UART interface may provide the flexibility to use any particular wireless protocol that a user may want.
  • an interface between the ASP and the amplifier controller there may be an interface between the ASP and the amplifier controller.
  • An amplifier controller may provide low-level control of the source electronics, while the ASP may provide high-level control and may be responsible for the execution of the overall system charging cycle.
  • the interface to the amplifier controller may be presented as a set of control and status registers which may be accessible through an I 2 C serial bus. Such an arrangement could support user customization of the control algorithms.
  • an interface between an ASP and a FOD detection subsystem there may be an interface between an ASP and a FOD detection subsystem.
  • the ASP may be able to receive preprocessed digital data from a FOD processor.
  • a FOD processor may be designed to perform signal conditioning and threshold detection for the various types of sensors connected to it. Upon detection of FOD, the FOD processor may interrupt the ASP and transmit the FOD decision-circuit results. The ASP may then take appropriate action (e.g. shut down the power, go to a low-power state, issue a warning, etc.)
  • the FOD processor may also transmit the pre-decision signal-conditioned data in digital form to the ASP so that soft decision algorithms that use other information can be implemented in the ASP.
  • an interlock interface may consist of a set of optically coupled digital inputs which may act as system enables.
  • the interlocks may be externally generated signals which may be asserted to turn on the system.
  • the interlocks may also be able to be used by the user to shut down the system on command.
  • the systems and signals that feed the external interlock signals may be application specific.
  • a positioning and alignment interface may communicate data from a vehicle alignment and positioning sensor to an ASP to determine whether sufficient wireless power transfer efficiency may be achieved given the measured relative position of source and device resonators. If the resonators are not sufficiently well aligned, the ASP may communicate to the device ADP and instruct the system to generate a message to the driver that the vehicle needs to be repositioned and to inhibit system turn-on until proper positioning is established.
  • a diagnostic/debug interface may be available across a wireless link between an ASP and a laptop, or tablet, or smartphone or any other processing unit that preferably comprises a display.
  • the wireless communications connection may be through a dedicated Wi-Fi network.
  • the interface may allow a laptop, or other external controller, to put the EV wireless power transmission system in a diagnostic and/or customization mode where preset interlocks may be over-ridden and state changes may be forced onto the ASP.
  • this interface may also allow a laptop, or other external controller, with a Wi-Fi capability to access the ASP.
  • the ASP may be capable of streaming state information to the laptop which may store it in a log file. Parameters that can be stored in the log file may include:
  • an Application Device Processor may be a microprocessor that holds the state information for the vehicle side of an EV wireless power transfer system. Physically, it may be implemented in a PIC-32 microcontroller.
  • the software running on the ADP may execute the state transitions described previously, as well as the wireless communication with the source side and the diagnostic laptop, or other external controller. Users may modify or replace the software on the ADP to customize the operation and control of an EV wireless power transfer system.
  • functional interfaces to the Application Device Processor may include but may not be limited to:
  • an interface between an ADP and a CAN Bus there may be an interface between an ADP and a CAN Bus.
  • the ADP may include a CAN bus interface.
  • software running on an ADP may be augmented by a user to support a CAN bus interface even if the as-designed and/or as-delivered EV wireless power transfer system did not include this functionality.
  • a vehicle-side Application Device Processor may have a Wireless Communications Link Interface.
  • a device-side ADP may communicate with the source-side ASP over a wireless communication link.
  • the wireless protocol may be implemented using TCP/IP over a 2.4 GHz Wi-Fi link.
  • the RF module may be IEEE Std. 802.11b compatible with a 4-wire SPI interface to the ADP.
  • an interface between an ADP and a rectifier controller there may be an interface between an ADP and a rectifier controller.
  • the ADP may communicate with the rectifier controller over an interface that may be similar to the one between the ASP and the amplifier controller.
  • a rectifier controller may provide low-level control of the device electronics, while the ADP may provide high-level control and may be responsible for the execution of the overall system charging cycle.
  • the interface to the rectifier controller may be presented as a set of control and status registers which may be accessible through an I 2 C serial bus. Such an arrangement could support user customization of the control algorithms.
  • the interface may also consist of, an Interrupt Request input and a set of uni-directional watchdog/heartbeat outputs.
  • a positioning and alignment interface may communicate data from a vehicle alignment and positioning sensor to an ADP to determine whether sufficient wireless power transfer efficiency may be achieved given the measured relative position of source and device resonators. If the resonators are not sufficiently well aligned, the ADP may communicate to the source ASP and instruct the system to generate a message to the driver that the vehicle needs to be repositioned and to inhibit system turn-on until proper positioning is established.
  • an interface between an ADP and a System Interlock subsystem there may be an interface between an ADP and a System Interlock subsystem.
  • This interface may be analogous to that described between an ASP and a System Interlock subsystem. It could be used by the battery manager to force a shutdown of the EV wireless power transfer system.
  • the ADP may enter its Anomaly state and may demand that the source shut down immediately and may open the switch in the rectifier circuit.
  • the ADP may open the switch within 3 seconds, or an appropriate period of time, and communicating a command that the source shut down.
  • a diagnostic/debug interface may be available across a wireless link between an ADP and a laptop, or tablet, or smartphone or any other processing unit that preferably comprises a display.
  • the wireless communications connection may be through a dedicated Wi-Fi network.
  • the interface may allow a laptop, or other external controller, to put the EV wireless power transmission system in a diagnostic and/or customization mode where preset interlocks may be over-ridden and state changes may be forced onto the ADP.
  • this interface may also allow a laptop, or other external controller, with a Wi-Fi capability to access the ASP.
  • the ASP may be capable of streaming state information to the laptop which may store it in a log file. Parameters that can be stored in the log file may include:
  • an amplifier controller may provide low-level control to a Power Factor Corrector (PFC) and a switching amplifier.
  • PFC Power Factor Corrector
  • the interfaces between an amplifier controller and other system components may include, but may not be limited to:
  • a rectifier controller may provide high speed monitoring of rectifier power and system critical fault control.
  • the interfaces between a rectifier controller and other system components may include, but may not be limited to:
  • An reconfigurable EV wireless power transmission system may be partitioned into notional subsystems so that the interactions between subsystems may be studied and design decisions made be made as to which control functions and set-points may be customizable by a use while still ensuring safe, efficient and reliable performance of the system.
  • One method to analyze the system performance impact of allowing customization and/or reconfigurability of the control architecture and/or algorithms and/or set-points is to perform a Failure Mode Effects Analysis (FMEA).
  • FMEA Failure Mode Effects Analysis
  • a preliminary FMEA may comprise a prioritized listing of the known potential failure modes.
  • FMEA may need to be an on-going activity as new system failure modes are identified.
  • an FMEA process that scores potential failure modes in a number of categories may be used to identify the severity of certain failure scenarios. Categories that may be used to identify customizable parameters may include, but may not be limited to
  • the potential failure modes may be prioritized according to their Risk Priority Number (RPN)—which is merely the product of their three category scores.
  • RPN Risk Priority Number

Abstract

A control architecture for electric vehicle wireless power transmission systems that may be segmented so that certain essential and/or standardized control circuits, programs, algorithms, and the like, are permanent to the system and so that other non-essential and/or augmentable control circuits, programs, algorithms, and the like, may be reconfigurable and/or customizable by a user of the system. The control architecture may be distributed to various components of the wireless power system so that a combination of local or low-level controls operating at relatively high-speed can protect critical functionality of the system while higher-level and relatively lower speed control loops can be used to control other local and system-wide functionality.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. provisional patent application 61/533,281 filed Sep. 12, 2011 and U.S. provisional patent application 61/566,450 filed Dec. 2, 2011.
  • BACKGROUND
  • 1. Field
  • This disclosure relates to wireless energy transfer and methods for controlling the operation and performance of electric vehicle wireless power transmission systems.
  • 2. Description of the Related Art
  • Energy or power may be transferred wirelessly using a variety of known radiative, or far-field, and non-radiative, or near-field, techniques as detailed, for example, in commonly owned U.S. patent application Ser. No. 12/613,686 published on May 6, 2010 as US 2010/010909445 and entitled “Wireless Energy Transfer Systems,” U.S. patent application Ser. No. 12/860,375 published on Dec. 9, 2010 as 2010/0308939 and entitled “Integrated Resonator-Shield Structures,” U.S. patent application Ser. No. 13/222,915 published on Mar. 15, 2012 as 2012/0062345 and entitled “Low Resistance Electrical Conductor,” U.S. patent application Ser. No. 13/283,811 published on ______ as U.S. Pat. No. ______ and entitled “Multi-Resonator Wireless Energy Transfer for Lighting,” the contents of which are incorporated by reference.
  • Recharging the batteries in full electric vehicles currently requires a user to plug a charging cord into the vehicle. The many disadvantages of using a charging cord, including the inconvenience, weight, and awkwardness of the cord, the necessity of remembering to plug-in and un-plug the vehicle, and the potential for cords to be stolen, disconnected, damaged, etc., have motivated makers of electric vehicles to consider wireless recharging scenarios. Using a wireless power transmission system to recharge an electric vehicle has the advantage that no user intervention may be required to recharge the vehicle's batteries. Rather, a user may be able to position a vehicle near a source of wireless electricity and then an automatic control system may recognize that a vehicle in need of charge is present and may initiate, sustain, and control the delivery of wireless power as needed.
  • One of the advantages of wireless recharging of electric vehicles is that the vehicles may be recharged using a variety of wireless power techniques while conforming to a variety of performance criteria. The variety of available wireless power techniques and acceptable performance criteria may present challenges to system designers who may like to provide for interoperability between different wireless sources and wireless devices (usually integrated in the vehicles) and at the same time differentiate their products by offering certain enhanced features. Therefore there is a need for an electric vehicle wireless power system control architecture that may ensure safe, efficient and reliable performance that meets certain industry performance standards and that offers designers and users of the end-system the opportunity to customize their systems to offer differentiated and enhanced features to the drivers of their vehicles.
  • SUMMARY
  • This invention relates to a control architecture for electric vehicle (EV) wireless power transmission systems that may be segmented so that certain essential and/or standardized control circuits, programs, algorithms, and the like, are permanent to the system and so that other non-essential and/or augmentable control circuits, programs, algorithms, and the like, may be reconfigurable and/or customizable by a user of the system. In addition, the control architecture may be distributed to various components of the wireless power system so that a combination of local or low-level controls operating at relatively high-speed can protect critical functionality of the system while higher-level and relatively lower speed control loops can be used to control other local and system-wide functionality. This combination of distributed and segmented control may offer flexibility in the design and implementation of higher level functions for end-use applications without the risk of disrupting lower level power electronics control functions.
  • The inventors envision that the control architecture may comprise both essential and non-essential control functions and may be distributed across at least one wireless source and at least one wireless device. Non-essential control functions may be arranged in a hierarchy so that, for example, more sophisticated users may have access to more, or different reconfigurable control functions than less sophisticated users. In addition, the control architecture may be scalable so that single sources can interoperate with multiple devices, single devices can interoperate with multiple sources, and so that both sources and devices may communicate with additional processors that may or may not be directly integrated into the wireless power charging system, and so on. The control architecture may enable the wireless power systems to interact with larger networks such as the internet, the power grid, and a variety of other wireless and wired power systems.
  • An example that illustrates some of the advantages of the distributed and segmented architecture we propose is as follows. Imagine that an original equipment manufacturer (OEM) of an EV wireless power transmission system may need to provide a system with certain guaranteed and/or standardized performance such as certain end-to-end transmission efficiency, certain tolerance to system variations, certain guarantees for reliability and safety and the like. An integrator who integrates the wireless power transmission system into an electric vehicle may wish to distinguish their vehicle by guaranteeing higher efficiency and/or more robust safety features. If the control architecture is structured in such a way that the integrator can set certain thresholds in the control loops to ensure higher efficiency and/or may add additional hardware (peripherals) to the system to augment the existing safety features, then the integrator may be able to offer significant product differentiation while also guaranteeing that basic system requirements and/or standards are met. However, if the control architecture is not segmented to offer some reconfigurable functions while protecting the critical functions of the wireless power system, changing certain control loops and/or adding additional hardware may disrupt the required low-level power delivery, reliability, and safety performance of the system.
  • Note that the inventive control architecture described in this disclosure may be applied to wirelessly rechargeable electric vehicles using traditional inductive and magnetic resonance techniques. Because the performance of traditional inductive wireless power transmission systems is limited compared to the performance of magnetic resonance power transmission systems, the exemplary and non-limiting embodiments described in this disclosure will be for magnetic resonance systems. However, it should be understood that where reference is made to source and device resonators of magnetic resonance systems, those components may be replaced by primary coils and secondary coils in traditional inductive systems. It should also be understood that where an exemplary embodiment may refer to components such as amplifiers, rectifiers, power factor correctors and the like, it is to be understood that those are broad descriptions and that amplifiers may comprise additional circuitry for performing operations other than amplification. By way of example but not limitation, an amplifier may comprise current and/or voltage and/or impedance sensing circuits, pulse-width modulation circuits, tuning circuits, impedance matching circuits, temperature sensing circuits, input power and output power control circuits and the like.
  • In one aspect of the invention a wireless energy transfer system may include a segmented control architecture. The wireless system may include a primary controller and a user configurable secondary controller that is in communication with the primary controller. The primary controller may be configured to perform the essential control functions for the wireless system. The essential control functions of the primary controller may include maintaining the wireless energy transfer operating safety limits. The primary controller may monitor and control the voltage and currents on the components of the wireless energy transfer system. The user configurable secondary controller may be configured to allow adjustment of non-safety critical parameters of the system such as adjusting the maximum power output, scheduling of on and off times, adjusting the frequency of energy transfer, and the like. In accordance with exemplary and non-limiting embodiments the primary and secondary controllers may be implemented on separate hardware or processors. In other exemplary embodiments the primary and secondary controllers may be virtual controllers and implemented on the same hardware.
  • BRIEF DESCRIPTION OF FIGURES
  • FIG. 1 shows exemplary components in an electric vehicle wireless power transfer system.
  • FIG. 2 shows an exemplary charging system control diagram for an electric vehicle wireless power transfer system. This exemplary embodiment shows that system performance may be monitored with a laptop through the wireless and/or wired “Debug” and “Status” ports.
  • FIG. 3A shows a notional state diagram of the system charging cycle. Activation states are denoted by the rectangles. Conditional statements that enable transitions between states are enclosed in square brackets. Fault detection on either side results in both sides entering the Anomaly state.
  • FIG. 4 shows an exemplary charging cycle use-case.
  • FIG. 5 shows a Sequence Diagram for interaction between a source and an electric vehicle during an exemplary charging engagement.
  • FIG. 6 shows an exemplary embodiment of power factor corrector control loops.
  • FIG. 7 shows an exemplary embodiment of source amplifier control loops.
  • FIG. 8 shows an exemplary embodiment of device rectifier control loops.
  • FIG. 9 shows exemplary interfaces to and from an application source processor.
  • FIG. 10 shows exemplary interfaces to and from an application device processor.
  • FIG. 11 shows exemplary interfaces to and from an amplifier controller.
  • FIG. 12 shows exemplary interfaces to and from a recitfier controller.
  • FIG. 13 shows exemplary ASP control parameters.
  • FIG. 14 shows exemplary ADP control parameters.
  • FIG. 15 shows exemplary amplifier control parameters.
  • FIG. 16 shows exemplary rectifier control parameters.
  • DETAILED DESCRIPTION
  • This disclosure describes exemplary reconfigurable system control concepts for electric vehicle wireless power transmission systems. In general, an electric vehicle (EV) may be any type of vehicle such as a car, a boat, a plane, a bus, a scooter, a bike, a cart, a moving platform, and the like that comprises a rechargeable battery. The wireless power transmission system may provide power to the battery charging circuit of the electric vehicle and/or it may power the vehicle directly. Wireless power may be provided to the vehicle while it is stationary or while it is moving. The power provided wirelessly to recharge the vehicle battery may be more than 10 Watts (W), more than 100 W, more than a kilowatt (kW), more than 10 kW, and/or more than 100 kW, depending on the storage capacity and power requirements of the vehicle. In some exemplary low power embodiments, fewer control loops and/or less distributed and/or less segmented control architectures may be sufficient to ensure safe, reliable and efficient operation of the wireless power transmission system. In some exemplary high power embodiments, redundant control loops and/or multi-level control architectures may be required to realize safe, reliable and efficient operation of the wireless power transfer system.
  • This disclosure describes certain control tasks that may be necessary for enabling an electric vehicle charging engagement using a wireless energy transfer system as well as potential control loops, states, and sequences of interactions that may govern the performance of the system. The proposed control architectures and tasks may enable transaction management (e.g. billing, power origination identification, direction of power flow), integration with vehicle electronics, and higher level control tasks for system operation, communications, and anomaly resolution. Throughout this disclosure we may refer to certain parameters, signals, and elements as being variable, tunable, controllable, and the like, and we may refer to said parameters, signals and elements as being controlled. It should be understood that system parameters, signals and elements may be controlled using hardware control techniques, software control techniques, and/or a combinations of hardware and software control techniques, and that these techniques and the circuits and circuit elements used to implement them may be referred to as controllers and/or system controllers.
  • A block diagram of an exemplary wireless electric vehicle (EV) battery charging system is shown in FIG. 1. In this exemplary embodiment the system is partitioned into a source module and a device module, with each module consisting of a resonator and module control electronics. The source module may be part of a charging station and the device module may be mounted onto a vehicle. Power may be wirelessly transferred from the source to the device via the resonators. Closed loop control of the transmitted power may be performed through an out-of-band communications link between the source and the device, an in-band communications link between the source and the device, or a combination of in-band and out-of-band signaling protocols between the source and device. In some exemplary and non-limiting embodiments, some or all of the system control functions may be realized in a computer, processor, server, network node and the like, separated from the source and device modules. In some exemplary embodiments, the system controller may control more than one source, more than one device and/or more than one system.
  • A wireless power transmission system for electric vehicle charging can be designed so that it may support customization and modifications of the control architecture. Such customizations and modifications may be referred to as reconfigurations, and an architecture designed to support such reconfigurations may be referred to as reconfigurable. In some exemplary and non-limiting embodiments, the control architecture may be realized in physically separate components, such as multiple microprocessors and some functions, processes, controls, and the like may be reconfigurable by a user of the system, and some may not. In some exemplary and non-limiting embodiments, the reconfigurable portions of the control architecture may be implemented in certain chips, micro-processors, field programmable gate arrays (FPGAs), Peripheral Interface Controllers (PICs), Digital Signal Processors (DSPs), Application Specific Processors (ASPs), and the like. In an exemplary embodiment, some reconfigurable portions of the control architecture may reside in ASPs which may be 32-bit microcontrollers with C-language source code. In some exemplary and non-limiting embodiments, the control code may reside on a single processor and a user may have permission to access certain portions of the code. In exemplary and non-limiting embodiments, both hardware and software segmentation of the control functions of an EV wireless power transmission system are contemplated in this disclosure.
  • In an exemplary embodiment, the system architecture may support ASPs in the source and device modules and these processors may be referred to as Application Source Processors (ASP) and the Application Device Processors (ADP). This control architecture may enable different users and/or manufacturers of different vehicles and vehicle systems to be able to add to the source code or customize it for integration with their vehicles and/or in their intended applications. Throughout this disclosure we may use the terms processor, microprocessor, controller, and the like to refer to the ASPs described above and any suitable type of microprocessor, field programmable gate array (FPGA), Peripheral Interface Controller (PIC), Digital Signal Processor (DSP), and the like, that is known to one of skill in the art. In exemplary and non-limiting embodiments, the ASP and ADP may be used to present certain system parameters and control points to wireless power system designers and/or vehicle integrators and to restrict access to certain other system parameters and control points. For example, certain control features may be essential to ensure proper and/or safe operation of a wireless power transmission system, and such control features may be implemented in hardware only loops and/or in physically separated microcontrollers and/or in restricted portions of the ASPs so that they may not be customized and/or modified by certain users of the systems.
  • In exemplary and non-limiting embodiments, one, some or all of the control functions of the wireless power system may be based on hardware implementations and/or may be hard-coded into the system and/or may be soft-coded into the system but with restricted access so that only select and verified users may make changes to the various codes, programs, algorithms and the like, that control the system operation.
  • Note that whether or not the functionality associated with the ASPs in this exemplary embodiment are realized in physically separate hardware components or in isolated sections of code, the concept of partitioning the control plane into at least source-side and device-side functions and into at least high-level and low-level functions is what enables the reconfigurability of system operation while guaranteeing certain safety, reliability and efficiency targets are met. The distribution and segmentation of the control plane allows flexibility in the adaptation of the higher level functions for vehicle designer and/or end user applications without the risk of disrupting the operation of the low level power electronics control functions. In addition, the partitioning of the control plane allows for variable control loop speeds; fast and medium speeds for the low level critical hardware control functions of the power electronics as well as slower control loop speeds for the high level designer and/or end user control loops.
  • As time goes on, this partitioned control plan architecture may scale to adjust to and support more functionality and applications, at the same time it may be adapted to changing hardware requirements and standardized requirements for the safe and efficient delivery of power. For example, the fast and medium speed control loops may be adapted to support wireless power transmission at a range of operating frequencies and over a range of coupling coefficients, both of which may eventually be set by regulatory agencies. Also, users may access and customize the higher level control functions to implement functionality that may include, but may not be limited to:
      • Programming an EV wireless source to connect through a wired internet connection in the source, or through Wi-Fi or the cellular network to display certain source attributes such as what type of resonator it comprises, how much energy it can supply, what the price is for the energy it supplies (this price may change during the day, being less expensive at night when the peak demand for electricity is lower, or it may change seasonally, costing more when the temperature is hot and air conditioning requirements are stressing the electrical suppl), where the energy it supplies originates from (renewables, coal plant, etc.), does this source require a reservation, if it requires a reservation, when are the free times that can be reserved, what type of FOD detectors does it deploy, what is the status of the source (has FOD been detected and needs to be cleaned off before charging can be initiated, or has FOD been detected and so the source can only supply a limited amount of power).
      • Programming an EV wireless power transfer system so that it may connect to a communication network and may contact the vehicle user to report the status of the charge cycle and to report when charging is complete or when charging has been interrupted or that the source and/or device are in an anomaly state.
      • Programming an EV wireless power transfer system so that power is transmitted from the device back to the grid and managing the transaction so that the vehicle user is paid for supplying that energy.
      • Programming a user interface in the vehicle so that information regarding the position of the vehicle resonator relative to the source resonator can be relayed to the driver of the vehicle. The relative position information may be used to give the vehicle driver an estimate of the wireless transfer efficiency with the vehicle in its current location and may offer the driver a chance to change the parking position to improve the wireless system performance. The user interface may include visible, audible, vibrational and the like feedback to help the driver reposition the vehicle.
      • Programming an EV wireless power transfer system so that it communicates with an automatic vehicle parking capability resident on the vehicle and parks the vehicle in a position that is optimized for wireless power transfer efficiency. Other commands that may be communicated from the EV wireless power transmission system to the vehicle may include commands to control the active suspension of the vehicle to raise or lower the vehicle relative to the source to optimize wireless power transfer.
  • FIG. 2 shows an exemplary charging system control diagram for an electric vehicle wireless power transfer system. In this block diagram, the source components of the system are shown on the left side of the diagram and the device (or vehicle) components of the system are shown on the right.
  • In exemplary and non-limiting embodiments, AC line power may flow into a power factor corrector (PFC) and provide a DC voltage to a switching amplifier. In exemplary and non-limiting embodiments, the DC voltage provided to the switching amplifier may be variable and may be controlled. In exemplary and non-limiting embodiments, a DC voltage may be provided to the amplifier from a DC source of power (not shown) such as a solar cell, a battery, a fuel cell, a power supply, a super capacitor, a fly wheel, and the like. In exemplary and non-limiting embodiments, the DC voltage from a DC power source may be variable and may be controlled.
  • The switching amplifier in the source of an electric vehicle wireless power transmission system may be any class of switching amplifier including, but not limited to, a class D amplifier, a class E amplifier and a class D/E amplifier. The switching frequency of the amplifier may be any frequency and may preferably be a frequency previously identified as suitable for driving inductor coils and/or magnetic resonators. In exemplary and non-limiting embodiments, the switching frequency may be between 10 kHz and 50 MHz. In exemplary and non-limiting embodiments, the frequency may be approximately 20 kHz, or approximately 44 kHz, or approximately 85 kHz, or approximately 145 kHz, or approximately 250 kHz. In exemplary and non-limiting embodiments, the switching frequency may be between 400 and 600 kHz, between 1 and 3 MHz, between 6 and 7 MHz, and/or between 13 and 14 MHz. In exemplary and non-limiting embodiments, the frequency of the switching amplifier may be tunable and may be controlled.
  • In exemplary and non-limiting embodiments, an amplifier controller may manage the electronic components in the amplifier and/or in the PFC and/or in the DC power supply (not shown). The amplifier controller may monitor and control so-called local control loops and local interlocks for conditions such as over voltage/current in the source electronics, ground-fault circuit interrupt in the source electronics, and out-of-specification AC impedance changes at the source coil. In exemplary and non-limiting embodiments, the amplifier controller may react quickly to shut the system down safely in response to a variety of set point violations. The amplifier controller may expose registers for set-points and control to the ASP through an inter-integrated circuit (I2C) interface, referred to in the figure as the “User Interface”. The amplifier controller may also have a watchdog timer (or heartbeat input) to detect if communication with the Application Source Processor (ASP) or with the vehicle has been lost.
  • In an exemplary embodiment, the ASP may provide high-level control of the source electronics and the overall system charging cycle. For example, the ASP may interface with a foreign-object-debris (FOD) detector that monitors the source module for the presence of FOD and/or excessive temperature. The ASP may be connected to an in-band and/or out-of-band communications link that may communicate with the vehicle-side application device processor (ADP) to provide closed loop control of the charging cycle.
  • In an exemplary embodiment on the vehicle side (also called the device side), a rectifier controller may perform low-level and local functions for the device side that are analogous to those described for the source side. Again, an I2C interface may be provided for interfacing with a higher-level ADP. The ADP could be configured to connect via a CAN-bus or equivalent to a battery manager that may control the power delivered from the rectifier to the battery, vehicle engine or any time of power storage or management system on the vehicle. The ADP could communicate that information to the source-side ASP which, in turn, could adjust the power settings on the amplifier controller.
  • In an exemplary embodiment, the control architecture may be partitioned into three types of control loops: fast, medium and slow. The fast control loops may be for time critical functions (less than 1-ms latency) and may be either hardware control loops or interrupt-driven low-level software modules. Medium-speed control loops may be for functions that operate under real-time software control (<500-ms latency). Slow control loops (>500 ms latency) may be for functions with low bandwidth requirements or functions with unpredictable latency, for example, a 802.11-family wireless communication link.
  • FIG. 2 shows the three types of control loops as they may be applied to an exemplary electric vehicle wireless power transmission system. In exemplary and non-limiting embodiments, embedded software portions of the control loops may be partitioned between the amplifier and rectifier controllers and the processors (ASP and ADP). The amplifier and rectifier controllers may handle the hardware control and the operation of high-power and/or sensitive electronics components. The ASPs may handle the system control loop and may provide interfaces to external peripherals, such as FOD detectors, communication links, monitoring equipment, and other vehicle and source electronics.
  • In exemplary and non-limiting embodiments, some of the functions that may operate under fast feedback-loop control may be based on hardware set-points and/or on software (programmable) set-points which may include but may not be limited to over-current protection, over-voltage protection, over-temperature protection, voltage and current regulation, transistor shoot-through current in the switching amplifier, GFCI (ground fault circuit interrupt) and critical system interlocks. In exemplary and non-limiting embodiments, system events that may cause damage to the system itself or to a user of the system in a short period of time may be detected and reacted to using fast feedback-loop control.
  • In exemplary and non-limiting embodiments, some of the functions that may operate under medium-speed feedback loops may include, but may not be limited to temperature set-point violations, impedance set points to declare an out-of-range condition for the source coil impedance, FOD detection, monitoring for violations of the minimum efficiency set point, local power control in the source-side electronics and processor heartbeat monitoring (i.e. watchdog-timer expiration). In exemplary and non-limiting embodiments, system events that may cause damage to the system itself or to a user of the system in a medium period of time and/or that may cause the system to operate in an undesirable state (e.g. low efficiency) may be detected and reacted to using medium feedback-loop control.
  • In exemplary and non-limiting embodiments, some of the functions that may operate under relatively slow-speed loop control may include but may not be limited to system power control loop (e.g. for executing a battery-charging profile), charge request/acknowledge messages between vehicle(s) and source(s), system start/stop messages, system level interlocks, RF communications link heartbeat monitoring (i.e. watchdog-timer expiration), status/GUI updates to a diagnostic laptop and messages for source/vehicle transactions, authentication and configuration. In exemplary and non-limiting embodiments, system events that may cause damage to the system itself or to a user of the system in a long period of time and/or that may cause the system to operate in an undesirable state (e.g. low efficiency, insufficient information for closing a transaction) may be detected and reacted to using slow feedback-loop control.
  • FIG. 3 shows a notional state diagram of the system charging cycle. The diagram shows examples of state machines that may be running on the ASPs in the source side and the vehicle side of the EV wireless power transmission system. Potential activation states are shown within each rectangle and potential conditional statements that must be satisfied to enable transitions between states are enclosed in square brackets. In exemplary and non-limiting embodiments, in-band, out-of-band, and/or a combination of in-band and out-of-band wireless communication links between the source and the vehicle may provide for messaging and synchronization. In exemplary and non-limiting embodiments, the communications required to implement control functions, processes and the like may piggy-back on existing or native communication systems in and around the vehicle. For example, messages may be passed amongst the source(s), the vehicle(s), and any additional networked component(s) using CAN-bus equipment and protocols, Bluetooth equipment and protocols, Zigbee equipment and protocols, 2.4 GHz radio equipment and protocols, 802.11 equipment and protocols, and/or any proprietary signaling scheme equipment and protocols implemented by the user.
  • For charging electric vehicles that may be described in the standards proposed by the Society of Automotive Engineers (SAE), the charging engagement between the source and vehicle for wireless charging may be similar to that described by SAE J1772 for wired charging, with additional steps added to support wireless charging.
  • An exemplary use-case for stationary EV charging involving the operation of the control system is shown in the table in FIG. 4. In an exemplary embodiment, a wireless source may be powered and available to supply power to a wireless device and may be referred to as being in the Available state. A wireless source may constantly, periodically, occasionally and/or in response to some trigger, broadcast information regarding any of its availability, position, location, power supply capabilities, power costs, power origination (solar, coal burning plant, renewable, fossil fuel, etc.), resonator type, resonator cross-section (so that a vehicle may calculate and/or look-up an expected coupling coefficient with the source), and the like. A vehicle may be receiving information broadcast by wireless power sources and may search for an available wireless power source, with matching hard-wired and/or use selectable features, over which it may park. The vehicle's communication link may be active so that it is in the Searching state. If vehicle identifies a suitable wireless source, it may approach that source and initiate two way communications with the source so that the source and device side control electronics can exchange configuration information. In an exemplary embodiment, when sufficient information has been exchanged by the source and the device, and when the vehicle resonator has been positioned substantially in the near vicinity of the source resonator, the source and vehicle sides may switch to their Docking states.
  • In an exemplary Docking state, both source and device may confirm their compatibility and an alignment error signal may be provided to the vehicle driver so that he/she can maneuver the car into proper position. Once in position, the drive train of the vehicle may be disabled and the source and device may enter the Coupled state.
  • In an exemplary embodiment, a ‘Charge Request’ may be sent from the vehicle—either automatically or driver initiated, and may be received by the source. In the Coupled state, there may be further exchange of configuration information, safety checks, and the like. Once those are passed, both sides may enter the Ready to Charge state.
  • In an exemplary embodiment, in the Ready to Charge state, the vehicle may issue a ‘Start Charging’ command and both the source and the vehicle may enter the Charging state as the source power ramps up. In the Charging state, both source and vehicle may perform monitoring and logging of data, faults, and other diagnostics. Logging and monitoring may include, but may not be limited to an event loop that looks for hazardous and/or restricted Foreign Object Debris (FOD), overloads, unexpected temperature and/or efficiency excursions, and other asynchronous events.
  • In exemplary and non-limiting embodiments, hazard and/or restricted object detection that occurs in the source during any of the powered states may cause the source to switch into its Anomaly state. If wireless communication is still working, the vehicle may be notified and may also drop into its Anomaly state. If wireless communication is down, the vehicle may enter its Anomaly state because it didn't ask for the wireless power to be shut down and because the wireless communications watchdog timer expires.
  • In an exemplary embodiment, where the vehicle has entered the Anomaly state, state, the vehicle may send a message to the source that results in the source entering its Anomaly state.
  • In an exemplary embodiment, where the source has entered the Anomaly state, the source may send a message to the vehicle that results in the vehicle entering its Anomaly state.
  • In an exemplary embodiment, the source and/or vehicle may automatically begin a process for handling or disposition of the anomaly. The process may involve the source and vehicle exchanging health and status information to help discover the cause of the anomaly. Once the cause is determined, the source and vehicle may select a pre-planned action that corresponds to the cause. For example, in the event that detection of foreign object debris caused the anomaly, the source may reduce the power transfer level to a safe level where the foreign object debris does not overheat. In another example, in the event that the loss of RF communication was the cause, the source may stop power transfer until RF communication is re-established. In exemplary and non-limiting embodiments, where one or both sides of the system may have entered the anomaly state, the system may automatically communicate to a user that the system is in its Anomaly state. Communication may occur over the internet, over a wireless network, or over another communications link.
  • In an exemplary embodiment, under normal operating conditions, charging may end when the vehicle sends a stop-charging (DONE) command to the source. The source may immediately de-energize.
  • In this exemplary embodiment, after de-energizing, the source may return to the coupled state and may notify the vehicle of its state change. The vehicle may switch to the Coupled state and may receive additional information about the charge engagement from the source. At this point, the vehicle may either stay put or it may depart. Once the source senses that a vehicle has departed, it may return to the Available state.
  • Not explicitly shown the figures are exemplary control loops that may perform system safety and hazard monitoring, as well as localized FOD detection, for example. There a many ways a FOD detector might be used including; prior to a source declaring itself Available, it may run through a series of diagnostic tests including FOD detection, in the Docking and in the Coupled states, the FOD detector could check for potentially hazardous debris falling off of a vehicle and onto a source resonator, and before entering the Ready to Charge state, a FOD detector reading may be part of a final safety check. In exemplary and non-limiting embodiments, monitoring for FOD may occur during the Charging state. In exemplary and non-limiting embodiments, one, some or any anomalies or failed safety checks may turn down or shut down the amplifier and put both sides (source and vehicle) into their Anomaly states, where additional diagnostics can be safely performed.
  • FIG. 5 shows another representation of some potential steps if a sequence of interactions in an exemplary embodiment of an EV wireless power transfer system. The diagram shows exemplary steps from the charging sequence described above following Unified Modeling Language (UML) conventions:
      • Time flows in the downward direction
      • The vertical bars under each side represent activation of different states
      • Arrows with solid lines indicate requests
      • Arrows with dashed lines indicate responses
      • Full arrow heads represent synchronous messages
      • Half arrow heads represent asynchronous messages
      • Arrows entering the diagram from off the page represent user actions
        Note that the diagram is not intended to show every message in the exemplary engagement just some examples helpful to understanding the interaction.
  • In exemplary embodiments of electric vehicle wireless power systems, a variety of control loops may be implemented to govern the operation of the wireless charging and/or powering of the electric vehicle. Some exemplary control loops for the exemplary system shown in FIG. 2 are described below. The control loops described below may be sufficient for some systems or they may need to be modified or added to ensure proper operation of other systems. The description of control loops should not be interpreted as complete, but rather illustrative, to describe some of the issues considered when deciding whether system control loops might be fast, medium or slow in their response time, and whether or not they should be user reconfigurable.
  • In an exemplary EV wireless power transfer system, a power factor corrector may convert an AC line voltage to a DC voltage for the source. It may provide active power factor correction to the line side and may provide a fixed or variable DC voltage to the source amplifier. Control of a power factor corrector may be performed through a combination of hardware circuits and firmware in the amplifier controller. For example hardware circuits may be used to control against transient or short-duration anomalies, e.g. exceeding hard set-point limits such as local currents or voltages exceeding safety limits for circuit components, such as power MOSFETs, IGBTs, BJTs, diodes, capacitors, inductors, and resistors, and firmware in the amplifier controller may be used to control against longer duration and slower developing anomalies, e.g. temperature warning limits, loss of synchronization of switching circuitry with the line voltage, and other system parameters that may affect power factor controller operation.
  • In this exemplary embodiment, an amplifier may provide the oscillating electrical drive to the wireless power system source resonator. Hardware circuits may provide high-speed fault monitoring and processing. For example, violations of current and voltage set points and amplifier half-bridge (H-bridge) shoot-through may need to be detected within less than one millisecond in order to prevent catastrophic failures of the source electronics.
  • On a medium timescale, the amplifier controller may monitor the impedance of the source coil and may react to out-of-range impedance conditions in less than 500 ms. For example, if the impedance is too inductive and out-of-range, the efficiency of power transfer may be reduced and the system may turn down or shut down to prevent components from heating up and/or to prevent inefficient energy transfer. If the impedance is inductive, but low and out of range, the system may react as when the resonator is too inductive, or it may react differently, or more quickly, since transitioning from an inductive load to a capacitive load may damage the source electronics. In exemplary and non-limiting embodiments, a hardware circuit may be used to sense if the load the amplifier is driving has become capacitive and may over-ride other slowed control loops and turn down or shut down the source to prevent the unit from becoming damaged.
  • In exemplary and non-limiting embodiments, system-level power requirements may be determined on the vehicle side and may be fed back from the ADP to the ASP. Over I2C, the ASP may request that the amplifier controller increment or decrement the power from the amplifier for example. The bandwidth of the power control loop may be limited by the latency in the wireless link and by the latency in communication between the ADP and the battery manager.
  • In exemplary and non-limiting embodiments, a rectifier may convert the AC power received from the device resonator to DC output power for the vehicle, vehicle battery or battery charger. A monitoring circuit for the rectifier output power, current and or voltage, as well as for the battery charge state may provide the feedback for closed-loop control of the system's power transfer. The rectifier may control the output voltage to maintain it within the range desired by the battery management system. Additional fault monitoring and an interface to vehicle charging control processes may be provided by the ADP.
  • In an exemplary embodiment, a rectifier module may comprise a full-bridge diode rectifier, a solid-state switch (e.g. double pole, single throw (DPST) switch), and a clamp circuit for over-voltage protection. Under normal operation, the full-bridge rectifier may send DC power through the closed switch and the inactive clamp circuit to the battery system. If the battery system needs more current, it may request it from the ADP which may forward the request to the ASP on the source side. If the battery needs less current, the corresponding request may be made. The speed with which these conditions must be detected, communicated, and acted upon may be determined by how long the system can safely operate in a non-ideal mode. For example, it may be fine for the system to operate in a mode where the wireless power system is providing too little power to the vehicle battery, but it may be potentially hazardous to supply too much power. The excess power supplied by the wireless source may heat components in the resonator, clamp circuit and/or battery charge circuit. The speed of the feedback control loop may need to be fast enough to prevent damage to these components but may not need to be faster than that if a faster control loop is more expensive, more complex, and/or less desirable for any reason.
  • In exemplary and non-limiting embodiments, a switch and a clamp may provide vehicle-side protection against potential failure modes. For example, if the vehicle side enters its Anomaly state, it may notify the source which may subsequently enter its Anomaly state and may turn down or shut down the source power. In case the wireless link is down or the source is unresponsive, the switch in the rectifier may open to protect the battery system.
  • In an exemplary embodiment, an ADP could enter its Anomaly state in several ways. A few examples include:
      • The battery manager requests an emergency disconnect
      • The voltage clamp circuit is active for more than 3 seconds (or some set period of time, potentially user settable and reconfigurable)
      • The wireless communications link is down
      • The ADP does not update the watchdog timer in the rectifier controller
      • A temperature, voltage, current, or other error-condition set point is violated.
  • In an exemplary and non-limiting embodiment of a charging engagement, control-system information may flow across the following interfaces:
      • ASP-ADP: Wireless interface between the Application Source Processor on the source side and the Application Device Processor on the vehicle side.
      • ASP-Laptop: Wireless interface used to send a webpage with source diagnostic information that can be displayed on a laptop for demonstration, system configuration, and debug purposes.
      • ADP-Laptop: Wireless interface used to serve a webpage with device diagnostic information that can be displayed on a laptop for demonstration and debug purposes.
      • ASP-AmpCon: an I2C interface between the ASP and the amplifier controller.
      • ADP-RectCon: an I2C interface between the ADP and the rectifier controller.
  • In exemplary and non-limiting embodiments, the first interface (ASP-ADP) may be used to exchange the messages needed to support the exemplary Sequence Diagram shown in FIG. 5. It may be that standardization activities will specify certain wireless communications protocols, such as the IEEE 802.11p protocol and/or Dedicated Short Range Communications (DSRC) using a licensed band at 5.9 GHz. In exemplary and non-limiting embodiments that comply with standards, it may be that only certain wireless communications protocols will be supported by and used to implement the wireless power system controls. In exemplary and non-limiting embodiments not governed by standards, both known and proprietary wireless communications protocols may be supported by and used to implement wireless power system controls. In an exemplary embodiment, a reconfigurable EV wireless power transfer system has been demonstrated using the IEEE 802.11b unlicensed band (Wi-Fi) to implement the system control commands and communication.
  • In exemplary and non-limiting embodiments, the second and third diagnostic interfaces may be for running demonstration purposes and to provide diagnostic information in an easily accessible format. The connections with the laptop may also use 802.11b. A Wi-Fi enabled router may be required for simultaneous support of wireless connections for the ASP-ADP, ASP-Laptop, and ADP-Laptop. For demonstrations that only require the ASP-ADP connection, an 802.11b peer-to-peer connection could be used.
  • In exemplary and non-limiting embodiments, the fourth and fifth interfaces may be between the ASPs, other system controllers, and data loggers. Other system controllers may be implemented in physically distinct microcontrollers as described in the exemplary embodiment, or they may be co-located in the same ASPs.
  • Some example interactions amongst the ASP, ADP, controllers and FOD detectors are described below. These are just some of the example interactions, but in no way are the interactions contemplated by this invention limited to only the examples given below.
  • In an exemplary embodiment, an Application Source Processor (ASP) may be a microprocessor that holds the state information for the source side of the reconfigurable EV wireless power transfer system. Physically, it may be implemented in a PIC-32 microcontroller. The software running on the ASP may execute the state transitions described previously, as well as the wireless communication with the vehicle side and potentially with the diagnostic laptop (if present). It is anticipated that users may modify or replace the software on the ASP and still operate the reconfigurable EV wireless power transfer system. Functional interfaces to the Application Source Processor may include, but may not be limited to:
      • Wi-Fi link for communicating with the vehicle's ADP and for a diagnostic display for user demonstrations, diagnostics and/or customization (iPAD or laptop)
      • Serial Peripheral Interface (SPI) serial-link over Ethernet on a 2.4 GHz RF link for communicating with the vehicle's ADP
      • Hardware support for Universal Asynchronous Receiver/Transmitter (UART) serial-link over Ethernet on a 2.4 GHz RF link for an alternative method of communicating with the vehicle's ADP
      • Interface to amplifier controller
      • I2C for commanding and receiving status information
      • Interrupt for high-priority tasks (e.g. FOD detection, source or vehicle anomaly)
      • Bi-directional watchdog/heartbeat signal
      • FOD detection interface
      • Metal object detector
      • Temperature sensors
      • Living being sensor
      • System process interlock inputs-used for higher-level controllers that may need to shut down the source suddenly.
      • I2C interface to source side PIM (PCB Information Memory with a unique identifier (UID), configuration settings, etc.)
  • In an exemplary embodiment, an ASP may have a Wireless Communications Link Interface. For example, the source-side ASP may communicate with the vehicle-side ADP over a wireless communication link. The wireless protocol may be implemented using TCP/IP over a 2.4 GHz Wi-Fi link. The RF module may be IEEE Std. 802.11b compatible with a 4-wire SPI interface to the ASP.
  • In an alternate exemplary embodiment, a communication interface using the ASP serial UART port may be available as an option. The serial port might interface to an external wireless module to support the link. A standard UART interface may provide the flexibility to use any particular wireless protocol that a user may want.
  • In an exemplary embodiment, there may be an interface between the ASP and the amplifier controller. An amplifier controller may provide low-level control of the source electronics, while the ASP may provide high-level control and may be responsible for the execution of the overall system charging cycle. The interface to the amplifier controller may be presented as a set of control and status registers which may be accessible through an I2C serial bus. Such an arrangement could support user customization of the control algorithms.
  • In an exemplary embodiment, there may be an interface between an ASP and a FOD detection subsystem. The ASP may be able to receive preprocessed digital data from a FOD processor. A FOD processor may be designed to perform signal conditioning and threshold detection for the various types of sensors connected to it. Upon detection of FOD, the FOD processor may interrupt the ASP and transmit the FOD decision-circuit results. The ASP may then take appropriate action (e.g. shut down the power, go to a low-power state, issue a warning, etc.) The FOD processor may also transmit the pre-decision signal-conditioned data in digital form to the ASP so that soft decision algorithms that use other information can be implemented in the ASP.
  • In an exemplary embodiment, there may be an interface between an ASP and a System Interlock subsystem. An interlock interface may consist of a set of optically coupled digital inputs which may act as system enables. The interlocks may be externally generated signals which may be asserted to turn on the system. The interlocks may also be able to be used by the user to shut down the system on command. The systems and signals that feed the external interlock signals (shutdown switch, additional FOD detection, infrastructure fault detection, etc.) may be application specific.
  • In an exemplary embodiment, there may be an interface between an ASP and a Positioning and Alignment Interface. A positioning and alignment interface may communicate data from a vehicle alignment and positioning sensor to an ASP to determine whether sufficient wireless power transfer efficiency may be achieved given the measured relative position of source and device resonators. If the resonators are not sufficiently well aligned, the ASP may communicate to the device ADP and instruct the system to generate a message to the driver that the vehicle needs to be repositioned and to inhibit system turn-on until proper positioning is established.
  • In exemplary and non-limiting embodiments, there may be an interface between an ASP and a Diagnostic/Debug subsystem. For the purposes of demonstrations, customization, and testing, a diagnostic/debug interface may be available across a wireless link between an ASP and a laptop, or tablet, or smartphone or any other processing unit that preferably comprises a display. In some exemplary and non-limiting embodiments, the wireless communications connection may be through a dedicated Wi-Fi network. In exemplary and non-limiting embodiments, the interface may allow a laptop, or other external controller, to put the EV wireless power transmission system in a diagnostic and/or customization mode where preset interlocks may be over-ridden and state changes may be forced onto the ASP.
  • In exemplary and non-limiting embodiments, this interface may also allow a laptop, or other external controller, with a Wi-Fi capability to access the ASP. For example, the ASP may be capable of streaming state information to the laptop which may store it in a log file. Parameters that can be stored in the log file may include:
      • Time-stamped events such as state changes, messages passed, messages received
      • Measured voltages, currents, temperatures, and impedances that are being compared to set points by the ASP or amplifier controller.
      • Configuration information such as software/firmware versions, hardware IDs, etc.
      • The log file should be able to be viewed on the laptop and incorporated into a spreadsheet for later analysis.
  • In exemplary and non-limiting embodiments, an Application Device Processor (ADP) may be a microprocessor that holds the state information for the vehicle side of an EV wireless power transfer system. Physically, it may be implemented in a PIC-32 microcontroller. In exemplary and non-limiting embodiments, the software running on the ADP may execute the state transitions described previously, as well as the wireless communication with the source side and the diagnostic laptop, or other external controller. Users may modify or replace the software on the ADP to customize the operation and control of an EV wireless power transfer system.
  • In exemplary and non-limiting embodiments, functional interfaces to the Application Device Processor may include but may not be limited to:
      • Controller Area Network (CAN) Bus implemented on the physical layer (PHY) on the device side for use with vehicle communication, diagnostic equipment, and/or measurement and or monitoring equipment
      • Serial-link over Ethernet on a 2.4 GHz RF link for communicating with the Source ASP
      • Wi-Fi to a diagnostic display for user demonstrations and/or customizations (iPAD or laptop)
      • Interface to a rectifier controller
      • I2C for commanding and receiving status information
      • Interrupt for high-priority tasks (e.g. FOD detection, vehicle anomaly)
      • Bi-directional watchdog/heartbeat signal
      • System process interlock inputs used for higher-level controllers on a vehicle that may need to disable the charging cycle.
      • I2C interface to Device side PIM (PCB Information Memory with UID, configuration settings, etc.)
  • In some exemplary and non-limiting embodiments, there may be an interface between an ADP and a CAN Bus. In some exemplary and non-limiting embodiments, the ADP may include a CAN bus interface. In exemplary and non-limiting embodiments, software running on an ADP may be augmented by a user to support a CAN bus interface even if the as-designed and/or as-delivered EV wireless power transfer system did not include this functionality.
  • In exemplary and non-limiting embodiments, a vehicle-side Application Device Processor may have a Wireless Communications Link Interface. For example, a device-side ADP may communicate with the source-side ASP over a wireless communication link. The wireless protocol may be implemented using TCP/IP over a 2.4 GHz Wi-Fi link. The RF module may be IEEE Std. 802.11b compatible with a 4-wire SPI interface to the ADP.
  • In exemplary and non-limiting embodiments, there may be an interface between an ADP and a rectifier controller. The ADP may communicate with the rectifier controller over an interface that may be similar to the one between the ASP and the amplifier controller. A rectifier controller may provide low-level control of the device electronics, while the ADP may provide high-level control and may be responsible for the execution of the overall system charging cycle. The interface to the rectifier controller may be presented as a set of control and status registers which may be accessible through an I2C serial bus. Such an arrangement could support user customization of the control algorithms. The interface may also consist of, an Interrupt Request input and a set of uni-directional watchdog/heartbeat outputs.
  • In an exemplary embodiment, there may be an interface between an ADP and a Positioning and Alignment Interface. A positioning and alignment interface may communicate data from a vehicle alignment and positioning sensor to an ADP to determine whether sufficient wireless power transfer efficiency may be achieved given the measured relative position of source and device resonators. If the resonators are not sufficiently well aligned, the ADP may communicate to the source ASP and instruct the system to generate a message to the driver that the vehicle needs to be repositioned and to inhibit system turn-on until proper positioning is established.
  • In exemplary and non-limiting embodiments, there may be an interface between an ADP and a System Interlock subsystem. This interface may be analogous to that described between an ASP and a System Interlock subsystem. It could be used by the battery manager to force a shutdown of the EV wireless power transfer system. For example, if the interlock is de-asserted, the ADP may enter its Anomaly state and may demand that the source shut down immediately and may open the switch in the rectifier circuit. In the case of an unresponsive source or an interrupted wireless communications link, the ADP may open the switch within 3 seconds, or an appropriate period of time, and communicating a command that the source shut down.
  • In exemplary and non-limiting embodiments, there may be an interface between an ADP and a Diagnostic/Debug subsystem. For the purposes of demonstrations, customization, and testing, a diagnostic/debug interface may be available across a wireless link between an ADP and a laptop, or tablet, or smartphone or any other processing unit that preferably comprises a display. In some exemplary and non-limiting embodiments, the wireless communications connection may be through a dedicated Wi-Fi network. In exemplary and non-limiting embodiments, the interface may allow a laptop, or other external controller, to put the EV wireless power transmission system in a diagnostic and/or customization mode where preset interlocks may be over-ridden and state changes may be forced onto the ADP.
  • In exemplary and non-limiting embodiments, this interface may also allow a laptop, or other external controller, with a Wi-Fi capability to access the ASP. For example, the ASP may be capable of streaming state information to the laptop which may store it in a log file. Parameters that can be stored in the log file may include:
      • Time-stamped events such as state changes, messages passed, messages received
      • Measured voltages, currents, temperatures, and impedances that are being compared to set points by the ADP or rectifier controller.
      • Configuration information such as software/firmware versions, hardware IDs, etc.
      • The log file could be viewed on the laptop and dumped into excel for later analysis.
  • In exemplary and non-limiting embodiments of EV wireless power transfer systems, an amplifier controller may provide low-level control to a Power Factor Corrector (PFC) and a switching amplifier. The interfaces between an amplifier controller and other system components may include, but may not be limited to:
      • Interface to Application Source Processor
        • I2C
        • Interrupt
        • Bi-directional Heartbeat/Watchdog
      • PFC Hardware control interface
      • Amplifier hardware control interface
      • System critical interlock inputs
      • System On/Off
  • In exemplary and non-limiting embodiments of EV wireless power transfer systems, a rectifier controller may provide high speed monitoring of rectifier power and system critical fault control. The interfaces between a rectifier controller and other system components may include, but may not be limited to:
      • I2C interface to Application Device Processor
        • I2C
        • Interrupt
        • Bi-directional Heartbeat/Watchdog
      • Rectifier hardware control/status interface
      • Fault indicators such as over current, over voltage, over temperature, clamp circuit activated, etc.
      • Device side system critical interlock inputs.
  • An reconfigurable EV wireless power transmission system may be partitioned into notional subsystems so that the interactions between subsystems may be studied and design decisions made be made as to which control functions and set-points may be customizable by a use while still ensuring safe, efficient and reliable performance of the system. One method to analyze the system performance impact of allowing customization and/or reconfigurability of the control architecture and/or algorithms and/or set-points is to perform a Failure Mode Effects Analysis (FMEA). A preliminary FMEA may comprise a prioritized listing of the known potential failure modes. FMEA may need to be an on-going activity as new system failure modes are identified.
  • In exemplary and non-limiting embodiments, an FMEA process that scores potential failure modes in a number of categories may be used to identify the severity of certain failure scenarios. Categories that may be used to identify customizable parameters may include, but may not be limited to
      • Severity (1-10): If the failure mode occurs, how severe (SEV) is the impact to system functionality, performance, or safety? A score of 10 indicates a major hazard and a score of 1 indicates a minor loss of performance or functionality.
      • Likelihood (1-10): How likely is the failure to occur? A 10 indicates almost certain occurrence while a 1 indicates a very remote chance of occurrence (OCC).
      • Undetectability (1-10): How likely is it that the failure will be detected (DET) and reacted to by the system during operation? A 10 indicates that the control architecture is very unlikely to detect the failure while a 1 indicates almost certain detection.
  • In exemplary and non-limiting embodiments, the potential failure modes may be prioritized according to their Risk Priority Number (RPN)—which is merely the product of their three category scores.
  • While the invention has been described in connection with certain preferred exemplary and non-limiting embodiments, other exemplary and non-limiting embodiments will be understood by one of ordinary skill in the art and are intended to fall within the scope of this disclosure, which is to be interpreted in the broadest sense allowable by law. For example, designs, methods, configurations of components, etc. related to transmitting wireless power have been described above along with various specific applications and examples thereof. Those skilled in the art will appreciate where the designs, components, configurations or components described herein can be used in combination, or interchangeably, and that the above description does not limit such interchangeability or combination of components to only that which is described herein.
  • All documents referenced herein are hereby incorporated by reference.

Claims (10)

1. A wireless energy transfer system with a segmented control architecture, the system comprising:
a wireless energy transfer system coupled to a primary controller; and
a user configurable secondary controller in communication with the primary controller;
wherein the primary controller performs essential control functions for the wireless system.
2. The system of claim 1, wherein the essential control functions of the primary controller comprise maintaining wireless energy transfer operating safety limits.
3. The system of claim 1, wherein the essential control functions of the primary controller comprise monitoring and controlling the voltage and current on energy transfer components.
4. The system of claim 1, wherein the user configurable secondary controller allows adjustment of at least one non-safety critical parameter of the system.
5. The system of claim 1, wherein the primary controller and the user configurable secondary controller are each physically implemented on the same hardware.
6. The system of claim 4, wherein the user configurable secondary controller is configurable to adjust a maximum output power of the wireless energy transfer system.
7. The system of claim 4, wherein the user configurable secondary controller is configurable to adjust a frequency of the wireless energy transfer system.
8. The system of claim 4, wherein the user configurable secondary controller is configurable to adjust the security of the wireless energy transfer system.
9. The system of claim 1, wherein the primary controller and the user configurable secondary controller are each virtual controllers implemented on the same processor.
10. The system of claim 1, wherein the primary controller and the user configurable secondary controller are each separate processors.
US13/612,494 2011-09-12 2012-09-12 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems Abandoned US20130062966A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/612,494 US20130062966A1 (en) 2011-09-12 2012-09-12 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US15/355,143 US10424976B2 (en) 2011-09-12 2016-11-18 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US16/576,905 US11097618B2 (en) 2011-09-12 2019-09-20 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US17/407,484 US20220144092A1 (en) 2011-09-12 2021-08-20 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161533281P 2011-09-12 2011-09-12
US201161566450P 2011-12-02 2011-12-02
US13/612,494 US20130062966A1 (en) 2011-09-12 2012-09-12 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/355,143 Continuation US10424976B2 (en) 2011-09-12 2016-11-18 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems

Publications (1)

Publication Number Publication Date
US20130062966A1 true US20130062966A1 (en) 2013-03-14

Family

ID=47829204

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/612,494 Abandoned US20130062966A1 (en) 2011-09-12 2012-09-12 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US15/355,143 Active 2033-05-30 US10424976B2 (en) 2011-09-12 2016-11-18 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US16/576,905 Active US11097618B2 (en) 2011-09-12 2019-09-20 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US17/407,484 Abandoned US20220144092A1 (en) 2011-09-12 2021-08-20 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/355,143 Active 2033-05-30 US10424976B2 (en) 2011-09-12 2016-11-18 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US16/576,905 Active US11097618B2 (en) 2011-09-12 2019-09-20 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US17/407,484 Abandoned US20220144092A1 (en) 2011-09-12 2021-08-20 Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems

Country Status (1)

Country Link
US (4) US20130062966A1 (en)

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181845A1 (en) * 2008-09-27 2010-07-22 Ron Fiorello Temperature compensation in a wireless transfer system
US20100231340A1 (en) * 2008-09-27 2010-09-16 Ron Fiorello Wireless energy transfer resonator enclosures
US20100259110A1 (en) * 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US20100277121A1 (en) * 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
US20110095618A1 (en) * 2008-09-27 2011-04-28 Schatz David A Wireless energy transfer using repeater resonators
US20110121920A1 (en) * 2008-09-27 2011-05-26 Kurs Andre B Wireless energy transfer resonator thermal management
US20110193416A1 (en) * 2008-09-27 2011-08-11 Campanella Andrew J Tunable wireless energy transfer systems
US20130162046A1 (en) * 2011-12-23 2013-06-27 Chien-Chun Lu Multi energy harvesting system
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US20140233138A1 (en) * 2013-02-15 2014-08-21 Delphi Technologies, Inc. Ground fault circuit interrupter
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
WO2015022690A1 (en) * 2013-08-15 2015-02-19 Humavox Ltd. Wireless charging device
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US20150123600A1 (en) * 2013-11-07 2015-05-07 Stored Energy Systems, a Limited Liability Company Self-contained automatic battery charging systems and methods
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
WO2015097968A1 (en) * 2013-12-25 2015-07-02 Toyota Jidosha Kabushiki Kaisha Contactless power transfer system and method of controlling the same
US9079043B2 (en) 2011-11-21 2015-07-14 Thoratec Corporation Transcutaneous power transmission utilizing non-planar resonators
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US20160250932A1 (en) * 2015-02-27 2016-09-01 Qualcomm Incorporated Systems, methods, and apparatus for partial electronics integration in vehicle pads for wireless power transfer applications
JP2016526366A (en) * 2013-05-10 2016-09-01 クアルコム,インコーポレイテッド System and method for detecting the presence of a moving object under a vehicle
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
USD769835S1 (en) 2015-05-15 2016-10-25 Witricity Corporation Resonator coil
USD770402S1 (en) 2015-05-15 2016-11-01 Witricity Corporation Coil
USD770404S1 (en) 2015-08-05 2016-11-01 Witricity Corporation Resonator coil
USD770403S1 (en) 2015-05-15 2016-11-01 Witricity Corporation Coil
USD773411S1 (en) 2015-04-27 2016-12-06 Witricity Corporation Resonator coil
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
JP2016226291A (en) * 2016-09-15 2016-12-28 トヨタ自動車株式会社 Power transmission system
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US20170040815A1 (en) * 2015-08-07 2017-02-09 Paypal, Inc. Smart charging of user devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9642219B2 (en) 2014-06-05 2017-05-02 Steelcase Inc. Environment optimization for space based on presence and activities
US9680531B2 (en) 2014-08-01 2017-06-13 Qualcomm Incorporated System and method for detecting inadequate wireless coupling and improving in-band signaling in wireless power transfer systems
GB2545922A (en) * 2015-12-30 2017-07-05 Hyperdrive Innovation Ltd Battery management system
US9735628B2 (en) 2014-04-16 2017-08-15 Witricity Corporation Wireless energy transfer for mobile device applications
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9780575B2 (en) 2014-08-11 2017-10-03 General Electric Company System and method for contactless exchange of power
US9793720B2 (en) 2014-04-16 2017-10-17 The Regents Of The University Of Michigan Wireless power transfer using multiple near-field plates
US20170302471A1 (en) * 2016-04-15 2017-10-19 Thales Defense & Security, Inc. Radio frequency (rf) coax interface for full data rate controller area network (can) protocol signaling with low latency
US9796280B2 (en) 2012-03-23 2017-10-24 Hevo Inc. Systems and mobile application for electric wireless charging stations
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US20170349056A1 (en) * 2016-06-07 2017-12-07 Hyundai Motor Company Method and system for controlling charging device for vehicles
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9852388B1 (en) 2014-10-03 2017-12-26 Steelcase, Inc. Method and system for locating resources and communicating within an enterprise
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9921726B1 (en) 2016-06-03 2018-03-20 Steelcase Inc. Smart workstation method and system
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
USD814432S1 (en) 2016-02-09 2018-04-03 Witricity Corporation Resonator coil
US9948125B2 (en) 2013-11-07 2018-04-17 Stored Energy Systems, a Limited Liability Company Systems and methods for self-contained automatic battery charging and battery-life-extension charging
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9955318B1 (en) 2014-06-05 2018-04-24 Steelcase Inc. Space guidance and management system and method
JP2018078793A (en) * 2017-12-06 2018-05-17 トヨタ自動車株式会社 Vehicle, power reception device and power transmission device
USD818434S1 (en) 2017-06-12 2018-05-22 Witricity Corporation Wireless charger
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
USD825503S1 (en) 2017-06-07 2018-08-14 Witricity Corporation Resonator coil
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10114120B2 (en) 2014-04-16 2018-10-30 The Regents Of The University Of Michigan Unidirectional near-field focusing using near-field plates
US10128697B1 (en) 2017-05-01 2018-11-13 Hevo, Inc. Detecting and deterring foreign objects and living objects at wireless charging stations
US10128678B2 (en) 2011-02-04 2018-11-13 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
CN108886272A (en) * 2016-03-25 2018-11-23 株式会社富士 Contactless power supply device
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10161752B1 (en) 2014-10-03 2018-12-25 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US10211676B2 (en) 2015-08-25 2019-02-19 Otis Elevator Company Electromechanical propulsion system having a wireless power transfer system
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10264213B1 (en) 2016-12-15 2019-04-16 Steelcase Inc. Content amplification system and method
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US20190215898A1 (en) * 2018-01-10 2019-07-11 Toyota Motor Engineering & Manufacturing North America, Inc. Network cloud load distribution for an electric vehicle application
US10353664B2 (en) 2014-03-07 2019-07-16 Steelcase Inc. Method and system for facilitating collaboration sessions
US10369894B2 (en) 2016-10-21 2019-08-06 Hevo, Inc. Parking alignment sequence for wirelessly charging an electric vehicle
US10389156B2 (en) 2010-05-21 2019-08-20 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US20190261420A1 (en) * 2018-02-21 2019-08-22 Nxp B.V. Physical layer device that connects to a shared media and method for operating a physical layer device that connects to a shared media
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10433646B1 (en) 2014-06-06 2019-10-08 Steelcaase Inc. Microclimate control systems and methods
US10447055B1 (en) 2013-04-19 2019-10-15 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using a charge-time parameter
WO2019236840A1 (en) * 2018-06-07 2019-12-12 Dd Dannar Llc Mobile platform systems and methods
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US10574079B1 (en) * 2014-06-20 2020-02-25 Qnovo Inc. Wireless charging techniques and circuitry for a battery
US10614694B1 (en) 2014-06-06 2020-04-07 Steelcase Inc. Powered furniture assembly
CN111114348A (en) * 2018-10-31 2020-05-08 现代自动车株式会社 Position alignment method, magnetic field detection apparatus, and position alignment apparatus
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
US10666081B2 (en) 2015-12-30 2020-05-26 Hyperdrive Innovation Limited Battery management system
US10733371B1 (en) 2015-06-02 2020-08-04 Steelcase Inc. Template based content preparation system for use with a plurality of space types
US10999099B2 (en) * 2018-08-27 2021-05-04 Nxp B.V. Physical layer device and method for operating a physical layer device
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11271611B1 (en) * 2021-01-28 2022-03-08 Nucurrent, Inc. Wireless power transfer with in-band virtualized wired communications
US11316378B1 (en) 2021-01-28 2022-04-26 Nucurrent, Inc. Wireless power receiver with in-band virtualized wired communications
US11321643B1 (en) 2014-03-07 2022-05-03 Steelcase Inc. Method and system for facilitating collaboration sessions
US11332125B2 (en) * 2019-11-28 2022-05-17 Panasonic Intellectual Property Management Co., Ltd. Parking assist device, vehicle, and parking assist method
US11397216B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using a battery model
US11397215B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using battery physical phenomena
US11418069B1 (en) 2021-01-28 2022-08-16 Nucurrent, Inc. Wireless power transfer system with data-priority and power-priority transfer modes
US11437864B2 (en) * 2018-08-14 2022-09-06 Lg Electronics Inc. Apparatus and method for detecting foreign object in wireless power transmission system
US11476898B2 (en) 2021-01-28 2022-10-18 Nucurrent, Inc. Wireless power transfer system with mode switching using selective quality factor alteration
US11483033B2 (en) 2021-01-28 2022-10-25 Nucurrent, Inc. Wireless power transfer system with data versus power priority optimization
US11489332B2 (en) 2019-05-24 2022-11-01 Witricity Corporation Protection circuits for wireless power receivers
US11626756B1 (en) 2021-10-15 2023-04-11 Nucurrent, Inc. Wireless power and data transfer system with out of band communications hand off
US11631999B2 (en) 2020-03-06 2023-04-18 Witricity Corporation Active rectification in wireless power systems
US11695270B2 (en) 2020-01-29 2023-07-04 Witricity Corporation Systems and methods for auxiliary power dropout protection
US11695300B2 (en) 2018-11-30 2023-07-04 Witricity Corporation Systems and methods for low power excitation in high power wireless power systems
US11744376B2 (en) 2014-06-06 2023-09-05 Steelcase Inc. Microclimate control systems and methods
US11754618B2 (en) 2021-10-15 2023-09-12 Nucurrent, Inc. Testing device for electronic devices with in-band virtualized wired communications
US11791647B2 (en) 2010-05-21 2023-10-17 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US11838076B2 (en) 2021-01-28 2023-12-05 Nucurrent, Inc. Wireless power transmitter with in-band virtualized wired communications
US11843258B2 (en) 2019-08-26 2023-12-12 Witricity Corporation Bidirectional operation of wireless power systems
US11956838B1 (en) 2023-05-08 2024-04-09 Steelcase Inc. Smart workstation method and system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102645042B1 (en) * 2018-09-14 2024-03-08 현대자동차주식회사 Reconfigurable electromagnetic wave shielding filter, wireless charger for vehicle having the same, and control method thereof
US11630748B2 (en) 2019-03-27 2023-04-18 Hamilton Sundstrand Corporation Reconfigurable stand alone distributed system motor controllers
US11148537B2 (en) 2019-04-26 2021-10-19 Hyundai Motor Company Method and apparatus for controlling wireless power transfer
US11258294B2 (en) * 2019-11-19 2022-02-22 Bloom Energy Corporation Microgrid with power equalizer bus and method of operating same
CN111490603A (en) * 2020-04-21 2020-08-04 北京理工大学 Wireless electromagnetic transmission system and method for driving hub motor
US11866038B2 (en) 2020-08-18 2024-01-09 Toyota Motor North America, Inc. Situation-specific transport power allocation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341083A (en) * 1991-09-27 1994-08-23 Electric Power Research Institute, Inc. Contactless battery charging system
US5594318A (en) * 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
US20080290736A1 (en) * 2007-05-25 2008-11-27 Seiko Epson Corporation Power transmission device and electronic instrument
WO2009081115A1 (en) * 2007-12-21 2009-07-02 Amway (Europe) Limited Inductive power transfer
US20090313174A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Approving Energy Transaction Plans Associated with Electric Vehicles
US20100049396A1 (en) * 2008-08-19 2010-02-25 International Business Machines Corporation System for Detecting Interrupt Conditions During an Electric Vehicle Charging Process
US20100171461A1 (en) * 2009-01-06 2010-07-08 Access Business Group International Llc Wireless charging system with device power compliance
US20100213895A1 (en) * 2009-02-24 2010-08-26 Qualcomm Incorporated Wireless power charging timing and charging control
US20110181240A1 (en) * 2010-01-05 2011-07-28 Access Business Group International Llc Inductive charging system for electric vehicle

Family Cites Families (601)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US645576A (en) 1897-09-02 1900-03-20 Nikola Tesla System of transmission of electrical energy.
US787412A (en) 1900-05-16 1905-04-18 Nikola Tesla Art of transmitting electrical energy through the natural mediums.
GB190508200A (en) 1905-04-17 1906-04-17 Nikola Tesla Improvements relating to the Transmission of Electrical Energy.
US1119732A (en) 1907-05-04 1914-12-01 Nikola Tesla Apparatus for transmitting electrical energy.
US2133494A (en) 1936-10-24 1938-10-18 Harry F Waters Wirelessly energized electrical appliance
US3535543A (en) 1969-05-01 1970-10-20 Nasa Microwave power receiving antenna
US3517350A (en) 1969-07-07 1970-06-23 Bell Telephone Labor Inc Energy translating device
GB1303835A (en) 1970-01-30 1973-01-24
US3871176A (en) 1973-03-08 1975-03-18 Combustion Eng Large sodium valve actuator
US4088999A (en) 1976-05-21 1978-05-09 Nasa RF beam center location method and apparatus for power transmission system
US4095998A (en) 1976-09-30 1978-06-20 The United States Of America As Represented By The Secretary Of The Army Thermoelectric voltage generator
JPS5374078A (en) 1976-12-14 1978-07-01 Bridgestone Tire Co Ltd Device for warning pressure reducing of inner pressure of tire
US4280129A (en) 1978-09-09 1981-07-21 Wells Donald H Variable mutual transductance tuned antenna
US4450431A (en) 1981-05-26 1984-05-22 Hochstein Peter A Condition monitoring system (tire pressure)
US4588978A (en) 1984-06-21 1986-05-13 Transensory Devices, Inc. Remote switch-sensing system
DE3788348T2 (en) 1987-07-31 1994-03-17 Texas Instruments Deutschland Transponder arrangement.
DE3815114A1 (en) 1988-05-04 1989-11-16 Bosch Gmbh Robert DEVICE FOR TRANSMITTING AND EVALUATING MEASURING SIGNALS FOR THE TIRE PRESSURE OF MOTOR VEHICLES
DE3824972A1 (en) 1988-07-22 1989-01-12 Roland Hiering Illumination of christmas trees, decorations and artwork
JPH0297005A (en) 1988-10-03 1990-04-09 Tokyo Cosmos Electric Co Ltd Variable inductance
JP2820706B2 (en) 1989-03-02 1998-11-05 株式会社日本自動車部品総合研究所 Power supply device having coil for electromagnetic coupling
US5034658A (en) 1990-01-12 1991-07-23 Roland Hierig Christmas-tree, decorative, artistic and ornamental object illumination apparatus
US5027709A (en) 1990-04-26 1991-07-02 Slagle Glenn B Magnetic induction mine arming, disarming and simulation system
JPH04265875A (en) 1991-02-21 1992-09-22 Seiko Instr Inc Plane type gradiometer
US5293308A (en) 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
US6738697B2 (en) 1995-06-07 2004-05-18 Automotive Technologies International Inc. Telematics system for vehicle diagnostics
US5118997A (en) 1991-08-16 1992-06-02 General Electric Company Dual feedback control for a high-efficiency class-d power amplifier circuit
NL9101590A (en) 1991-09-20 1993-04-16 Ericsson Radio Systems Bv SYSTEM FOR CHARGING A RECHARGEABLE BATTERY FROM A PORTABLE UNIT IN A RACK.
GB2262634B (en) 1991-12-18 1995-07-12 Apple Computer Power connection scheme
US5216402A (en) 1992-01-22 1993-06-01 Hughes Aircraft Company Separable inductive coupler
US5229652A (en) 1992-04-20 1993-07-20 Hough Wayne E Non-contact data and power connector for computer based modules
EP0640254B1 (en) 1992-05-10 2001-08-01 Auckland Uniservices Limited A non-contact power distribution system
US5437057A (en) 1992-12-03 1995-07-25 Xerox Corporation Wireless communications using near field coupling
US5287112A (en) 1993-04-14 1994-02-15 Texas Instruments Incorporated High speed read/write AVI system
GB9310545D0 (en) 1993-05-21 1993-07-07 Era Patents Ltd Power coupling
JP3207294B2 (en) 1993-06-02 2001-09-10 株式会社安川電機 Free hydraulic system
JP3409145B2 (en) 1993-07-26 2003-05-26 任天堂株式会社 Small electrical equipment
US5541604A (en) 1993-09-03 1996-07-30 Texas Instruments Deutschland Gmbh Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement
WO1995011545A1 (en) 1993-10-21 1995-04-27 Auckland Uniservices Limited Inductive power pick-up coils
US5408209A (en) 1993-11-02 1995-04-18 Hughes Aircraft Company Cooled secondary coils of electric automobile charging transformer
US5565763A (en) 1993-11-19 1996-10-15 Lockheed Martin Corporation Thermoelectric method and apparatus for charging superconducting magnets
US5493691A (en) 1993-12-23 1996-02-20 Barrett; Terence W. Oscillator-shuttle-circuit (OSC) networks for conditioning energy in higher-order symmetry algebraic topological forms and RF phase conjugation
US5957956A (en) 1994-06-21 1999-09-28 Angeion Corp Implantable cardioverter defibrillator having a smaller mass
US6459218B2 (en) 1994-07-13 2002-10-01 Auckland Uniservices Limited Inductively powered lamp unit
DE69535873D1 (en) 1994-07-13 2008-12-04 Auckland Uniservices Ltd Inductively fed lighting
US5522856A (en) 1994-09-20 1996-06-04 Vitatron Medical, B.V. Pacemaker with improved shelf storage capacity
JPH08191259A (en) 1995-01-11 1996-07-23 Sony Chem Corp Transmitter-receiver for contactless ic card system
US5710413A (en) 1995-03-29 1998-01-20 Minnesota Mining And Manufacturing Company H-field electromagnetic heating system for fusion bonding
US5697956A (en) 1995-06-02 1997-12-16 Pacesetter, Inc. Implantable stimulation device having means for optimizing current drain
CN1068530C (en) 1995-06-16 2001-07-18 大赛璐化学工业株式会社 Method for discriminating between used and unused gas generators for air bags during car scrapping
US5703461A (en) 1995-06-28 1997-12-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for electric vehicle charger
US5703950A (en) 1995-06-30 1997-12-30 Intermec Corporation Method and apparatus for controlling country specific frequency allocation
US5630835A (en) 1995-07-24 1997-05-20 Cardiac Control Systems, Inc. Method and apparatus for the suppression of far-field interference signals for implantable device data transmission systems
EP0782214B1 (en) 1995-12-22 2004-10-06 Texas Instruments France Ring antennas for resonant cicuits
JPH09182323A (en) 1995-12-28 1997-07-11 Rohm Co Ltd Non-contact type electric power transmission device
EP0788212B1 (en) 1996-01-30 2002-04-17 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
US6066163A (en) 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US6108579A (en) 1996-04-15 2000-08-22 Pacesetter, Inc. Battery monitoring apparatus and method for programmers of cardiac stimulating devices
JPH09298847A (en) 1996-04-30 1997-11-18 Sony Corp Non-contact charger
US5959245A (en) 1996-05-30 1999-09-28 Commscope, Inc. Of North Carolina Coaxial cable
US5821728A (en) 1996-07-22 1998-10-13 Schwind; John P. Armature induction charging of moving electric vehicle batteries
JPH1092673A (en) 1996-07-26 1998-04-10 Tdk Corp Non-contact power transmission device
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US6569397B1 (en) 2000-02-15 2003-05-27 Tapesh Yadav Very high purity fine powders and methods to produce such powders
US6832735B2 (en) 2002-01-03 2004-12-21 Nanoproducts Corporation Post-processed nanoscale powders and method for such post-processing
US5742471A (en) 1996-11-25 1998-04-21 The Regents Of The University Of California Nanostructure multilayer dielectric materials for capacitors and insulators
JPH10164837A (en) 1996-11-26 1998-06-19 Sony Corp Power supply
US6317338B1 (en) 1997-05-06 2001-11-13 Auckland Uniservices Limited Power supply for an electroluminescent display
US7068991B2 (en) 1997-05-09 2006-06-27 Parise Ronald J Remote power recharge for electronic equipment
US6176433B1 (en) 1997-05-15 2001-01-23 Hitachi, Ltd. Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance
US6459175B1 (en) * 1997-11-17 2002-10-01 Patrick H. Potega Universal power supply
WO1999008359A1 (en) 1997-08-08 1999-02-18 Meins Jurgen G Method and apparatus for supplying contactless power
JPH1175329A (en) 1997-08-29 1999-03-16 Hitachi Ltd Non-contact type ic card system
US6167309A (en) 1997-09-15 2000-12-26 Cardiac Pacemakers, Inc. Method for monitoring end of life for battery
US5993996A (en) 1997-09-16 1999-11-30 Inorganic Specialists, Inc. Carbon supercapacitor electrode materials
NZ329195A (en) 1997-11-17 2000-07-28 Auckland Uniservices Ltd Loosely coupled inductive power transfer using resonant pickup circuit, inductor core chosen to saturate under overload conditions
JPH11188113A (en) 1997-12-26 1999-07-13 Nec Corp Power transmission system, power transmission method and electric stimulation device provided with the power transmission system
JPH11285156A (en) 1998-03-30 1999-10-15 Nippon Electric Ind Co Ltd Non-contact charger
US5999308A (en) 1998-04-01 1999-12-07 Massachusetts Institute Of Technology Methods and systems for introducing electromagnetic radiation into photonic crystals
US5891180A (en) 1998-04-29 1999-04-06 Medtronic Inc. Interrogation of an implantable medical device using audible sound communication
US5986895A (en) 1998-06-05 1999-11-16 Astec International Limited Adaptive pulse width modulated resonant Class-D converter
US6047214A (en) 1998-06-09 2000-04-04 North Carolina State University System and method for powering, controlling, and communicating with multiple inductively-powered devices
US6255635B1 (en) 1998-07-10 2001-07-03 Ameritherm, Inc. System and method for providing RF power to a load
WO2000034964A1 (en) 1998-12-05 2000-06-15 Energy Storage Systems Pty. Ltd. A charge storage device
US6615074B2 (en) 1998-12-22 2003-09-02 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
ATE430596T1 (en) 1999-03-24 2009-05-15 Second Sight Medical Prod Inc RETINAL COLOR PROSTHESIS FOR RESTORING COLOR VISION
FR2792135B1 (en) 1999-04-07 2001-11-02 St Microelectronics Sa VERY CLOSE COMPLAGE OPERATION OF AN ELECTROMAGNETIC TRANSPONDER SYSTEM
FR2792134B1 (en) 1999-04-07 2001-06-22 St Microelectronics Sa DISTANCE DETECTION BETWEEN AN ELECTROMAGNETIC TRANSPONDER AND A TERMINAL
US6252762B1 (en) 1999-04-21 2001-06-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/supercapacitor system
US6127799A (en) 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
AU4926600A (en) 1999-06-11 2001-01-02 Abb Research Ltd System for a machine with a plurality of proximity sensors and a proximity sensor and a primary winding used in such machine
EP1190476B1 (en) 1999-06-11 2010-02-24 ABB Research Ltd. System for a machine with a plurality of actuators
US7385357B2 (en) 1999-06-21 2008-06-10 Access Business Group International Llc Inductively coupled ballast circuit
US7126450B2 (en) 1999-06-21 2006-10-24 Access Business Group International Llc Inductively powered apparatus
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US7212414B2 (en) 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US6731071B2 (en) 1999-06-21 2004-05-04 Access Business Group International Llc Inductively powered lamp assembly
US6673250B2 (en) 1999-06-21 2004-01-06 Access Business Group International Llc Radio frequency identification system for a fluid treatment system
US6825620B2 (en) 1999-06-21 2004-11-30 Access Business Group International Llc Inductively coupled ballast circuit
US7612528B2 (en) 1999-06-21 2009-11-03 Access Business Group International Llc Vehicle interface
US7518267B2 (en) 2003-02-04 2009-04-14 Access Business Group International Llc Power adapter for a remote device
US6436299B1 (en) 1999-06-21 2002-08-20 Amway Corporation Water treatment system with an inductively coupled ballast
US6232841B1 (en) 1999-07-01 2001-05-15 Rockwell Science Center, Llc Integrated tunable high efficiency power amplifier
US6207887B1 (en) 1999-07-07 2001-03-27 Hi-2 Technology, Inc. Miniature milliwatt electric power generator
US6803744B1 (en) 1999-11-01 2004-10-12 Anthony Sabo Alignment independent and self aligning inductive power transfer system
US8032409B1 (en) * 1999-11-22 2011-10-04 Accenture Global Services Limited Enhanced visibility during installation management in a network-based supply chain environment
DE19958265A1 (en) 1999-12-05 2001-06-21 Iq Mobil Electronics Gmbh Wireless energy transmission system with increased output voltage
US6650227B1 (en) 1999-12-08 2003-11-18 Hid Corporation Reader for a radio frequency identification system having automatic tuning capability
US6450946B1 (en) 2000-02-11 2002-09-17 Obtech Medical Ag Food intake restriction with wireless energy transfer
EP1269643A1 (en) 2000-03-01 2003-01-02 Geir Monsen Vavik Transponder and transponder system
AU2001237403A1 (en) 2000-03-02 2001-09-12 Abb Research Ltd Proximity sensor and modular system for producing proximity sensors
EP1261844B1 (en) 2000-03-09 2004-07-07 ABB Research Ltd. System for generating electric energy from a magnetic field
US6184651B1 (en) 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
US6561975B1 (en) 2000-04-19 2003-05-13 Medtronic, Inc. Method and apparatus for communicating with medical device systems
JP4140169B2 (en) 2000-04-25 2008-08-27 松下電工株式会社 Non-contact power transmission device
DE10029147A1 (en) 2000-06-14 2001-12-20 Ulf Tiemens Installation for supplying toys with electrical energy, preferably for production of light, comprises a sender of electromagnetic waves which is located at a small distance above a play area with the toys
US6452465B1 (en) 2000-06-27 2002-09-17 M-Squared Filters, Llc High quality-factor tunable resonator
JP4135299B2 (en) 2000-06-27 2008-08-20 松下電工株式会社 Non-contact power transmission device
MXPA03001135A (en) 2000-08-11 2003-06-09 Escort Memory Systems Rfid passive repeater system and apparatus.
GB2370509A (en) 2000-08-29 2002-07-03 Don Edward Casey Subcutaneously implanted photovoltaic power supply
US6591139B2 (en) 2000-09-06 2003-07-08 Advanced Bionics Corporation Low-power, high-modulation-index amplifier for use in battery-powered device
DE20016655U1 (en) 2000-09-25 2002-02-14 Ic Haus Gmbh System for wireless energy and data transmission
US6866107B2 (en) * 2000-10-13 2005-03-15 Deka Products Limited Partnership Method and device for battery load sharing
JP3851504B2 (en) 2000-11-16 2006-11-29 矢崎総業株式会社 Automotive sliding door feeder
ATE456851T1 (en) 2001-03-02 2010-02-15 Koninkl Philips Electronics Nv INDUCTIVE COUPLING SYSTEM WITH CAPACITIVE PARALLEL COMPENSATION OF MUTUAL INDUCTANCE BETWEEN THE PRIMARY AND SECONDARY WINDINGS
US7282889B2 (en) 2001-04-19 2007-10-16 Onwafer Technologies, Inc. Maintenance unit for a sensor apparatus
JP3629553B2 (en) 2001-05-08 2005-03-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Power supply system, computer apparatus, battery, abnormal charging protection method, and program
US6917431B2 (en) 2001-05-15 2005-07-12 Massachusetts Institute Of Technology Mach-Zehnder interferometer using photonic band gap crystals
SE519705C2 (en) 2001-08-22 2003-04-01 Ericsson Telefon Ab L M A tunable ferroelectric resonator device
EP1294074A2 (en) 2001-09-15 2003-03-19 ABB Research Ltd. Magnetic field generating system and device for cableless supply of a plurality of sensors and/or actuators
US7069468B1 (en) * 2001-11-15 2006-06-27 Xiotech Corporation System and method for re-allocating storage area network resources
JP4478366B2 (en) 2001-12-11 2010-06-09 ソニー株式会社 Contactless communication system
AU2003219804B2 (en) 2002-02-19 2007-05-31 Access Business Group International Llc Removable closure assembly for a water treatment system
US6847190B2 (en) 2002-02-26 2005-01-25 Linvatec Corporation Method and apparatus for charging sterilizable rechargeable batteries
EP1488466A2 (en) 2002-03-01 2004-12-22 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A semiconductor photodetector
JP3671919B2 (en) 2002-03-05 2005-07-13 日立電線株式会社 Coaxial cable and coaxial multi-core cable
US7340304B2 (en) 2002-03-15 2008-03-04 Biomed Soutions, Llc Biothermal power source for implantable devices
US20040093041A1 (en) 2002-03-15 2004-05-13 Macdonald Stuart G. Biothermal power source for implantable devices
US6683256B2 (en) 2002-03-27 2004-01-27 Ta-San Kao Structure of signal transmission line
JP3719510B2 (en) 2002-04-08 2005-11-24 アルプス電気株式会社 Storage room with contactless charger
GB0210886D0 (en) 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
US7239110B2 (en) 2002-05-13 2007-07-03 Splashpower Limited Primary units, methods and systems for contact-less power transfer
CN100550570C (en) 2002-05-13 2009-10-14 捷通国际有限公司 Electric energy transmission system and the primary device of using therein
US6906495B2 (en) 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
DE10221484B4 (en) 2002-05-15 2012-10-11 Hans-Joachim Laue Device for powering a data acquisition and data transfer unit and data acquisition and transfer unit
US6844702B2 (en) 2002-05-16 2005-01-18 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
AU2003245887A1 (en) 2002-05-24 2003-12-12 Telefonaktiebolaget Lm Ericsson (Publ) Method for authenticating a user to a service of a service provider
US7471062B2 (en) 2002-06-12 2008-12-30 Koninklijke Philips Electronics N.V. Wireless battery charging
US6960968B2 (en) 2002-06-26 2005-11-01 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
SG112842A1 (en) 2002-06-28 2005-07-28 Tunity Pte Ltd Passive range extender/booster for rfid tag/reader
US20040026998A1 (en) 2002-07-24 2004-02-12 Henriott Jay M. Low voltage electrified furniture unit
US7147604B1 (en) 2002-08-07 2006-12-12 Cardiomems, Inc. High Q factor sensor
AU2003258171A1 (en) 2002-08-12 2004-02-25 Mobilewise, Inc. Wireless power supply system for small devices
US6856291B2 (en) 2002-08-15 2005-02-15 University Of Pittsburgh- Of The Commonwealth System Of Higher Education Energy harvesting circuits and associated methods
US6772011B2 (en) 2002-08-20 2004-08-03 Thoratec Corporation Transmission of information from an implanted medical device
US6609023B1 (en) 2002-09-20 2003-08-19 Angel Medical Systems, Inc. System for the detection of cardiac events
US6858970B2 (en) 2002-10-21 2005-02-22 The Boeing Company Multi-frequency piezoelectric energy harvester
DE10393604T5 (en) 2002-10-28 2005-11-03 Splashpower Ltd. Improvements in non-contact power transmission
AU2003290877A1 (en) 2002-11-13 2004-06-03 Roger L. Clark Oscillator module incorporating looped-stub resonator
JP2004166459A (en) 2002-11-15 2004-06-10 Mitsui Eng & Shipbuild Co Ltd Non-contact feeding device
US20090072782A1 (en) 2002-12-10 2009-03-19 Mitch Randall Versatile apparatus and method for electronic devices
US6791500B2 (en) 2002-12-12 2004-09-14 Research In Motion Limited Antenna with near-field radiation control
GB0229141D0 (en) 2002-12-16 2003-01-15 Splashpower Ltd Improvements relating to contact-less power transfer
JP3643581B2 (en) 2002-12-20 2005-04-27 東光株式会社 Multi-output power supply transformer
US20040189246A1 (en) 2002-12-23 2004-09-30 Claudiu Bulai System and method for inductive charging a wireless mouse
JP2004229144A (en) 2003-01-24 2004-08-12 Citizen Electronics Co Ltd Surface mounting antenna
CN1922700A (en) 2003-02-04 2007-02-28 通达商业集团国际公司 Inductive coil assembly
DE10304584A1 (en) 2003-02-05 2004-08-19 Abb Research Ltd. Communication of power and data to sensors and actuators in a process uses field transmission and avoids wiring
US20070176840A1 (en) 2003-02-06 2007-08-02 James Pristas Multi-receiver communication system with distributed aperture antenna
DE10312284B4 (en) 2003-03-19 2005-12-22 Sew-Eurodrive Gmbh & Co. Kg Transducer head, system for contactless energy transmission and use of a transmitter head
KR100488524B1 (en) 2003-04-09 2005-05-11 삼성전자주식회사 Charging equipment for robot
FI115264B (en) 2003-04-17 2005-03-31 Ailocom Oy Wireless power transmission
US20050004637A1 (en) 2003-05-16 2005-01-06 Ruchika Singhal Explantation of implantable medical device
JP2004348496A (en) 2003-05-23 2004-12-09 Hitachi Ltd Communication system
US6967462B1 (en) 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US7243509B2 (en) 2003-06-06 2007-07-17 David Lam Trinh Thermal therapeutic method
US9646451B2 (en) * 2003-06-11 2017-05-09 Ncr Corporation Automated business system and method of vending and returning a consumer product
SE0301786D0 (en) 2003-06-16 2003-06-16 Abb Ab Industrial Robot
US6798716B1 (en) 2003-06-19 2004-09-28 Bc Systems, Inc. System and method for wireless electrical power transmission
WO2005004754A2 (en) 2003-06-30 2005-01-20 Js Vascular, Inc. Subcutaneous implantable non-thrombogenic mechanical devices
US7613497B2 (en) 2003-07-29 2009-11-03 Biosense Webster, Inc. Energy transfer amplification for intrabody devices
JP3874744B2 (en) 2003-08-01 2007-01-31 三井化学株式会社 Small high sensitivity antenna
AU2003904086A0 (en) 2003-08-04 2003-08-21 Cochlear Limited Implant battery short circuit protection
US7737359B2 (en) 2003-09-05 2010-06-15 Newire Inc. Electrical wire and method of fabricating the electrical wire
GB0320960D0 (en) 2003-09-08 2003-10-08 Splashpower Ltd Improvements relating to improving flux patterns of inductive charging pads
US7813809B2 (en) 2004-06-10 2010-10-12 Medtronic, Inc. Implantable pulse generator for providing functional and/or therapeutic stimulation of muscles and/or nerves and/or central nervous system tissue
GB2406730A (en) 2003-09-30 2005-04-06 Ocuity Ltd Directional display.
US7233137B2 (en) 2003-09-30 2007-06-19 Sharp Kabushiki Kaisha Power supply system
JP3982476B2 (en) 2003-10-01 2007-09-26 ソニー株式会社 Communications system
US20050075696A1 (en) 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
WO2005034345A1 (en) 2003-10-06 2005-04-14 Philips Intellectual Property & Standards Gmbh Resonator structure and method of producing it
US6839035B1 (en) 2003-10-07 2005-01-04 A.C.C. Systems Magnetically coupled antenna range extender
US7379774B2 (en) 2003-10-17 2008-05-27 Alfred E. Mann Foundation For Scientific Research Method and apparatus for efficient power/data transmission
CA2542930A1 (en) 2003-10-17 2005-04-28 Timm A. Vanderelli Method and apparatus for a wireless power supply
US7084605B2 (en) 2003-10-29 2006-08-01 University Of Pittsburgh Energy harvesting circuit
JP4501416B2 (en) 2003-11-17 2010-07-14 Tdk株式会社 IC card charger and pass case
US7872444B2 (en) 2003-12-11 2011-01-18 Symbol Technologies, Inc. Opportunistic power supply charge system for portable unit
US7375492B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductively charged battery pack
US7375493B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductive battery charger
US7378817B2 (en) 2003-12-12 2008-05-27 Microsoft Corporation Inductive power adapter
SE0303445L (en) 2003-12-17 2005-06-18 Abb Research Ltd Tools for an industrial robot
US20050151511A1 (en) 2004-01-14 2005-07-14 Intel Corporation Transferring power between devices in a personal area network
US8432167B2 (en) 2004-02-09 2013-04-30 Baker Hughes Incorporated Method and apparatus of using magnetic material with residual magnetization in transient electromagnetic measurement
US7288918B2 (en) 2004-03-02 2007-10-30 Distefano Michael Vincent Wireless battery charger via carrier frequency signal
US7035076B1 (en) 2005-08-15 2006-04-25 Greatbatch-Sierra, Inc. Feedthrough filter capacitor assembly with internally grounded hermetic insulator
NO320439B1 (en) 2004-04-30 2005-12-05 Geir Olav Gyland Device and method for contactless energy transfer
USD541322S1 (en) 2004-05-05 2007-04-24 Russell Finex Limited Resonator
US7642557B2 (en) 2004-05-11 2010-01-05 Los Alamos National Security, Llc Non-contact pumping of light emitters via non-radiative energy transfer
WO2005109597A1 (en) 2004-05-11 2005-11-17 Splashpower Limited Controlling inductive power transfer systems
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
DE102004023815A1 (en) 2004-05-13 2005-12-08 Vacuumschmelze Gmbh & Co. Kg Antenna arrangement and use of the antenna arrangement
JP4611127B2 (en) 2004-06-14 2011-01-12 パナソニック株式会社 Electromechanical signal selection element
US20050288740A1 (en) 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous telemetry to implanted medical device
US7599744B2 (en) 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Transcutaneous energy transfer primary coil with a high aspect ferrite core
US20050288739A1 (en) 2004-06-24 2005-12-29 Ethicon, Inc. Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry
US7599743B2 (en) 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous energy transfer to implanted medical device
US7191007B2 (en) 2004-06-24 2007-03-13 Ethicon Endo-Surgery, Inc Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics
US20060001509A1 (en) 2004-06-30 2006-01-05 Gibbs Phillip R Systems and methods for automated resonant circuit tuning
DE102004035851B4 (en) 2004-07-23 2006-11-16 Bruker Biospin Ag Resonator system for generating a high-frequency magnetic field
KR20040072581A (en) 2004-07-29 2004-08-18 (주)제이씨 프로텍 An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
US7151357B2 (en) 2004-07-30 2006-12-19 Kye Systems Corporation Pulse frequency modulation for induction charge device
US7462951B1 (en) 2004-08-11 2008-12-09 Access Business Group International Llc Portable inductive power station
JP2006074848A (en) 2004-08-31 2006-03-16 Hokushin Denki Kk Non-contact power transmission system
WO2006029007A2 (en) 2004-09-02 2006-03-16 E-Soc Device for brain stimulation using rf energy harvesting
US20060066443A1 (en) 2004-09-15 2006-03-30 Tagsys Sa Self-adjusting RF assembly
US20090038623A1 (en) 2004-09-21 2009-02-12 Pavad Medical, Inc. Inductive power transfer system for palatal implant
EP1805863B1 (en) * 2004-10-18 2013-06-26 Black & Decker, Inc. Cordless power system
US7156201B2 (en) 2004-11-04 2007-01-02 Advanced Ultrasonic Solutions, Inc. Ultrasonic rod waveguide-radiator
SE0402945D0 (en) 2004-11-30 2004-11-30 Abb Research Ltd Industrial robot
US20060132045A1 (en) 2004-12-17 2006-06-22 Baarman David W Heating system and heater
US20060185809A1 (en) 2005-02-23 2006-08-24 Abb. Actuator system for use in control of a sheet or web forming process
KR20070105342A (en) 2005-02-24 2007-10-30 파이어플라이 파워 테크놀로지 Method, apparatus and system for power transmission
US7262700B2 (en) 2005-03-10 2007-08-28 Microsoft Corporation Inductive powering surface for powering portable devices
ATE441933T1 (en) 2005-03-14 2009-09-15 Koninkl Philips Electronics Nv SYSTEM, INDUCTIVE POWER SUPPLY DEVICE, POWERABLE LOAD AND METHOD FOR ENABLED WIRELESS POWER TRANSFER
KR100554889B1 (en) 2005-03-21 2006-03-03 주식회사 한림포스텍 No point of contact charging system
US20060214626A1 (en) 2005-03-25 2006-09-28 Nilson Lee A Battery charging assembly for use on a locomotive
US8042631B2 (en) 2005-04-04 2011-10-25 Delphi Technologies, Inc. Electric vehicle having multiple-use APU system
US7963941B2 (en) 2005-04-12 2011-06-21 Wilk Peter J Intra-abdominal medical method and associated device
US20060238365A1 (en) 2005-04-24 2006-10-26 Elio Vecchione Short-range wireless power transmission and reception
US7376407B2 (en) 2005-04-28 2008-05-20 Microtune (Texas), L.P. System and method for dynamic impedance tuning to minimize return loss
US20080012569A1 (en) 2005-05-21 2008-01-17 Hall David R Downhole Coils
KR20080022106A (en) 2005-05-24 2008-03-10 파워캐스트 코포레이션 Power transmission network
AU2006255054A1 (en) 2005-06-08 2006-12-14 Powercast Corporation Powering devices using RF energy harvesting
US7321290B2 (en) 2005-10-02 2008-01-22 Visible Assets, Inc. Radio tag and system
CA2511051A1 (en) 2005-06-28 2006-12-29 Roger J. Soar Contactless battery charging apparel
EP1905162A2 (en) 2005-07-08 2008-04-02 Powercast Corporation Power transmission system, apparatus and method with communication
KR101322434B1 (en) * 2005-07-11 2013-10-28 브룩스 오토메이션 인코퍼레이티드 Intelligent condition-monitoring and fault diagnostic system
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
CN101258658B (en) 2005-07-12 2012-11-14 麻省理工学院 Wireless non-radiative energy transfer
US7528725B2 (en) 2005-07-15 2009-05-05 Allflex U.S.A., Inc. Passive dynamic antenna tuning circuit for a radio frequency identification reader
US20070016089A1 (en) 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
US20070021140A1 (en) 2005-07-22 2007-01-25 Keyes Marion A Iv Wireless power transmission systems and methods
US20070024246A1 (en) 2005-07-27 2007-02-01 Flaugher David J Battery Chargers and Methods for Extended Battery Life
DE102005036290B4 (en) 2005-08-02 2009-04-30 Gebrüder Frei GmbH & Co. KG operating system
KR100691255B1 (en) 2005-08-08 2007-03-12 (주)제이씨 프로텍 A Small and Light Wireless Power Transmitting and Receiving Device
US20070042729A1 (en) 2005-08-16 2007-02-22 Baaman David W Inductive power supply, remote device powered by inductive power supply and method for operating same
US8838215B2 (en) 2006-03-01 2014-09-16 Angel Medical Systems, Inc. Systems and methods of medical monitoring according to patient state
JP4155408B2 (en) 2005-09-29 2008-09-24 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Charging device and charging system
CN101442933A (en) 2005-10-07 2009-05-27 皇家飞利浦电子股份有限公司 Ear-thermometer with ear identification
US7382636B2 (en) 2005-10-14 2008-06-03 Access Business Group International Llc System and method for powering a load
JP4852970B2 (en) 2005-10-26 2012-01-11 パナソニック電工株式会社 Power supply system
US7798817B2 (en) 2005-11-04 2010-09-21 Georgia Tech Research Corporation Integrated circuit interconnects with coaxial conductors
US8233985B2 (en) 2005-11-04 2012-07-31 Kenergy, Inc. MRI compatible implanted electronic medical device with power and data communication capability
ZA200804243B (en) 2005-11-21 2009-12-30 Powercast Corp Radio-frequency (RF) power portal
US7825544B2 (en) 2005-12-02 2010-11-02 Koninklijke Philips Electronics N.V. Coupling system
US7521890B2 (en) 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
KR101617503B1 (en) 2006-01-18 2016-05-18 퀄컴 인코포레이티드 Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US7952322B2 (en) 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
KR100792308B1 (en) 2006-01-31 2008-01-07 엘에스전선 주식회사 A contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell
JP2007266892A (en) 2006-03-28 2007-10-11 Sumida Corporation Coil antenna
JP4967430B2 (en) * 2006-04-11 2012-07-04 オムロン株式会社 Defect management device, defect management program, and recording medium recording the same
US7738965B2 (en) 2006-04-28 2010-06-15 Medtronic, Inc. Holster for charging pectorally implanted medical devices
DE102007014712B4 (en) 2006-05-30 2012-12-06 Sew-Eurodrive Gmbh & Co. Kg investment
US7795708B2 (en) 2006-06-02 2010-09-14 Honeywell International Inc. Multilayer structures for magnetic shielding
WO2007150070A2 (en) 2006-06-23 2007-12-27 Securaplane Technologies, Inc. Wireless electromagnetic parasitic power transfer
US7916092B2 (en) 2006-08-02 2011-03-29 Schlumberger Technology Corporation Flexible circuit for downhole antenna
CA2662151A1 (en) 2006-09-01 2008-03-13 Powercast Corporation Hybrid power harvesting and method
US9129741B2 (en) 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
WO2008035248A2 (en) 2006-09-18 2008-03-27 Philips Intellectual Property & Standards Gmbh An apparatus, a system and a method for enabling electromagnetic energy transfer
DE102006044057A1 (en) 2006-09-20 2008-04-10 Abb Patent Gmbh Wireless power supply system for multiple electronic devices e.g. sensors, actuators has at least one field reinforcement or deflection unit that is brought into magnetic field such that resonance is adjusted
KR100836634B1 (en) 2006-10-24 2008-06-10 주식회사 한림포스텍 Non-contact charger available of wireless data and power transmission, charging battery-pack and mobile divice using non-contact charger
EP2084637A2 (en) 2006-10-24 2009-08-05 Medapps, Inc. Systems and methods for adapter-based communication with a medical device
US7880337B2 (en) 2006-10-25 2011-02-01 Laszlo Farkas High power wireless resonant energy transfer system
US20100314946A1 (en) 2006-10-26 2010-12-16 Koninklijke Philips Electronics N.V. Floor covering and inductive power system
WO2008050260A1 (en) 2006-10-26 2008-05-02 Philips Intellectual Property & Standards Gmbh Inductive power system and method of operation
US20080133300A1 (en) * 2006-10-30 2008-06-05 Mady Jalinous System and apparatus for enterprise resilience
US7960854B2 (en) 2006-11-15 2011-06-14 Pilkington Automotive Deutschland Gmbh Electrical connector configured to form coupling region in automotive glazing
US8339096B2 (en) 2006-11-20 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Wireless power receiving device
US8320991B2 (en) 2006-12-01 2012-11-27 Medtronic Navigation Inc. Portable electromagnetic navigation system
US20080154331A1 (en) 2006-12-21 2008-06-26 Varghese John Device for multicentric brain modulation, repair and interface
GB2459220B (en) 2007-01-12 2012-09-05 Kopin Corp Head mounted computing device
US8503968B2 (en) 2007-01-19 2013-08-06 Samsung Electronics Co., Ltd. Method and system for power saving in wireless communications
US9123189B2 (en) * 2007-02-12 2015-09-01 The Boeing Company System and method for point-of-use instruction
JP4413236B2 (en) 2007-02-16 2010-02-10 セイコーエプソン株式会社 Power reception control device, power transmission control device, non-contact power transmission system, power reception device, power transmission device, and electronic device
JP4308858B2 (en) 2007-02-16 2009-08-05 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
JP4930093B2 (en) 2007-02-21 2012-05-09 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
JP4649430B2 (en) 2007-03-20 2011-03-09 セイコーエプソン株式会社 Non-contact power transmission device
US20080255901A1 (en) 2007-03-26 2008-10-16 John Stuart Carroll Kiosk systems and methods
KR101695169B1 (en) 2007-03-27 2017-01-11 메사추세츠 인스티튜트 오브 테크놀로지 Wireless energy transfer
FR2914512A1 (en) 2007-03-27 2008-10-03 Delachaux Sa Sa ELECTRICAL POWER SUPPLY SYSTEM AND DATA TRANSMISSION WITHOUT ELECTRICAL CONTACT.
US7602142B2 (en) 2007-04-02 2009-10-13 Visteon Global Technologies, Inc. System for inductive power transfer
US20080272860A1 (en) 2007-05-01 2008-11-06 M/A-Com, Inc. Tunable Dielectric Resonator Circuit
KR102128564B1 (en) 2007-05-10 2020-07-01 오클랜드 유니서비시즈 리미티드 Multi power sourced electric vehicle
US20080300657A1 (en) 2007-05-31 2008-12-04 Mark Raymond Stultz Therapy system
TWI339548B (en) 2007-06-01 2011-03-21 Ind Tech Res Inst Inductor devices
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US8106739B2 (en) 2007-06-12 2012-01-31 Advanced Magnetic Solutions United Magnetic induction devices and methods for producing them
US9634730B2 (en) 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
KR100819753B1 (en) 2007-07-13 2008-04-08 주식회사 한림포스텍 Non-contact charger system of wireless power transmision for battery and control method thereof
US8049460B2 (en) * 2007-07-18 2011-11-01 Tesla Motors, Inc. Voltage dividing vehicle heater system and method
US20090033564A1 (en) 2007-08-02 2009-02-05 Nigel Power, Llc Deployable Antennas for Wireless Power
US20090188396A1 (en) 2007-08-06 2009-07-30 Hofmann Matthias C Oven with wireless temperature sensor for use in monitoring food temperature
CN101842962B (en) 2007-08-09 2014-10-08 高通股份有限公司 Increasing the Q factor of a resonator
US20090058189A1 (en) 2007-08-13 2009-03-05 Nigelpower, Llc Long range low frequency resonator and materials
US20090067198A1 (en) 2007-08-29 2009-03-12 David Jeffrey Graham Contactless power supply
JP4561796B2 (en) 2007-08-31 2010-10-13 ソニー株式会社 Power receiving device and power transmission system
US7999414B2 (en) 2007-09-01 2011-08-16 Maquet Gmbh & Co. Kg Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device
WO2009033043A2 (en) 2007-09-05 2009-03-12 University Of Florida Research Foundation, Inc. Planar near-field wireless power charger and high-speed data communication platform
US8461817B2 (en) 2007-09-11 2013-06-11 Powercast Corporation Method and apparatus for providing wireless power to a load device
CN101803109A (en) 2007-09-13 2010-08-11 高通股份有限公司 Maximizing power yield from wireless power magnetic resonators
US20090072628A1 (en) 2007-09-13 2009-03-19 Nigel Power, Llc Antennas for Wireless Power applications
WO2009037821A1 (en) 2007-09-17 2009-03-26 Hideo Kikuchi Induced power transmission circuit
KR20100067676A (en) 2007-09-17 2010-06-21 퀄컴 인코포레이티드 Transmitters and receivers for wireless energy transfer
EP2195905A4 (en) 2007-09-17 2017-03-22 Qualcomm Incorporated High efficiency and power transfer in wireless power magnetic resonators
EP3258536A1 (en) 2007-09-19 2017-12-20 Qualcomm Incorporated Maximizing power yield from wireless power magnetic resonators
JP2009081943A (en) 2007-09-26 2009-04-16 Seiko Epson Corp Transmission controller, transmitter, apparatus on transmission side, and no-contact power transmitting system
US8890472B2 (en) 2007-09-26 2014-11-18 Alex Mashinsky Self-charging electric vehicles and aircraft, and wireless energy distribution system
US20100256481A1 (en) 2007-09-27 2010-10-07 Mareci Thomas H Method and Apparatus for Providing a Wireless Multiple-Frequency MR Coil
US7973635B2 (en) 2007-09-28 2011-07-05 Access Business Group International Llc Printed circuit board coil
CN101842963B (en) 2007-10-11 2014-05-28 高通股份有限公司 Wireless power transfer using magneto mechanical systems
JP2011500203A (en) 2007-10-16 2011-01-06 ミルックス・ホールディング・エスエイ Method and apparatus for supplying energy to a medical device
US8193769B2 (en) 2007-10-18 2012-06-05 Powermat Technologies, Ltd Inductively chargeable audio devices
JP4453741B2 (en) 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
US8175660B2 (en) 2007-10-30 2012-05-08 Qualcomm Incorporated Wireless energy transfer
US7868586B2 (en) 2007-10-31 2011-01-11 Intermec Ip Corp. System, devices, and method for selectively wirelessly energizing passive wireless data communications devices
US8228025B2 (en) 2007-11-09 2012-07-24 City University Of Hong Kong Electronic control method for a planar inductive battery charging apparatus
US7843288B2 (en) 2007-11-15 2010-11-30 Samsung Electronics Co., Ltd. Apparatus and system for transmitting power wirelessly
US8729734B2 (en) 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
WO2009070730A2 (en) 2007-11-27 2009-06-04 University Of Florida Research Foundation, Inc. Method and apparatus for high efficiency scalable near-field wireless power transfer
US8766483B2 (en) 2007-11-28 2014-07-01 Qualcomm Incorporated Wireless power range increase using parasitic antennas
JP4974171B2 (en) 2007-12-07 2012-07-11 ソニーモバイルコミュニケーションズ株式会社 Non-contact wireless communication device, method for adjusting resonance frequency of non-contact wireless communication antenna, and portable terminal device
US7854282B2 (en) * 2007-12-10 2010-12-21 International Humanities Center Hybrid electric vehicle
TWI361540B (en) 2007-12-14 2012-04-01 Darfon Electronics Corp Energy transferring system and method thereof
US20090160261A1 (en) 2007-12-19 2009-06-25 Nokia Corporation Wireless energy transfer
US20090161078A1 (en) 2007-12-21 2009-06-25 Oculon Optoelectronics, Inc. Projector, and mobile device and computer device having the same
WO2011044695A1 (en) 2009-10-13 2011-04-21 Cynetic Designs Ltd. An inductively coupled power and data transmission system
JP2009158598A (en) 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Planar coil and non-contact power transfer device using the same
EP2232669B1 (en) 2008-01-07 2019-12-04 Philips IP Ventures B.V. Inductive power supply with duty cycle control
US9128687B2 (en) 2008-01-10 2015-09-08 Qualcomm Incorporated Wireless desktop IT environment
US8294300B2 (en) 2008-01-14 2012-10-23 Qualcomm Incorporated Wireless powering and charging station
JP4604094B2 (en) 2008-01-23 2010-12-22 トヨタ自動車株式会社 Vehicle power supply device and vehicle window material
US8487479B2 (en) 2008-02-24 2013-07-16 Qualcomm Incorporated Ferrite antennas for wireless power transfer
US8344552B2 (en) 2008-02-27 2013-01-01 Qualcomm Incorporated Antennas and their coupling characteristics for wireless power transfer via magnetic coupling
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
JP5188211B2 (en) 2008-03-07 2013-04-24 キヤノン株式会社 Power supply apparatus and power supply method
US8421267B2 (en) 2008-03-10 2013-04-16 Qualcomm, Incorporated Packaging and details of a wireless power device
WO2009114671A1 (en) 2008-03-13 2009-09-17 Access Business Group International Llc Inductive power supply system with multiple coil primary
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
JP2009251895A (en) 2008-04-04 2009-10-29 Sony Corp Power exchange device, power exchange method, program, and power exchange system
US7999506B1 (en) 2008-04-09 2011-08-16 SeventhDigit Corporation System to automatically recharge vehicles with batteries
WO2009126963A2 (en) 2008-04-11 2009-10-15 University Of Florida Research Foundation, Inc. Power control duty cycle throttling scheme for planar wireless power transmission system
CN105471123A (en) 2008-04-21 2016-04-06 高通股份有限公司 Method and system for wireless power transmission
US9603512B2 (en) 2008-04-25 2017-03-28 Karl Storz Imaging, Inc. Wirelessly powered medical devices and instruments
JP4544338B2 (en) 2008-04-28 2010-09-15 ソニー株式会社 Power transmission device, power reception device, power transmission method, program, and power transmission system
KR101094253B1 (en) 2008-04-28 2011-12-19 정춘길 Non-contact power receier, non-contact power trasmitter related to the same and non-contact power transmitting and receiving system
JP4544339B2 (en) 2008-04-28 2010-09-15 ソニー株式会社 Power transmission device, power transmission method, program, and power transmission system
WO2009132383A1 (en) 2008-04-28 2009-11-05 Cochlear Limited Magnetic inductive systems and devices
US8193766B2 (en) 2008-04-30 2012-06-05 Medtronic, Inc. Time remaining to charge an implantable medical device, charger indicator, system and method therefore
US20090273242A1 (en) 2008-05-05 2009-11-05 Nigelpower, Llc Wireless Delivery of power to a Fixed-Geometry power part
JP4557045B2 (en) 2008-05-12 2010-10-06 ソニー株式会社 Power transmission device, power transmission method, program, and power transmission system
US20090284369A1 (en) 2008-05-13 2009-11-19 Qualcomm Incorporated Transmit power control for a wireless charging system
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
AU2009246310B9 (en) 2008-05-14 2015-04-02 Massachusetts Institute Of Technology Wireless energy transfer, including interference enhancement
TW200950257A (en) 2008-05-20 2009-12-01 Darfon Electronics Corp Wireless charging module and electronic apparatus
KR100976231B1 (en) 2008-05-23 2010-08-17 고려대학교 산학협력단 Wireless power providing control system
WO2009155000A2 (en) 2008-05-27 2009-12-23 University Of Florida Research Foundation, Inc. Method and apparatus for producing substantially uniform magnetic field
US20090299918A1 (en) 2008-05-28 2009-12-03 Nigelpower, Llc Wireless delivery of power to a mobile powered device
WO2009149464A2 (en) 2008-06-06 2009-12-10 University Of Florida Research Foundation, Inc. Method and apparatus for contactless power transfer
JP4725604B2 (en) 2008-06-25 2011-07-13 セイコーエプソン株式会社 Power transmission control device, power transmission device, power reception control device, power reception device, and electronic device
US8269452B2 (en) * 2008-07-04 2012-09-18 Yazaki Corporation Battery charge monitoring device
US8466654B2 (en) 2008-07-08 2013-06-18 Qualcomm Incorporated Wireless high power transfer under regulatory constraints
US8212414B2 (en) 2008-07-10 2012-07-03 Lockheed Martin Corporation Resonant, contactless radio frequency power coupling
US9853488B2 (en) 2008-07-11 2017-12-26 Charge Fusion Technologies, Llc Systems and methods for electric vehicle charging and power management
US7835417B2 (en) 2008-07-15 2010-11-16 Octrolix Bv Narrow spectrum light source
US7855529B2 (en) 2008-07-16 2010-12-21 ConvenientPower HK Ltd. Inductively powered sleeve for mobile electronic device
KR101288706B1 (en) 2008-07-17 2013-07-22 퀄컴 인코포레이티드 Adaptive matching and tuning of hf wireless power transmit antenna
US20100015918A1 (en) 2008-07-18 2010-01-21 Ferro Solutions, Inc. Wireless transfer of information using magneto-electric devices
US8278784B2 (en) 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
US20100034238A1 (en) 2008-08-05 2010-02-11 Broadcom Corporation Spread spectrum wireless resonant power delivery
US7893564B2 (en) 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system
US8111042B2 (en) 2008-08-05 2012-02-07 Broadcom Corporation Integrated wireless resonant power charging and communication channel
US8901880B2 (en) 2008-08-19 2014-12-02 Qualcomm Incorporated Wireless power transmission for portable wireless power charging
US20100081379A1 (en) 2008-08-20 2010-04-01 Intel Corporation Wirelessly powered speaker
US20100045114A1 (en) 2008-08-20 2010-02-25 Sample Alanson P Adaptive wireless power transfer apparatus and method thereof
US8299652B2 (en) 2008-08-20 2012-10-30 Intel Corporation Wireless power transfer apparatus and method thereof
US8432070B2 (en) 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
CN102132501A (en) 2008-08-26 2011-07-20 高通股份有限公司 Concurrent wireless power transmission and near-field communication
JP4911148B2 (en) 2008-09-02 2012-04-04 ソニー株式会社 Contactless power supply
US8947041B2 (en) 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
US8581542B2 (en) 2008-09-08 2013-11-12 Qualcomm Incorporated Receive antenna arrangement for wireless power
US8232793B2 (en) 2008-09-12 2012-07-31 University Of Florida Research Foundation, Inc. Method and apparatus of load detection for a planar wireless power system
EP2332213A1 (en) 2008-09-12 2011-06-15 Advanced Automotive Antennas, S.L. Flush-mounted low-profile resonant hole antenna
US8532724B2 (en) 2008-09-17 2013-09-10 Qualcomm Incorporated Transmitters for wireless power transmission
JP4743244B2 (en) 2008-09-18 2011-08-10 トヨタ自動車株式会社 Non-contact power receiving device
WO2010032309A1 (en) 2008-09-19 2010-03-25 トヨタ自動車株式会社 Noncontact power receiving device and vehicle equipped with it
US20100259110A1 (en) 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US20120248886A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Multi-resonator wireless energy transfer to mobile devices
US20110074346A1 (en) 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
US20120119698A1 (en) 2008-09-27 2012-05-17 Aristeidis Karalis Wireless energy transfer for vehicles
US20110043049A1 (en) 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer with high-q resonators using field shaping to improve k
US20170053736A9 (en) 2008-09-27 2017-02-23 Witricity Corporation Wireless energy transfer converters
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US20120256494A1 (en) 2008-09-27 2012-10-11 Kesler Morris P Tunable wireless energy transfer for medical applications
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US20120235504A1 (en) 2008-09-27 2012-09-20 Kesler Morris P Tunable wireless energy transfer for sensors
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US20120228954A1 (en) 2008-09-27 2012-09-13 Kesler Morris P Tunable wireless energy transfer for clothing applications
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US20120091794A1 (en) 2008-09-27 2012-04-19 Campanella Andrew J Wirelessly powered laptop and desktop environment
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US20120112538A1 (en) 2008-09-27 2012-05-10 Kesler Morris P Wireless energy transfer for vehicle applications
US20120235566A1 (en) 2008-09-27 2012-09-20 Aristeidis Karalis Tunable wireless energy transfer for lighting applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US20120086284A1 (en) 2008-09-27 2012-04-12 Capanella Andrew J Wireless transmission of solar generated power
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US20120235501A1 (en) 2008-09-27 2012-09-20 Kesler Morris P Multi-resonator wireless energy transfer for medical applications
US20120313742A1 (en) 2008-09-27 2012-12-13 Witricity Corporation Compact resonators for wireless energy transfer in vehicle applications
US20120112691A1 (en) 2008-09-27 2012-05-10 Kurs Andre B Wireless energy transfer for vehicles
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
WO2010036980A1 (en) 2008-09-27 2010-04-01 Witricity Corporation Wireless energy transfer systems
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US20120091797A1 (en) 2008-09-27 2012-04-19 Kesler Morris P Energized tabletop
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US20120091819A1 (en) 2008-09-27 2012-04-19 Konrad Kulikowski Computer that wirelessly powers accessories
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US20120228953A1 (en) 2008-09-27 2012-09-13 Kesler Morris P Tunable wireless energy transfer for furniture applications
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US20120248981A1 (en) 2008-09-27 2012-10-04 Aristeidis Karalis Multi-resonator wireless energy transfer for lighting
US20120119569A1 (en) 2008-09-27 2012-05-17 Aristeidis Karalis Multi-resonator wireless energy transfer inside vehicles
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US20100277121A1 (en) 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US20120091796A1 (en) 2008-09-27 2012-04-19 Kesler Morris P Wireless powered projector
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US20120235502A1 (en) 2008-09-27 2012-09-20 Kesler Morris P Multi-resonator wireless energy transfer for implanted medical devices
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US20120248887A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Multi-resonator wireless energy transfer for sensors
US20120091820A1 (en) 2008-09-27 2012-04-19 Campanella Andrew J Wireless power transfer within a circuit breaker
US20120248888A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Wireless energy transfer with resonator arrays for medical applications
US20120062345A1 (en) 2008-09-27 2012-03-15 Kurs Andre B Low resistance electrical conductor
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US20120242159A1 (en) 2008-09-27 2012-09-27 Herbert Toby Lou Multi-resonator wireless energy transfer for appliances
US20120112535A1 (en) 2008-09-27 2012-05-10 Aristeidis Karalis Wireless energy transfer for vehicles
US20120112536A1 (en) 2008-09-27 2012-05-10 Aristeidis Karalis Wireless energy transfer for vehicles
US20120091949A1 (en) 2008-09-27 2012-04-19 Campanella Andrew J Wireless energy transfer for energizing power tools
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US20120086867A1 (en) 2008-09-27 2012-04-12 Kesler Morris P Modular upgrades for wirelessly powered televisions
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US20120228952A1 (en) 2008-09-27 2012-09-13 Hall Katherine L Tunable wireless energy transfer for appliances
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
KR101025743B1 (en) 2008-10-13 2011-04-04 한국전자통신연구원 The artificial retina driving apparatus using middle-distance wireless power transfer technology
JP5375032B2 (en) 2008-11-04 2013-12-25 株式会社豊田自動織機 Non-contact power transmission device and design method of non-contact power transmission device
US8947042B2 (en) 2008-11-13 2015-02-03 Qualcomm Incorporated Wireless power and data transfer for electronic devices
KR101440591B1 (en) 2008-11-17 2014-09-17 삼성전자 주식회사 Apparatus of wireless power transmission using high Q near magnetic field resonator
JP5308127B2 (en) 2008-11-17 2013-10-09 株式会社豊田中央研究所 Power supply system
US8810194B2 (en) 2008-11-20 2014-08-19 Qualcomm Incorporated Retrofitting wireless power and near-field communication in electronic devices
US8929957B2 (en) 2008-11-21 2015-01-06 Qualcomm Incorporated Reduced jamming between receivers and wireless power transmitters
EP2426808B1 (en) 2008-12-12 2013-06-05 Hanrim Postech Co., Ltd. Contactless power transmission device
US8242741B2 (en) 2008-12-18 2012-08-14 Motorola Mobility Llc Systems, apparatus and devices for wireless charging of electronic devices
KR101455825B1 (en) 2008-12-18 2014-10-30 삼성전자 주식회사 Resonator for wireless power transmission
US8054039B2 (en) 2008-12-19 2011-11-08 GM Global Technology Operations LLC System and method for charging a plug-in electric vehicle
JP5285418B2 (en) 2008-12-24 2013-09-11 株式会社豊田自動織機 Resonant non-contact power supply device
JP5135204B2 (en) 2008-12-26 2013-02-06 株式会社日立製作所 Non-contact power transmission system and load device in the non-contact power transmission system
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
EP2382715A4 (en) 2009-01-22 2012-08-29 Techtronic Power Tools Tech Wireless power distribution system and method for power tools
US9136914B2 (en) 2009-01-22 2015-09-15 Qualcomm Incorporated Impedance change detection in wireless power transmission
WO2010091202A1 (en) 2009-02-04 2010-08-12 Graham David S Wireless power transfer with lighting
WO2010090539A1 (en) 2009-02-05 2010-08-12 Auckland Uniservices Limited Inductive power transfer apparatus
US9130394B2 (en) 2009-02-05 2015-09-08 Qualcomm Incorporated Wireless power for charging devices
US9283858B2 (en) 2009-02-05 2016-03-15 Auckland Uniservices Ltd Inductive power transfer apparatus
US20100201310A1 (en) 2009-02-06 2010-08-12 Broadcom Corporation Wireless power transfer system
US8427100B2 (en) 2009-02-06 2013-04-23 Broadcom Corporation Increasing efficiency of wireless power transfer
US8427330B2 (en) 2009-02-06 2013-04-23 Broadcom Corporation Efficiency indicator for increasing efficiency of wireless power transfer
JP5262785B2 (en) 2009-02-09 2013-08-14 株式会社豊田自動織機 Non-contact power transmission device
JP2010183814A (en) 2009-02-09 2010-08-19 Toyota Industries Corp Non-contact power transmitter
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US20100201201A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US8682261B2 (en) 2009-02-13 2014-03-25 Qualcomm Incorporated Antenna sharing for wirelessly powered devices
EP2396796A4 (en) 2009-02-13 2017-03-22 Witricity Corporation Wireless energy transfer in lossy environments
US9407327B2 (en) 2009-02-13 2016-08-02 Qualcomm Incorporated Wireless power for chargeable and charging devices
JP4815499B2 (en) 2009-02-27 2011-11-16 東光株式会社 Non-contact power transmission circuit
JP4849142B2 (en) 2009-02-27 2012-01-11 ソニー株式会社 Power supply device and power transmission system
US20100225270A1 (en) 2009-03-08 2010-09-09 Qualcomm Incorporated Wireless power transfer for chargeable devices
WO2010104569A1 (en) 2009-03-09 2010-09-16 Neurds Inc. System and method for wireless power transfer in implantable medical devices
US9873347B2 (en) 2009-03-12 2018-01-23 Wendell Brown Method and apparatus for automatic charging of an electrically powered vehicle
US8338991B2 (en) 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
US8803474B2 (en) 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
JP5521665B2 (en) 2009-03-26 2014-06-18 セイコーエプソン株式会社 Coil unit, power transmission device and power reception device using the same
US8686684B2 (en) 2009-03-27 2014-04-01 Microsoft Corporation Magnetic inductive charging with low far fields
US8452235B2 (en) 2009-03-28 2013-05-28 Qualcomm, Incorporated Tracking receiver devices with wireless power systems, apparatuses, and methods
JP5621203B2 (en) 2009-03-30 2014-11-12 富士通株式会社 Wireless power supply system and wireless power supply method
JP5353376B2 (en) 2009-03-31 2013-11-27 富士通株式会社 Wireless power device and wireless power receiving method
JP5515368B2 (en) 2009-03-31 2014-06-11 富士通株式会社 Wireless power supply method and wireless power supply system
JP5417941B2 (en) 2009-03-31 2014-02-19 富士通株式会社 Power transmission equipment
JP5689587B2 (en) 2009-03-31 2015-03-25 富士通株式会社 Power transmission equipment
JP5365306B2 (en) 2009-03-31 2013-12-11 富士通株式会社 Wireless power supply system
JP5556044B2 (en) 2009-03-31 2014-07-23 富士通株式会社 Wireless power transmission system, wireless power receiving device, and wireless power transmitting device
JP5417942B2 (en) 2009-03-31 2014-02-19 富士通株式会社 Power transmission device, power transmission / reception device, and power transmission method
US8536736B2 (en) 2009-04-03 2013-09-17 International Business Machines Corporation Wireless power infrastructure
US8970180B2 (en) 2009-04-07 2015-03-03 Qualcomm Incorporated Wireless power transmission scheduling
JP2010252468A (en) 2009-04-14 2010-11-04 Sony Corp Power transmission device and method, power receiving device and method, and power transmission system
US9013141B2 (en) 2009-04-28 2015-04-21 Qualcomm Incorporated Parasitic devices for wireless power transfer
US20100276995A1 (en) 2009-04-29 2010-11-04 Thomas Louis Marzetta Security for wireless transfer of electrical power
KR101083630B1 (en) 2009-05-22 2011-11-17 정춘길 Control module layout for battery charging of wireless type
US9323234B2 (en) * 2009-06-10 2016-04-26 Fisher-Rosemount Systems, Inc. Predicted fault analysis
JP2011050140A (en) 2009-08-26 2011-03-10 Sony Corp Non-contact electric power feeding apparatus, non-contact power electric receiver receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system
JP5484843B2 (en) 2009-09-24 2014-05-07 パナソニック株式会社 Contactless charging system
US8575944B2 (en) 2009-11-03 2013-11-05 Robert Bosch Gmbh Foreign object detection in inductive coupled devices
KR101706616B1 (en) 2009-11-09 2017-02-14 삼성전자주식회사 Load Impedance Selecting Device, Wireless Power Transmission Device and Wireless Power Transmission Method
US8547057B2 (en) 2009-11-17 2013-10-01 Qualcomm Incorporated Systems and methods for selective wireless power transfer
EP2502124B1 (en) 2009-11-17 2020-02-19 Apple Inc. Wireless power utilization in a local computing environment
WO2011061821A1 (en) 2009-11-18 2011-05-26 株式会社 東芝 Wireless power transmission device
US8427101B2 (en) 2009-11-18 2013-04-23 Nokia Corporation Wireless energy repeater
WO2011063108A2 (en) 2009-11-19 2011-05-26 Access Business Group International Llc Multiple use wireless power systems
US20110133726A1 (en) 2009-12-09 2011-06-09 Alexander Ballantyne Precision alignment system
US8718959B2 (en) * 2009-12-15 2014-05-06 Siemens Industry, Inc. Method and apparatus for high-speed fault detection in distribution systems
TWM384453U (en) 2010-03-02 2010-07-11 Winharbor Technology Co Ltd Pull-resistant illuminating/heat generating structure capable of being charged in wireless manner
EP3252962B1 (en) 2010-03-10 2019-03-06 WiTricity Corporation Wireless energy transfer converters
CN102473512B (en) 2010-04-07 2014-04-23 松下电器产业株式会社 Wireless power transmission system
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US20110278943A1 (en) 2010-05-11 2011-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System including wearable power receiver and wearable power-output device
TWI527331B (en) * 2010-06-10 2016-03-21 通路實業集團國際公司 Coil configurations for inductive power transfer and relevant system and device
US8952573B2 (en) 2010-06-30 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Power generator and power generation system
IT1400748B1 (en) 2010-06-30 2013-07-02 St Microelectronics Srl SYSTEM FOR WIRELESS TRANSFER OF ENERGY BETWEEN TWO DEVICES AND SIMULTANEOUS DATA TRANSFER.
KR101134625B1 (en) * 2010-07-16 2012-04-09 주식회사 한림포스텍 Core assembly for wireless power transmission, power supplying apparatus for wireless power transmission having the same, and method for manufacturing core assembly for wireless power transmission
US10600096B2 (en) * 2010-11-30 2020-03-24 Zonar Systems, Inc. System and method for obtaining competitive pricing for vehicle services
JP6094762B2 (en) 2010-09-14 2017-03-15 ウィトリシティ コーポレーション Wireless energy distribution system
US9294153B2 (en) * 2010-09-23 2016-03-22 Texas Instruments Incorporated Systems and methods of wireless power transfer with interference detection
US8901775B2 (en) 2010-12-10 2014-12-02 Everheart Systems, Inc. Implantable wireless power system
US9031073B2 (en) * 2010-11-03 2015-05-12 Broadcom Corporation Data bridge
JP5075973B2 (en) 2010-12-20 2012-11-21 昭和飛行機工業株式会社 Non-contact power feeder with multi-pole coil structure
US8723368B2 (en) * 2010-12-29 2014-05-13 National Semiconductor Corporation Electrically tunable inductor
US8634175B2 (en) * 2011-04-13 2014-01-21 Siemens Industry, Inc. Method and system for programming and implementing automated fault isolation and restoration using sequential logic
US9094055B2 (en) 2011-04-19 2015-07-28 Qualcomm Incorporated Wireless power transmitter tuning
KR20140051210A (en) 2011-06-06 2014-04-30 위트리시티 코포레이션 Wireless energy transfer for implantable devices
US20130007949A1 (en) 2011-07-08 2013-01-10 Witricity Corporation Wireless energy transfer for person worn peripherals
WO2013013235A2 (en) 2011-07-21 2013-01-24 Witricity Corporation Wireless power component selection
US20130038402A1 (en) 2011-07-21 2013-02-14 Witricity Corporation Wireless power component selection
CA2844062C (en) 2011-08-04 2017-03-28 Witricity Corporation Tunable wireless power architectures
US8717721B2 (en) * 2011-08-25 2014-05-06 Southern States, Llc High impedance fault isolation system
WO2013036947A2 (en) 2011-09-09 2013-03-14 Witricity Corporation Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US20130069753A1 (en) 2011-09-16 2013-03-21 Witricity Corporation High frequency pcb coils
AU2012326113A1 (en) 2011-10-18 2014-05-29 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
AU2012332131A1 (en) 2011-11-04 2014-05-22 Witricity Corporation Wireless energy transfer modeling tool
US9270342B2 (en) 2011-12-16 2016-02-23 Qualcomm Incorporated System and method for low loss wireless power transmission
US20130175874A1 (en) 2012-01-09 2013-07-11 Witricity Corporation Wireless energy transfer for promotional items
JP2015508987A (en) 2012-01-26 2015-03-23 ワイトリシティ コーポレーションWitricity Corporation Wireless energy transmission with reduced field
WO2013142840A1 (en) 2012-03-23 2013-09-26 Witricity Corporation Integrated repeaters for cell phone applications
WO2014004843A1 (en) 2012-06-27 2014-01-03 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9672975B2 (en) 2012-09-11 2017-06-06 Qualcomm Incorporated Wireless power transfer system coil arrangements and method of operation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341083A (en) * 1991-09-27 1994-08-23 Electric Power Research Institute, Inc. Contactless battery charging system
US5594318A (en) * 1995-04-10 1997-01-14 Norvik Traction Inc. Traction battery charging with inductive coupling
US20080290736A1 (en) * 2007-05-25 2008-11-27 Seiko Epson Corporation Power transmission device and electronic instrument
WO2009081115A1 (en) * 2007-12-21 2009-07-02 Amway (Europe) Limited Inductive power transfer
US20120175967A1 (en) * 2007-12-21 2012-07-12 Access Business Group International Llc Inductive power transfer
US20090313174A1 (en) * 2008-06-16 2009-12-17 International Business Machines Corporation Approving Energy Transaction Plans Associated with Electric Vehicles
US20100049396A1 (en) * 2008-08-19 2010-02-25 International Business Machines Corporation System for Detecting Interrupt Conditions During an Electric Vehicle Charging Process
US20100171461A1 (en) * 2009-01-06 2010-07-08 Access Business Group International Llc Wireless charging system with device power compliance
US20100213895A1 (en) * 2009-02-24 2010-08-26 Qualcomm Incorporated Wireless power charging timing and charging control
US20110181240A1 (en) * 2010-01-05 2011-07-28 Access Business Group International Llc Inductive charging system for electric vehicle

Cited By (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US20100231340A1 (en) * 2008-09-27 2010-09-16 Ron Fiorello Wireless energy transfer resonator enclosures
US20110095618A1 (en) * 2008-09-27 2011-04-28 Schatz David A Wireless energy transfer using repeater resonators
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US20100277121A1 (en) * 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US20110193416A1 (en) * 2008-09-27 2011-08-11 Campanella Andrew J Tunable wireless energy transfer systems
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US20100259110A1 (en) * 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US20110121920A1 (en) * 2008-09-27 2011-05-26 Kurs Andre B Wireless energy transfer resonator thermal management
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US20100181845A1 (en) * 2008-09-27 2010-07-22 Ron Fiorello Temperature compensation in a wireless transfer system
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US11728525B2 (en) 2010-05-21 2023-08-15 Qnovo Inc. Battery adaptive charging
US10389156B2 (en) 2010-05-21 2019-08-20 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US11397215B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using battery physical phenomena
US11791647B2 (en) 2010-05-21 2023-10-17 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US11397216B2 (en) 2010-05-21 2022-07-26 Qnovo Inc. Battery adaptive charging using a battery model
US11063459B2 (en) 2010-05-21 2021-07-13 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US11186192B1 (en) 2010-06-02 2021-11-30 Bryan Marc Failing Improving energy transfer with vehicles
US9114719B1 (en) 2010-06-02 2015-08-25 Bryan Marc Failing Increasing vehicle security
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US9393878B1 (en) 2010-06-02 2016-07-19 Bryan Marc Failing Energy transfer with vehicles
US10124691B1 (en) 2010-06-02 2018-11-13 Bryan Marc Failing Energy transfer with vehicles
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US10128678B2 (en) 2011-02-04 2018-11-13 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US10702644B2 (en) 2011-11-21 2020-07-07 Tci Llc Transcutaneous power transmission utilizing non-planar resonators
US11801387B2 (en) 2011-11-21 2023-10-31 Tc1 Llc Transcutaneous power transmission utilizing non-planar resonators
US9079043B2 (en) 2011-11-21 2015-07-14 Thoratec Corporation Transcutaneous power transmission utilizing non-planar resonators
US20130162046A1 (en) * 2011-12-23 2013-06-27 Chien-Chun Lu Multi energy harvesting system
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US11052778B2 (en) 2012-03-23 2021-07-06 Hevo Inc. Systems and mobile application for electric wireless charging stations
US9796280B2 (en) 2012-03-23 2017-10-24 Hevo Inc. Systems and mobile application for electric wireless charging stations
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US20140233138A1 (en) * 2013-02-15 2014-08-21 Delphi Technologies, Inc. Ground fault circuit interrupter
US10447055B1 (en) 2013-04-19 2019-10-15 Qnovo Inc. Method and circuitry to adaptively charge a battery/cell using a charge-time parameter
JP2016526366A (en) * 2013-05-10 2016-09-01 クアルコム,インコーポレイテッド System and method for detecting the presence of a moving object under a vehicle
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
WO2015022690A1 (en) * 2013-08-15 2015-02-19 Humavox Ltd. Wireless charging device
US10050463B2 (en) 2013-08-15 2018-08-14 Humavox Ltd. Wireless charging device
US10615628B2 (en) 2013-08-15 2020-04-07 Humavox, Ltd. Wireless charging device
US10608461B2 (en) 2013-08-15 2020-03-31 Humavox Ltd. Wireless charging device
US10608460B2 (en) 2013-08-15 2020-03-31 Humavox, Ltd. Wireless charging device
US10608459B2 (en) 2013-08-15 2020-03-31 Humavox, Ltd. Wireless charging device
US9948125B2 (en) 2013-11-07 2018-04-17 Stored Energy Systems, a Limited Liability Company Systems and methods for self-contained automatic battery charging and battery-life-extension charging
US9466995B2 (en) * 2013-11-07 2016-10-11 Stored Energy Systems, a Limited Liability Company Self-contained automatic battery charging systems and methods
US20150123600A1 (en) * 2013-11-07 2015-05-07 Stored Energy Systems, a Limited Liability Company Self-contained automatic battery charging systems and methods
WO2015097968A1 (en) * 2013-12-25 2015-07-02 Toyota Jidosha Kabushiki Kaisha Contactless power transfer system and method of controlling the same
US20160325632A1 (en) * 2013-12-25 2016-11-10 Toyota Jidosha Kabushiki Kaisha Contactless power transfer system and method of controlling the same
US10052963B2 (en) * 2013-12-25 2018-08-21 Toyota Jidosha Kabushiki Kaisha Contactless power transfer system and method of controlling the same
CN105848958A (en) * 2013-12-25 2016-08-10 丰田自动车株式会社 Contactless power transfer system and method of controlling the same
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US11321643B1 (en) 2014-03-07 2022-05-03 Steelcase Inc. Method and system for facilitating collaboration sessions
US11150859B2 (en) 2014-03-07 2021-10-19 Steelcase Inc. Method and system for facilitating collaboration sessions
US10353664B2 (en) 2014-03-07 2019-07-16 Steelcase Inc. Method and system for facilitating collaboration sessions
US9735628B2 (en) 2014-04-16 2017-08-15 Witricity Corporation Wireless energy transfer for mobile device applications
US10114120B2 (en) 2014-04-16 2018-10-30 The Regents Of The University Of Michigan Unidirectional near-field focusing using near-field plates
US9793720B2 (en) 2014-04-16 2017-10-17 The Regents Of The University Of Michigan Wireless power transfer using multiple near-field plates
US9917479B2 (en) 2014-04-16 2018-03-13 Witricity Corporation Wireless energy transfer for mobile device applications
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9955318B1 (en) 2014-06-05 2018-04-24 Steelcase Inc. Space guidance and management system and method
US11307037B1 (en) 2014-06-05 2022-04-19 Steelcase Inc. Space guidance and management system and method
US11085771B1 (en) 2014-06-05 2021-08-10 Steelcase Inc. Space guidance and management system and method
US11402216B1 (en) 2014-06-05 2022-08-02 Steelcase Inc. Space guidance and management system and method
US11402217B1 (en) 2014-06-05 2022-08-02 Steelcase Inc. Space guidance and management system and method
US10057963B2 (en) 2014-06-05 2018-08-21 Steelcase Inc. Environment optimization for space based on presence and activities
US11280619B1 (en) 2014-06-05 2022-03-22 Steelcase Inc. Space guidance and management system and method
US11212898B2 (en) 2014-06-05 2021-12-28 Steelcase Inc. Environment optimization for space based on presence and activities
US9642219B2 (en) 2014-06-05 2017-05-02 Steelcase Inc. Environment optimization for space based on presence and activities
US10225707B1 (en) 2014-06-05 2019-03-05 Steelcase Inc. Space guidance and management system and method
US10561006B2 (en) 2014-06-05 2020-02-11 Steelcase Inc. Environment optimization for space based on presence and activities
US10614694B1 (en) 2014-06-06 2020-04-07 Steelcase Inc. Powered furniture assembly
US10433646B1 (en) 2014-06-06 2019-10-08 Steelcaase Inc. Microclimate control systems and methods
US11744376B2 (en) 2014-06-06 2023-09-05 Steelcase Inc. Microclimate control systems and methods
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US10574079B1 (en) * 2014-06-20 2020-02-25 Qnovo Inc. Wireless charging techniques and circuitry for a battery
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9680531B2 (en) 2014-08-01 2017-06-13 Qualcomm Incorporated System and method for detecting inadequate wireless coupling and improving in-band signaling in wireless power transfer systems
US9780575B2 (en) 2014-08-11 2017-10-03 General Electric Company System and method for contactless exchange of power
US10970662B2 (en) 2014-10-03 2021-04-06 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US11713969B1 (en) 2014-10-03 2023-08-01 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US11687854B1 (en) 2014-10-03 2023-06-27 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US9852388B1 (en) 2014-10-03 2017-12-26 Steelcase, Inc. Method and system for locating resources and communicating within an enterprise
US10121113B1 (en) 2014-10-03 2018-11-06 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US11168987B2 (en) 2014-10-03 2021-11-09 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US11143510B1 (en) 2014-10-03 2021-10-12 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US10161752B1 (en) 2014-10-03 2018-12-25 Steelcase Inc. Method and system for locating resources and communicating within an enterprise
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9815381B2 (en) * 2015-02-27 2017-11-14 Qualcomm Incorporated Systems, methods, and apparatus for partial electronics integration in vehicle pads for wireless power transfer applications
US20160250932A1 (en) * 2015-02-27 2016-09-01 Qualcomm Incorporated Systems, methods, and apparatus for partial electronics integration in vehicle pads for wireless power transfer applications
USD773411S1 (en) 2015-04-27 2016-12-06 Witricity Corporation Resonator coil
USD770402S1 (en) 2015-05-15 2016-11-01 Witricity Corporation Coil
USD769835S1 (en) 2015-05-15 2016-10-25 Witricity Corporation Resonator coil
USD770403S1 (en) 2015-05-15 2016-11-01 Witricity Corporation Coil
US10733371B1 (en) 2015-06-02 2020-08-04 Steelcase Inc. Template based content preparation system for use with a plurality of space types
US11100282B1 (en) 2015-06-02 2021-08-24 Steelcase Inc. Template based content preparation system for use with a plurality of space types
USD770404S1 (en) 2015-08-05 2016-11-01 Witricity Corporation Resonator coil
US10050457B2 (en) * 2015-08-07 2018-08-14 Paypal, Inc. Smart charging of user devices
US20170040815A1 (en) * 2015-08-07 2017-02-09 Paypal, Inc. Smart charging of user devices
US20190109475A1 (en) * 2015-08-07 2019-04-11 Paypal, Inc. Smart charging of user devices
US10211676B2 (en) 2015-08-25 2019-02-19 Otis Elevator Company Electromechanical propulsion system having a wireless power transfer system
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10666081B2 (en) 2015-12-30 2020-05-26 Hyperdrive Innovation Limited Battery management system
GB2545922B (en) * 2015-12-30 2017-12-27 Hyperdrive Innovation Ltd Battery management system
GB2545922A (en) * 2015-12-30 2017-07-05 Hyperdrive Innovation Ltd Battery management system
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
USD814432S1 (en) 2016-02-09 2018-04-03 Witricity Corporation Resonator coil
EP3435519A4 (en) * 2016-03-25 2019-05-15 Fuji Corporation Wireless power supply device
US11011933B2 (en) 2016-03-25 2021-05-18 Fuji Corporation Contactless electric power supply device
CN108886272A (en) * 2016-03-25 2018-11-23 株式会社富士 Contactless power supply device
JPWO2017163388A1 (en) * 2016-03-25 2019-01-31 株式会社Fuji Non-contact power feeding device
US20170302471A1 (en) * 2016-04-15 2017-10-19 Thales Defense & Security, Inc. Radio frequency (rf) coax interface for full data rate controller area network (can) protocol signaling with low latency
US10547472B2 (en) * 2016-04-15 2020-01-28 Thales Defense & Security, Inc. Radio frequency (RF) coax interface for full data rate controller area network (CAN) protocol signaling with low latency
US11690111B1 (en) 2016-06-03 2023-06-27 Steelcase Inc. Smart workstation method and system
US10459611B1 (en) 2016-06-03 2019-10-29 Steelcase Inc. Smart workstation method and system
US9921726B1 (en) 2016-06-03 2018-03-20 Steelcase Inc. Smart workstation method and system
US11330647B2 (en) 2016-06-03 2022-05-10 Steelcase Inc. Smart workstation method and system
US20170349056A1 (en) * 2016-06-07 2017-12-07 Hyundai Motor Company Method and system for controlling charging device for vehicles
US10493857B2 (en) * 2016-06-07 2019-12-03 Hyundai Motor Company Method and system for controlling charging device for vehicles
US11232655B2 (en) 2016-09-13 2022-01-25 Iocurrents, Inc. System and method for interfacing with a vehicular controller area network
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
JP2016226291A (en) * 2016-09-15 2016-12-28 トヨタ自動車株式会社 Power transmission system
US10369894B2 (en) 2016-10-21 2019-08-06 Hevo, Inc. Parking alignment sequence for wirelessly charging an electric vehicle
US10638090B1 (en) 2016-12-15 2020-04-28 Steelcase Inc. Content amplification system and method
US11652957B1 (en) 2016-12-15 2023-05-16 Steelcase Inc. Content amplification system and method
US11190731B1 (en) 2016-12-15 2021-11-30 Steelcase Inc. Content amplification system and method
US10264213B1 (en) 2016-12-15 2019-04-16 Steelcase Inc. Content amplification system and method
US10897598B1 (en) 2016-12-15 2021-01-19 Steelcase Inc. Content amplification system and method
US10128697B1 (en) 2017-05-01 2018-11-13 Hevo, Inc. Detecting and deterring foreign objects and living objects at wireless charging stations
USD825503S1 (en) 2017-06-07 2018-08-14 Witricity Corporation Resonator coil
USD818434S1 (en) 2017-06-12 2018-05-22 Witricity Corporation Wireless charger
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
JP2018078793A (en) * 2017-12-06 2018-05-17 トヨタ自動車株式会社 Vehicle, power reception device and power transmission device
US10555369B2 (en) * 2018-01-10 2020-02-04 Toyota Motor Engineering & Manufacturing North America, Inc. Network cloud load distribution for an electric vehicle application
US20190215898A1 (en) * 2018-01-10 2019-07-11 Toyota Motor Engineering & Manufacturing North America, Inc. Network cloud load distribution for an electric vehicle application
US20190261420A1 (en) * 2018-02-21 2019-08-22 Nxp B.V. Physical layer device that connects to a shared media and method for operating a physical layer device that connects to a shared media
US11272543B2 (en) * 2018-02-21 2022-03-08 Nxp B.V. Physical layer device that connects to a shared media and method for operating a physical layer device that connects to a shared media
US11572007B2 (en) 2018-06-07 2023-02-07 DD Dannar, LLC Mobile platform systems and methods
WO2019236840A1 (en) * 2018-06-07 2019-12-12 Dd Dannar Llc Mobile platform systems and methods
US11437864B2 (en) * 2018-08-14 2022-09-06 Lg Electronics Inc. Apparatus and method for detecting foreign object in wireless power transmission system
US10999099B2 (en) * 2018-08-27 2021-05-04 Nxp B.V. Physical layer device and method for operating a physical layer device
CN111114348A (en) * 2018-10-31 2020-05-08 现代自动车株式会社 Position alignment method, magnetic field detection apparatus, and position alignment apparatus
US11710985B2 (en) 2018-11-30 2023-07-25 Witricity Corporation Systems and methods for low power excitation in high power wireless power systems
US11695300B2 (en) 2018-11-30 2023-07-04 Witricity Corporation Systems and methods for low power excitation in high power wireless power systems
US11695271B2 (en) 2019-05-24 2023-07-04 Witricity Corporation Protection circuits for wireless power receivers
US11489332B2 (en) 2019-05-24 2022-11-01 Witricity Corporation Protection circuits for wireless power receivers
US11843258B2 (en) 2019-08-26 2023-12-12 Witricity Corporation Bidirectional operation of wireless power systems
US11332125B2 (en) * 2019-11-28 2022-05-17 Panasonic Intellectual Property Management Co., Ltd. Parking assist device, vehicle, and parking assist method
US11909198B2 (en) 2020-01-29 2024-02-20 Witricity Corporation Gate driver implementations for safe wireless power system operation
US11695270B2 (en) 2020-01-29 2023-07-04 Witricity Corporation Systems and methods for auxiliary power dropout protection
US11631999B2 (en) 2020-03-06 2023-04-18 Witricity Corporation Active rectification in wireless power systems
US11888328B2 (en) 2020-03-06 2024-01-30 Witricity Corporation Active rectification in wireless power systems
US11271611B1 (en) * 2021-01-28 2022-03-08 Nucurrent, Inc. Wireless power transfer with in-band virtualized wired communications
US11838076B2 (en) 2021-01-28 2023-12-05 Nucurrent, Inc. Wireless power transmitter with in-band virtualized wired communications
US11728684B2 (en) 2021-01-28 2023-08-15 Nucurrent, Inc. Wireless power receiver with in-band virtualized wired communications
US11626903B2 (en) * 2021-01-28 2023-04-11 Nucurrent, Inc. Wireless power transfer with in-band virtualized wired communications
US11916617B2 (en) 2021-01-28 2024-02-27 Nucurrent, Inc. Wireless power transfer system with data versus power priority optimization
US11764622B2 (en) 2021-01-28 2023-09-19 Nucurrent, Inc. Wireless power transfer system with data-priority and power-priority transfer modes
US11476898B2 (en) 2021-01-28 2022-10-18 Nucurrent, Inc. Wireless power transfer system with mode switching using selective quality factor alteration
US20220239346A1 (en) * 2021-01-28 2022-07-28 Nucurrent, Inc. Wireless Power Transfer With In-Band Virtualized Wired Communications
US11418069B1 (en) 2021-01-28 2022-08-16 Nucurrent, Inc. Wireless power transfer system with data-priority and power-priority transfer modes
US11316378B1 (en) 2021-01-28 2022-04-26 Nucurrent, Inc. Wireless power receiver with in-band virtualized wired communications
US11483033B2 (en) 2021-01-28 2022-10-25 Nucurrent, Inc. Wireless power transfer system with data versus power priority optimization
US20240014857A1 (en) * 2021-01-28 2024-01-11 Nucurrent, Inc. Wireless Power Transfer With In-Band Virtualized Wired Communications
US20220247224A1 (en) 2021-01-28 2022-08-04 Nucurrent, Inc. Wireless Power Receiver With In-Band Virtualized Wired Communications
US11958370B2 (en) 2021-08-31 2024-04-16 Witricity Corporation Wireless power system modules
US11626756B1 (en) 2021-10-15 2023-04-11 Nucurrent, Inc. Wireless power and data transfer system with out of band communications hand off
US11754618B2 (en) 2021-10-15 2023-09-12 Nucurrent, Inc. Testing device for electronic devices with in-band virtualized wired communications
US11956838B1 (en) 2023-05-08 2024-04-09 Steelcase Inc. Smart workstation method and system

Also Published As

Publication number Publication date
US20170066335A1 (en) 2017-03-09
US20220144092A1 (en) 2022-05-12
US10424976B2 (en) 2019-09-24
US11097618B2 (en) 2021-08-24
US20200014254A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US11097618B2 (en) Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11046200B2 (en) On-board control device
CN106103178B (en) Systems, methods, and apparatus related to wireless charging management
JP5106606B2 (en) Discharge system and electric vehicle
KR101986679B1 (en) Fast charging method, power source adapter and mobile terminal
US20180205257A1 (en) Wireless power transmitter and vehicle control unit connected thereto
KR101792267B1 (en) Battery Management System and charger and Charging system for vehicle including the sames, and control method thereof
US9878629B2 (en) Method and apparatus for electric vehicle charging station load management in a residence
US20140002015A1 (en) Electric vehicle wireless charging with monitoring of duration of charging operational mode
US20170274791A1 (en) Apparatus and method for charging electric vehicle via plural chargers
EP2587615B1 (en) System, charging device, and method of supplying current to a power storage device
JP6139607B2 (en) Electric vehicle charger
CN102904311A (en) Electric vehicle battery sensing device, electric vehicle battery and charge and discharge method
US10703269B2 (en) Vehicle and method of notifying charging information of vehicle
US20180034271A1 (en) Home charging and power back up unit
JP5361003B2 (en) Distribution board
US20160082855A1 (en) Connection monitoring apparatus and battery sharing system
KR101934938B1 (en) Charging device, system, and method for controlling a charging device
US10248147B2 (en) Power supply with variable configurable current limit
JP7088372B2 (en) Switch device
CN111361415A (en) Electric automobile energy management method, energy storage management controller and energy management unit
KR102339524B1 (en) Communication interface system for sharing status information of navigation, Method for providing information of charging stations using the same, and Electric vehicle having the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: WITRICITY CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VERGHESE, SIMON;KESLER, MORRIS P.;HALL, KATHERINE L.;AND OTHERS;SIGNING DATES FROM 20120917 TO 20120924;REEL/FRAME:029225/0274

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION