US20090315766A1 - Source switching for devices supporting dynamic direction information - Google Patents

Source switching for devices supporting dynamic direction information Download PDF

Info

Publication number
US20090315766A1
US20090315766A1 US12/476,426 US47642609A US2009315766A1 US 20090315766 A1 US20090315766 A1 US 20090315766A1 US 47642609 A US47642609 A US 47642609A US 2009315766 A1 US2009315766 A1 US 2009315766A1
Authority
US
United States
Prior art keywords
information
interest
point
pointing
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/476,426
Inventor
Moe Khosravy
Lev Novik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Priority to US12/476,426 priority Critical patent/US20090315766A1/en
Assigned to MICROSOFT CORPORATION reassignment MICROSOFT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOVIK, LEV, KHOSRAVY, MOE
Publication of US20090315766A1 publication Critical patent/US20090315766A1/en
Priority to US14/516,066 priority patent/US20150066365A1/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3811Point data, e.g. Point of Interest [POI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3664Details of the user input interface, e.g. buttons, knobs or sliders, including those provided on a touch screen; remote controllers; input using gestures

Definitions

  • the subject disclosure relates to the provision of direction-based services for a device based on direction information and/or other information, such as location information, and to automatic switching between disparate networks, sources of information and/or services upon which the direction-based services are based.
  • mobile devices such as portable laptops, PDAs, mobile phones, navigation devices, and the like have been equipped with location based services, such as global positioning system (GPS) systems, WiFi, cell tower triangulation, etc., which can determine and record a position of mobile devices.
  • location based services such as global positioning system (GPS) systems, WiFi, cell tower triangulation, etc.
  • GPS systems use triangulation of signals received from various satellites placed in orbit around Earth to determine device position.
  • map-based services have emerged from the inclusion of such location based systems that help users of these devices to be found on a map and to facilitate point to point navigation in real-time and search for locations near a point on a map.
  • navigation and search scenarios are currently limited to displaying relatively static information about endpoints and navigation routes. While some of these devices with location based navigation or search capabilities allow update of the bulk data representing endpoint information via a network, e.g., when connected to a networked portable computer (PC) or laptop, such data again becomes fixed in time. Accordingly, it would be desirable to provide a set of richer experiences for users than conventional experiences predicated on location and conventional processing of static bulk data representing potential endpoints of interest.
  • PC networked portable computer
  • a user may wish to request information about a particular point of interest (POI), but if the user becomes disconnected from a given network or information source (e.g., if the user goes underground losing visibility to GPS satellites, communications network interrupted or out of service, etc.), the location based services become dysfunctional.
  • POI point of interest
  • Mobile endpoints can include a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a processing engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of the direction information and/or the location information.
  • Devices or endpoints can include compass(es), e.g., magnetic or gyroscopic, to determine a direction and location based systems for determining location, e.g., GPS.
  • compass(es) e.g., magnetic or gyroscopic
  • devices or endpoints can also include component(s) for determining speed and/or acceleration information for processing by the engine, e.g., to aid in the determination of gestures made with the device.
  • a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest. For instance, various embodiments automatically switch among sources for points of interest data, direction data, position data, direction based services, and/or various networks that interconnect the devices and the data and services for direction-based services.
  • Various embodiments for a device provisioned for pointing based services include receiving pointing based services by a device via a first network, but losing connectivity to the first network.
  • one or more other sources for the pointing based services are identified on a second network or device to which the device can connect and the device automatically connects to the second network or device to receive the pointing based services, or data for use with the pointing based services (e.g., GPS information, point of interest data, direction data, etc.), from the one or more other sources.
  • FIG. 1 illustrates a block diagram of a non-limiting device architecture for pointing based services including automatic data or services switchover capabilities
  • FIG. 2 illustrates a block diagram of a non-limiting device architecture for pointing based services including automatic network switchover capabilities
  • FIG. 3 is a block diagram illustrating a device that supports pointing based services and includes a location data connectivity switching subsystem
  • FIG. 4 is a block diagram illustrating a device that supports pointing based services and includes a direction data connectivity switching subsystem
  • FIG. 5 is a block diagram illustrating a device that supports pointing based services and includes a point of interest data connectivity switching subsystem
  • FIG. 6 is a block diagram illustrating a device that supports pointing based services and includes a network switching subsystem
  • FIG. 7 is a block diagram illustrating a device that supports pointing based services and includes a direction based service switching subsystem
  • FIG. 8 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss
  • FIG. 9 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of location information
  • FIG. 10 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of direction information
  • FIG. 11 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of point of interest information
  • FIG. 12 is a block diagram illustrating a representative architecture for supporting predictive pointing based services
  • FIG. 13 is a block diagram illustrating a representative device for supporting predictive pointing based services
  • FIG. 14 is a block diagram illustrating the formation of motion vectors for use in connection with location based services
  • FIG. 15 , FIG. 16 and FIG. 17 illustrate aspects of algorithms for determining intersection endpoints with a pointing direction of a device
  • FIG. 18 represents a generic user interface for a mobile device for representing points of interest based on pointing information
  • FIG. 19 represents some exemplary, non-limiting alternatives for user interfaces for representing point of interest information
  • FIG. 20 represents some exemplary, non-limiting fields or user interface windows for displaying static and dynamic information about a given point of interest
  • FIG. 21 illustrates a sample overlay user interface for overlaying point of interest information over a camera view of a mobile device
  • FIG. 22 illustrates a process for predicting points of interest and aging out old points of interest in a region-based algorithm
  • FIG. 23 illustrates a first process for a device upon receiving a location and direction event
  • FIG. 24 illustrates a second process for a device upon receiving a location and direction event
  • FIG. 25 is a block diagram representing an exemplary non-limiting networked environment in which embodiment(s) may be implemented.
  • FIG. 26 is a block diagram representing an exemplary non-limiting computing system or operating environment in which aspects of embodiment(s) may be implemented.
  • one or more embodiments herein employ direction information in connection with location information enabling a pointing or directional approach to interacting with points of interest.
  • a user may become unable to receive pointing or direction based services because of disconnection from a communications network.
  • the user may experience interruption of receiving data needed to carry out the direction based services. For instance, the user may lose access to any of position data (e.g., disconnected from GPS satellites), direction information (e.g., compass not working), or point of interest data or services (e.g., cellular network unavailable), which may make fulfillment of any real time location or direction based services a further challenge.
  • position data e.g., disconnected from GPS satellites
  • direction information e.g., compass not working
  • point of interest data or services e.g., cellular network unavailable
  • an automatic network switchover occurs, which can be based on automatically searching for and finding an alternate source for a given set of information or services sought.
  • the switchover can be based on prioritization rules as well.
  • An exemplary non-limiting pointing based services enabled device includes an engine for analyzing location information (e.g., GPS), compass information (N, W, S, E), and movement information (e.g., accelerometer) to allow a platform for finding objects of interest in a user's environment.
  • location information e.g., GPS
  • compass information N, W, S, E
  • movement information e.g., accelerometer
  • a variety of scenarios are provided based on a user finding information of interest about objects of interests, such as restaurants, or other items around an individual, and tailoring information to that user (e.g., coupons, advertisements).
  • Such services can be offered as part of cloud services, web services, or from other devices near a given device, e.g., via Bluetooth.
  • a user may interact with a lot of different POIs, and request information about those POIs, however, in the situation where a user loses connectivity to a data network, or loses a signal to a GPS satellite, rather than fail, it would be beneficial to provide requested information to a user from an alternate source.
  • a way to switchover to alternative sources is thus provided for information if any of the data or positional information is temporarily unavailable, e.g., from a nearby other device, or from location information received by a bus in which the user is travelling.
  • a variety of scenarios are explored illustrating the benefits of being able to maintain a consistent user experience that minimizes failure.
  • a device provisioned for pointing based services receives point of interest data from pointing based services based on pointing information associated with a direction of the device via a first network. If the device loses connectivity to the first network, another source of point of interest data to which the device can connect via a second network is identified and the device automatically connects to the second network to receive the point of interest information from the other source.
  • the other source can be an on-site data store of point of interest information pertaining locally to the device.
  • the other source can be a data store of point of interest information pertaining to points of interest of a physical structure (e.g., a building or store such as Costco) where the device is located.
  • the other source can be another nearby computing device having point of interest data that can be shared, e.g., upon receiving a request for permission to obtain the point of interest data.
  • another device may not already include the data of interest, but the other device can provide access to needed data for direction based services via a third network unavailable to the device directly.
  • the device connects to a second device, e.g., via Bluetooth, and the second device in effect provides access to the third network to the device, e.g., for a negotiated fee.
  • the device obtains its point of interest data or direction based services and the second device profits from making such data or services available to the device.
  • a user connected to a long range wireless communications network becomes unable to connect to the long range network, e.g., if the user goes in a tunnel.
  • the tunnel itself could host a short range network that covers the local area, or otherwise provide surrogate access to a longer range network.
  • the short range network replaces the long range network automatically. For instance, when a mobile phone loses connection to a mobile device communications network, the mobile phone automatically switches to another device with needed data or network access via Bluetooth to provide a seamless user experience.
  • a portable electronic device includes a memory that stores direction information representing information pertaining to orientation of the device, position information representing information pertaining to location of the device and point of interest information representing information pertaining to points of interest substantially within interactive range of the device.
  • the device includes a positional component for receiving the position information as a function of a location of the portable electronic device and a directional component that measures the direction information as a function of an orientation of the portable electronic device.
  • the device further includes a switching component that switches among at least two sources for the position information when a source for the position information is not delivering position information to the device.
  • the switching component can also switch among at least two sources for the direction information when a source for the direction information is not operating.
  • the switching component can also switch among at least two sources for the point of interest information when a source for the point of interest information is unavailable.
  • the device can further include a processor (e.g., CPU, GPU, etc.) configured to process the position information and the direction information to determine identifier(s) of points of interest within scope of the device, to receive information corresponding to the identifier(s) of the points of interest, and to display information if the device interacts with at least one point of interest.
  • the processor can process the position information and the direction information to determine identifiers of at least one point of interest within scope of the device, to receive advertisement content corresponding to the at least one identifier of the at least one point of interest, and to render the advertisement content if the device interacts with at least one point of interest.
  • the device can include a pointer that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information.
  • the directional component can be a digital compass that outputs direction information.
  • a method for a pointing based services enabled device can include determining direction information as a function of a direction for the device, determining position information as a function of a position for the device, receiving pointing based services based on the direction information and position information via a first network, losing connectivity by the device to the first network, identifying at least one other source for the pointing based services to which the device can connect on a second network and automatically connecting to the second network to receive the pointing based services from the at least one other source.
  • the method can further include determining motion information as a function of movement of the device and the receiving of pointing base services is based on the direction information, position information and the motion information.
  • the connecting can include automatically connecting to a nearby device that hosts the pointing based services, e.g., via Bluetooth.
  • users can thus interact with a set of endpoints in a host of context sensitive ways to provide or update information associated with endpoints of interest, or to receive beneficial information or instruments (e.g., coupons, offers, etc.) from entities associated with the endpoints of interest, and where failure would otherwise occur due to loss of connectivity to data or a network, any of such actions can be facilitated by automatic switchover to alternate source(s) of data/networks.
  • beneficial information or instruments e.g., coupons, offers, etc.
  • a direction based services enabled device 100 includes various sub-components that can be used in connection with the provision of such direction based services. For instance, as input to a direction based services engine 110 , the device 100 uses point of interest data, location information and direction information as part of interacting with various direction based services. A user can also interact graphically or otherwise via key input with user interface 120 , the commands for which are carried out by the direction based services engine 110 .
  • the device 100 can include any one or more of point of interest data source controller and interface 102 , direction based services source controller and interface 104 , location information source controller and interface 106 or direction information source controller and interface 108 , which perform the automatic switchover among one or more sources for their respective information domains.
  • Components 102 , 104 , 106 , 108 can be combined or provided separately, or according to sub-combinations.
  • point of interest data source controller and interface 102 operates to automatically switch among different sources of point of interest data 112 , 114 , . . . , 116 .
  • the device 100 can automatically switch over to a server source 114 inside the store which provides a local geo-cache of point of interest information applicable to the store.
  • the server 114 is no longer visible to the device, and the device 100 automatically switches back to source 112 or another source 116 for point of interest data.
  • location information source controller and interface 106 can switch among different sources for location information, depending on power of the device, connectivity, etc.
  • source 132 might be GPS signals
  • source 134 might be cellular tower triangulation techniques
  • source 136 might be a local in-store set of transceivers that perform signal timing and triangulation for devices that are inside the store only so that a maximally effective in store pointing based experience is provided.
  • controller and interface 106 automatically switches among different sources of location information on behalf of the direction based services enabled device 100 .
  • direction information source controller and interface 108 can switch among different sources for direction information, depending on power of the device, connectivity, etc.
  • source 142 might be an on device digital compass
  • source 144 might be a compass on a bus or airplane in which the device 100 is travelling
  • source 146 might be an external connection to a compass.
  • controller and interface 108 automatically switches among different sources of direction information on behalf of the direction based services enabled device 100 .
  • the on device digital compass source 142 becomes disabled, and the user is travelling in a bus, then the user may switch over to a different source of direction information.
  • the direction information associated with the bus may be more relevant than the device orientation.
  • the device 100 can make use of both device orientation source 142 and the bus orientation source 144 to make both bus and device orientation a part of an interactive point of interest experience via direction based services.
  • the device 100 may include a direction based services source controller and interface 104 .
  • a direction based services source controller and interface 104 .
  • the sources of point of interest data, direction based services, location information, and direction information may all be accessed via a variety of wired or wireless data/communications networks 130 .
  • networks 130 can also have automatic switchover applied to them. For instance, when the device 100 switches over from location information source 132 to location information source 136 , the device 100 , via network switching controller and interface 140 , may also correspondingly switch between network N 1 to N 2 .
  • network switching controller and interface 140 may be able to reach a subset of sources, thus affecting potential prioritization of switchover.
  • N 4 can reach all of the sources 142 , 144 , . . . , 146 , then it may be the preferable network to try first.
  • FIG. 3 illustrates a non-limiting example of a mobile computing device 300 according to an embodiment.
  • a set of services 360 can be built based on location information 322 and direction information 332 collected by the phone.
  • location information 322 can be recorded by a location subsystem 320 such as a GPS subsystem communicating with GPS satellites 340 .
  • Direction or pointing information 332 can be collected by a direction subsystem 330 , such as a compass, e.g., gyroscopic, magnetic, digital compass, etc.
  • movement information 312 can be gathered by the device 300 , e.g., via tower triangulation algorithms, and/or acceleration of the device 300 can be measured as well, e.g., with an accelerometer.
  • the collective information 350 can be used to gain a sense of not only where the device 300 is located in relation to other potential points of interest tracked or known by the overall set of services 360 , but also what direction the user is pointing the device 300 , so that the services 360 can appreciate at whom or what the user is pointing the device 300 .
  • a gesture subsystem 370 can optionally be included, which can be predicated on any one or more of the motion information 312 , location information 322 or direction information 332 .
  • direction information 332 and location information 322 can be used to define a set of unique gestures, but also motion information 312 can be used to define an even more complicated set of gestures.
  • the gesture monitor 370 produces gesture information 372 , which can be input as appropriate in connection with delivering services 360 .
  • a device 300 can include a client side memory 380 , such as a cache, of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated.
  • the context, such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside.
  • the block-by-block updates of information are no longer desirable, but rather a granularity can be provided and predictively cached on the device 300 that makes sense for the speed of the vehicle.
  • such a mobile computing device 300 may include a location data connectivity switching subsystem 390 , which switches among sources 340 , 342 , 344 , etc.
  • FIG. 4 illustrates that a device 400 based on the device of FIG. 3 can include direction data connectivity switching subsystem 490 , which switches among sources 440 , 442 , 444 , etc.
  • device 400 may also benefit from combining the results of sources 440 , 442 , 444 , etc. where multiple sources are available.
  • FIG. 5 illustrates that a device 500 based on the device of FIG. 3 can include a POI data switching subsystem 590 that switches among various sources 540 , 542 , 544 , etc. to retrieve POI information and data.
  • FIG. 5 illustrates that a device 500 based on the device of FIG. 3 can include a POI data switching subsystem 590 that switches among various sources 540 , 542 , 544 , etc. to retrieve POI information and data.
  • FIG. 6 illustrates a device 600 based on the device of FIG. 3 that uses a network switching subsystem 690 to switch among various networks, such as WiFi 640 , Bluetooth 642 to another computing device 646 , or cellular networks 644 to reach the set of services 360 .
  • networks such as WiFi 640 , Bluetooth 642 to another computing device 646 , or cellular networks 644 to reach the set of services 360 .
  • FIG. 7 illustrates that a direction based service switching subsystem 790 can be provided within a device 700 based on the device of FIG. 3 that switches among different direction based services 760 , 762 , 764 , etc.
  • FIG. 8 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services.
  • a device is engaging pointing based services using at least a first network for connectivity to one or more direction based service providers.
  • connectivity is lost for any reason.
  • connectivity is regained quickly, or in real time, e.g., due to an automatic search for an alternate source for the missing aspect(s) of the failed direction based service being used at 800 .
  • One common scenario might be losing a long range network in favor of a short range network, or vice versa, when a device goes into, or conversely leaves, a confined space from an open space.
  • the device may explicitly or implicitly be opted into a mesh device cooperation network, so that, for example, all of the devices inside a given store can collectively share information about points of interest in the store.
  • a user might be standing next to a frequent shopper of a store who has purchased the item of interest, and that user can have access to that information if the frequent shopper has opted in to the cooperative store network.
  • Processing, memory, and other computing resources can be shared via a cooperative network as well.
  • FIG. 9 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of location information from a source.
  • a user can opt into a mesh network for sharing of location information. This way, the user's device becomes part of sharing network that other devices can take advantage of in the event their connectivity is compromised.
  • connectivity to device location services is lost, or the device may not even be equipped to support location services.
  • location data is received from one or more other nearby sources (e.g., other devices) equipped with location subsystems.
  • the surrogate location information provides a basis for a device, which otherwise could not receive direction based services based on a set of points of interest in the area, to receive and interact with direction based services.
  • FIG. 10 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of direction information from a source, such as an on-device digital compass.
  • a user can opt into a mesh network for sharing of direction information.
  • connectivity to the device's direction services e.g., the on-device digital compass
  • the digital compass was made in an inferior factory, and stopped working after 6 months, a nearby magnetic force is compromising the results of the compass, etc.
  • the direction data can be received from other nearby sources (e.g., other devices, a containing vehicle, etc.).
  • direction based services are carried out based on or as a function of the surrogate direction information.
  • FIG. 11 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of point of interest data for device interaction via the direction based services.
  • the device loses connectivity to point of interest data for the given location, which is normally obtained from a first data network.
  • a mobile phone user may walk into a Costco warehouse inviting interference with signal reception from the shielded primarily metal walls.
  • the point of interest data is received from one or more nearby sources. For example, Costco might make available a local geo-cache information available by WiFi about all of the objects in the store and allow users to receive the information as well.
  • direction based services are performed based on the points of interest using the surrogate point of interest information.
  • a user can walk into Costco, automatically acquire information about items of interest in the store, automatically use Costco's location information based on local tower triangulation within the store (or other location information), and then with direction information, as the user points at various objects, a voice audio or video notification or both can inform the user of a great deal on that object based on deals available today.
  • the device can have an extension slot that accommodates direction information from an external directional device, such as a compass.
  • an external directional device such as a compass.
  • laptops or other portable electronic devices such devices can be outfitted with a card or board with a slot for a compass.
  • any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, limited bandwidth may degrade the interactive experience.
  • a limited amount of data can be predictively maintained on a user's device in cache memory and optionally aged out as data becomes stale, e.g., when relevance to the user falls below a threshold.
  • FIG. 12 is a block diagram of an exemplary general architecture for delivering pointer based services 1210 based on points of interest information retrieved from the network according to one or more embodiments.
  • Location information 1200 e.g., WiFi, GLS, tower triangulation, etc.
  • direction information 1202 e.g., digital compass
  • optionally user intent information 1204 which can be implicit or explicit, are input to services 1210 , which may be any one or more of web services 1212 , cloud services 1214 or other data services 1216 .
  • content 1240 is returned for efficient real-time interactions with POIs of current relevance.
  • POI data and content can come from more than one storage layer or abstraction 1220 , 1222 , 1224 , . . . , or abstraction 1230 , 1232 , 1234 , . . . , e.g., from local server databases or remote third party storage locations.
  • an intelligent switch 1250 is inserted as a layer between the devices and their desire for services, and the services and their desire to deliver services, so as to automatically switch over to alternate networks in order to connect the two desires.
  • such switch can be as far out in the network as may make sense for the given alternate sources for the same information or services needed to perform direction based services.
  • FIG. 13 illustrates an exemplary non-limiting device 1300 including processor(s) 1310 having a position engine or subsystem 1320 for determining a location of the device 1300 and a direction engine or subsystem 1330 for determining a direction or orientation of the device 1300 . Then, by interacting with local application(s) 1340 and/or service(s) 1370 , POI content can be delivered to the device, which can tailored to device intent and a place in which the device is present, or other factors. When the content is displayed according to an interaction, the tailored content can be rendered by graphic subsystem or display/UI 1350 or audio subsystem 1360 .
  • point structure 1390 is included, e.g., a triangular or other polygonal piece that points along an orientation line 1395 upon which directional calculations are based.
  • the orientation line 1395 can be indicated by graphics subsystem display/UI 1350 with or without point structure 1390 .
  • various embodiments herein enable POI ID information 1380 to be sent to services 1370 so that interactions based on the associated POIs can occur as assisted by services 1370 .
  • the device 1300 employs intelligent switch 1375 to find a new source for the information and services, and automatically switch over to the new source.
  • whether the point of interest at issue falls within the vector can factor in the error in precision of any of the measurements, e.g., different GPS subsystems have different error in precision.
  • one or more items or points of interest may be found along the vector path or arc, within a certain distance depending on context.
  • the local cache may still include age out candidate locations, but as the velocity of the user indicates the user will be at various other predicted locations in the future, these regions of POIs associated with the predicted locations are downloaded to the mobile device. Accordingly, as the user travels to predicted locations, the user no longer needs the data from the age out candidate locations, which can then be removed, or flagged for removal when storage is challenged.
  • new point of interest can be added by a service or by a user.
  • Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc.
  • a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone.
  • the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time.
  • a cube of data can be taken to the device, the user can go offline such that when the user reconnects.
  • the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.
  • Any device can include the embodiments described herein, including MP3 players, such as a Zune device, GPS navigation devices, bike computers, sunglass/visor systems, motor vehicles, mobile phones, laptops, PDA, etc.
  • MP3 players such as a Zune device, GPS navigation devices, bike computers, sunglass/visor systems, motor vehicles, mobile phones, laptops, PDA, etc.
  • One way to obtain the service applications is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link.
  • Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.
  • a device can include a directional component that outputs direction information as a function of an orientation of the portable electronic device and that facilitates determining an intent of the device.
  • the directional component can optionally be a digital compass that outputs the direction information.
  • the device can determine a subset of items of interest relative to candidate items of interest within a 3-D space as a function of the positional information or the direction information.
  • Interacting with an endpoint can include orientating the device toward some item(s) of interest and determining direction information associated with the orientation of the device from which a subset of the item(s) of interest are identified. For instance, interacting can include pointing the device in a direction defining a pointing line generally towards items of interest in the place(s) and determining a set of candidate items of interest as a subset of items of interest that substantially intersect with the pointing line, and enabling the selection of one or more items from the set of candidate items.
  • a method for a device provisioned for direction based services comprises determining direction information associated with a pointed to direction relative to a pre-defined orientation of the device and identifying POIs within an area defined as a function of the pointed to direction including determining which of a set of POIs intersect with the area.
  • information corresponding to the POIs identified within the area is displayed, e.g., on a map or list.
  • the IDs associated with the designated POIs are transmitted to a network service enabling static information and/or dynamic information about the designated POIs to be received from the service.
  • the designation of POIs for interaction can include explicit input with respect to the designated one or more POIs, such as one or more of a gesture input, a keyword input, an audio input, a video camera input or a touchscreen input with respect to the one or more POIs.
  • the designation of POIs for interaction can include implicit input with respect to the designated one or more POIs including making inferences about the interaction based on a context of present interaction.
  • the displaying of POI information can be made on a topographical map visually representing at least the area defined as a function of a pointed to direction and graphical indications of the POIs can be displayed within the area at corresponding locations on the topographical map view.
  • the POIs can also be represented in a filtered list view, e.g., filtered by restaurants in the area.
  • the designating of POIs can include designating pre-defined criteria explicitly or implicitly.
  • the designating can include marking one or more POIs with touchscreen input relating to the one or more designated POIs, tagging the one or more POIs with tag information, or other ways to designate POIs for interaction, whereby content with respect to the POIs is downloaded in local memory of the device.
  • a portable electronic device in another embodiment, includes a positional component for receiving position information as a function of a location of the portable electronic device and a directional component that outputs direction information as a function of an orientation of the portable electronic device.
  • the device includes a processor configured to process the position information and the direction information to determine identifiers or IDs of POIs within a pre-defined geographical area of the device, interact with a selected ID, having already received information about the POI corresponding to the selected identifier, and receive input regarding the selected ID defining an interaction.
  • a pointer structure is provided on the device that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information. For example, this could be a triangular structure that comes to a point to show a primary orientation of the device. This could also be indicated on the display of the device during provision of direction based services.
  • the position information and the direction information determine a pointing line and a set of candidate points of interest are determined as a subset of points of interest that substantially intersect with a function based on the pointing line.
  • An intersection test for determining subsets of points of interest can include defining an arc based on an angle with respect to a pointing line, defining a cone based on an angle with respect to the pointing line, or a line function defining a rectangular space oriented along the pointing line (2-D or 3-D depending on the application).
  • a speaker can render audio content if a condition upon which the predicted interaction is predicated occurs.
  • the directional component can be a digital compass that outputs the direction information.
  • a method comprises determining a place in which a portable device is located based on location information determined for the device and identifying a subset of items of interest in the place including determining an orientation of the device based on direction information of the device and determining the subset of items of interest in the place as a function of the orientation.
  • input with respect to an item of the subset of items is received defining an interaction with the item.
  • Predicted interactions can include receiving a notification when a characteristic of an item meets a pre-defined condition, such as when a price of the item meets a target price condition, thereby initiating the predicted interaction.
  • a broad range of scenarios can be enabled by a device that can take location and direction information about the device and build a service on top of that information. For example, by using an accelerometer in coordination with an on board digital compass, an application running on a mobile device updates what each endpoint is “looking at” or pointed towards, attempting hit detection on potential points of interest to either produce real-time information for the device or to allow the user to select a range, or using the GPS, a location on a map, and set information such as “Starbucks—10% off cappuccinos today” or “The Alamo—site of . . . ” for others to discover.
  • One or more accelerometers can also be used to perform the function of determining direction information for each endpoint as well. As described herein, these techniques can become more granular to particular items within a Starbucks, such as “blueberry cheesecake” on display in the counter, enabling a new type of sale opportunity.
  • a general device for accomplishing this includes a processing engine to resolve a line of sight vector sent from a mobile endpoint and a system to aggregate that data as a platform, enabling a host of new scenarios predicated on the pointing information known for the device.
  • the act of pointing with a device, such as the user's mobile phone thus becomes a powerful vehicle for users to discover and interact with points of interest around the individual in a way that is tailored for the individual. Synchronization of data can also be performed to facilitate roaming and sharing of POV data and contacts among different users of the same service.
  • 2-dimensional (2D), 3-dimensional (3D) or N-dimensional directional-based search, discovery, and interactivity services are enabled for endpoints in the system of potential interest to the user.
  • the pointing information and corresponding algorithms depend upon the assets available in a device for producing the pointing or directional information.
  • the pointing information can be one or more vectors.
  • a vector or set of vectors can have a “width” or “arc” associated with the vector for any margin of error associated with the pointing of the device.
  • a panning angle can be defined by a user with at least two pointing actions to encompass a set of points of interest, e.g., those that span a certain angle defined by a panning gesture by the user.
  • a portable electronic device includes a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a location based engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of at least the positional information and the direction information.
  • the positional component can be a positional GPS component for receiving GPS data as the positional information.
  • the directional component can be a magnetic compass and/or a gyroscopic compass that outputs the direction information.
  • the device can include acceleration component(s), such as accelerometer(s), that outputs acceleration information associated with movement of the portable electronic device. The use of a separate sensor can also be used to further compensate for tilt and altitude adjustment calculations.
  • the device includes a cache memory for dynamically storing a subset of endpoints of interest that are relevant to the portable electronic device and at least one interface to a network service for transmitting the positional information and the direction information to the network service.
  • the device dynamically receives in the cache memory an updated subset of endpoints that are potentially relevant to the portable electronic device.
  • the subset of endpoints can be updated as a function of endpoints of interest within a pre-defined distance substantially along a vector defined by the orientation of the portable electronic device.
  • the subset of endpoints can be updated as a function of endpoints of interest relevant to a current context of the portable electronic device.
  • the device can include a set of Representational State Transfer (REST)-based application programming interfaces (APIs), or other stateless set of APIs, so that the device can communicate with the service over different networks, e.g., Wi-Fi, a GPRS network, etc. or communicate with other users of the service, e.g., Bluetooth.
  • REST Representational State Transfer
  • APIs application programming interfaces
  • the embodiments are in no way limited to a REST based implementation, but rather any other state or stateful protocol could be used to obtain information from the service to the devices.
  • implementations of direction based services and devices are not dependent on REST based implementations, but could also be performed with REST, simple object access protocol (SOAP), really simple syndication (RSS), etc.
  • SOAP simple object access protocol
  • RSS really simple syndication
  • the directional component outputs direction information including compass information based on calibrated and compensated heading/directionality information.
  • the directional component can also include direction information indicating upward or downward tilt information associated with a current upward or downward tilt of the portable electronic device, so that the services can detect when a user is pointing upwards or downwards with the device in addition to a certain direction.
  • the height of the vectors itself can also be taken into account to distinguish between an event of pointing with a device from the top of a building (likely pointing to other buildings, bridges, landmarks, etc.) and the same event from the bottom of the building (likely pointing to a shop at ground level), or towards a ceiling or floor to differentiate among shelves in a supermarket.
  • a 3-axis magnetic field sensor can also be used to implement a compass to obtain tilt readings.
  • Secondary sensors such as altimeters or pressure readers, can also be included in a mobile device and used to detect a height of the device, e.g., what floor a device is on in a parking lot or floor of a department store (changing the associated map/floorplan data).
  • a device includes a compass with a planar view of the world (e.g., 2-axis compass)
  • the inclusion of one or more accelerometers in the device can be used to supplement the motion vector measured for a device as a virtual third component of the motion vector, e.g., to provide measurements regarding a third degree of freedom. This option may be deployed where the provision of a 3-axis compass is too expensive, or otherwise unavailable.
  • any type of compass, or combination of compasses can be used according to the sensitivity or degree of directional information for a given application or set of services.
  • electromagnetic compass(es), digital compass(es), SW, etc., or any combination of compass(es) are all contemplated for a device in order to interact with POIs.
  • any one or more of the compass(es) can include support for 1, 2 or 3 axes.
  • a gesturing component can also be included in the device to determine a current gesture of a user of the portable electronic device from a set of pre-defined gestures.
  • gestures can include zoom in, zoom out, panning to define an arc, all to help filter over potential subsets of points of interest for the user.
  • web services can effectively resolve vector coordinates sent from mobile endpoints into ⁇ x,y,z> or other coordinates using location data, such as GPS data, as well as configurable, synchronized POV information similar to that found in a GPS system in an automobile.
  • location data such as GPS data
  • any of the embodiments can be applied similarly in any motor vehicle device.
  • One non-limiting use is also facilitation of endpoint discovery for synchronization of data of interest to or from the user from or to the endpoint.
  • a device 1400 employing the direction based location based services 1402 as described herein in a variety of embodiments herein include a way to discern between near objects, such as POI 1414 and far objects, such as POI 1416 .
  • near objects such as POI 1414
  • far objects such as POI 1416
  • the service can determine a general distance associated with a motion vector.
  • a motion vector 1406 will implicate POI 1414 , but not POI 1416 , and the opposite would be true for motion vector 1408 .
  • a device 1400 includes an algorithm for discerning items substantially along a direction at which the device is pointing, and those not substantially along a direction at which the device is pointing.
  • motion vector 1404 might implicate POI 1412 , without a specific panning gesture that encompassed more directions/vectors, POIs 1414 and 1416 would likely not be within the scope of points of interest defined by motion vector 1404 .
  • the distance or reach of a vector can also be tuned by a user, e.g., via a slider control or other control, to quickly expand or contract the scope of endpoints encompassed by a given “pointing” interaction with the device.
  • the determination of at what or whom the user is pointing is performed by calculating an absolute “Look” vector, within a suitable margin of error, by a reading from an accelerometer's tilt and a reading from the magnetic compass. Then, an intersection of endpoints determines an initial scope, which can be further refined depending on the particular service employed, i.e., any additional filter. For instance, for an apartment search service, endpoints falling within the look vector that are not apartments ready for lease, can be pre-filtered.
  • the engine can also compensate for, or begin the look vector, where the user is by establish positioning ( ⁇ 15 feet) through an A-GPS stack (or other location based or GPS subsystem including those with assistance strategies) and also compensate for any significant movement/acceleration of the device, where such information is available.
  • a device can include a client side cache of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated.
  • the context such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside. Similarly, if a user is moving on a highway at 60 miles per hour, the block-by-block updates of information are no longer desirable, but rather a granularity can be provided to the device that makes sense for the speed of the vehicle.
  • the location becomes the road on which the automobile is travelling, and the particular items are the places and things that are passed on the roadside much like products in a particular retail store on a shelf or in a display.
  • the pointing based services thus creates a virtual “billboard” opportunity for items of interest generally along a user's automobile path. Proximity to location can lead to an impulse buy, e.g., a user might stop by a museum they are passing and pointing at with their device, if offered a discount on admission.
  • gyroscopic or magnetic compasses can provide directional information.
  • a REST based architecture enables data communications to occur over different networks, such as Wi-Fi and GPRS architectures.
  • REST based APIs can be used, though any stateless messaging can be used that does not require a long keep alive for communicated data/messages. This way, since networks can go down with GPRS antennae, seamless switching can occur to Wi-Fi or Bluetooth networks to continue according to the pointing based services enabled by the embodiments described herein.
  • a device as provided herein can include a file system to interact with a local cache, store updates for synchronization to the service, exchange information by Bluetooth with other users of the service, etc. Accordingly, operating from a local cache, at least the data in the local cache is still relevant at a time of disconnection, and thus, the user can still interact with the data. Finally, the device can synchronize according to any updates made at a time of re-connection to a network, or to another device that has more up to date GPS data, POI data, etc.
  • a switching architecture can be adopted for the device to perform a quick transition from connectivity from one networked system (e.g., cell phone towers) to another computer network (e.g., Wi-Fi) to a local network (e.g., mesh network of Bluetooth connected devices).
  • one networked system e.g., cell phone towers
  • another computer network e.g., Wi-Fi
  • a local network e.g., mesh network of Bluetooth connected devices
  • a device can include a windowing stack in order to overlay different windows, or provide different windows of information regarding a point of interest (e.g., hours and phone number window versus interactive customer feedback window). Audio can be rendered or handled as input by the device. For instance, voice input can be handled by the service to explicitly point without the need for a physical movement of the device. For instance, a user could say into a device “what is this product right in front of me?
  • FIG. 15 One non-limiting way for determining a set of points of interest is illustrated in FIG. 15 .
  • a device 1500 is pointed (e.g., point and click) in a direction D 1 , which according to the device or service parameters, implicitly defines an area within arc 1510 and distance 1520 that encompasses POI 1530 , but does not encompass POI 1532 .
  • Such an algorithm will also need to determine any edge case POIs, i.e., whether POIs such as POI 1534 are within the scope of pointing in direction D 1 , where the POI only partially falls within the area defined by arc 1510 and distance 1520 .
  • a device 1600 pointed in direction D 1 may include zoomed in view which includes points of interest within distance 1620 and arc 1610 , or a medium zoomed view representing points of interest between distance 1620 and 1622 , or a zoomed out view representing points of interest beyond distance 1622 .
  • zoom zones correspond to POIs 1630 , 1632 and 1634 , respectively. More or less zones can be considered depending upon a variety of factors, the service, user preference, etc.
  • a user can input a first direction via a click, and then a second direction after moving the device via a second click, which in effect defines an arc 1710 for objects of interest in the system as illustrated in FIG. 17 .
  • an arc 1710 is implicitly defined.
  • the area of interest implicitly includes a search of points of object within a distance 1720 , which can be zoomed in and out, or selected by the service based on a known granularity of interest, selected by the user, etc.
  • the first direction can be defined upon a click-and-hold button event, or other engage-and-hold user interface element, and the second direction can be defined upon release of the button.
  • two consecutive clicks corresponding to the two different directions D 1 and D 2 can also be implemented.
  • zooming in or out could also represent a change in terms of granularity, or size, or hierarchy of objects.
  • a first pointing gesture with the device may result in a shopping mall appearing, but with another gesture, a user could carry out a recognizable gesture to gain or lose a level of hierarchical granularity with the points of interest on display. For instance, after such gesture, the points of interest could be zoomed in to the level of the stores at the shopping mall and what they are currently offering.
  • any of the embodiments herein can define a set of gestures that serve to help the user interact with a set of services built on the pointing platform, to help users easily gain information about points of information in their environment.
  • a device is ground level, the user is outside, and the device is “pointed” up towards the top of buildings, the granularity of information about points of interest sought by the user (building level) is different than if the user was pointing at the first floor shops of the building (shops level), even where the same compass direction is implicated.
  • a downward tilt at the street level would implicate information about different points of interest that if the user of the device pointed with relatively no tilt at the Statue of Liberty (landmark/building level of granularity).
  • one or more web or cloud services can analyze the vector information to determine at what or whom the user is looking/pointing.
  • the service can then provide additional information such as ads, specials, updates, menus, happy hour choices, etc., depending on the endpoint selected, the context of the service, the location (urban or rural), the time (night or day), etc.
  • additional information such as ads, specials, updates, menus, happy hour choices, etc., depending on the endpoint selected, the context of the service, the location (urban or rural), the time (night or day), etc.
  • the direction based pointing services are implemented in connection with a pair of glasses, headband, etc. having a corresponding display means that acts in concert with the user's looking to highlight or overlay features of interest around the user.
  • a mobile device 1800 can display the objects via representation 1802 according to a variety of user experiences tailored to the service at issue. For instance, a virtual camera experience can be provided, where POI graphics or information can be positioned relative to one another to simulate an imaging experience. A variety of other user interface experiences can be provided based on the pointing direction as well.
  • UI 1900 and 1902 illustrate navigation of hierarchical POI information.
  • level 1 categories may include category 1 , category 2 , category 3 , category 4 and category 5 , but if a user selects around the categories with a thumb-wheel, up-down control, or the like, and chooses one such as category 2 . Then, subcategory 1 , subcategory 2 , subcategory 3 and subcategory 4 are displayed as subcategories of category 2 .
  • subcategory 4 perhaps few enough POIs, such as buildings 1900 and 1910 are found in the subcategory in order to display on a 2D map UI 1904 along the pointing direction, or alternatively as a 3D virtual map view 1906 along the pointing direction.
  • UI 2000 can have one or more of any of the following representative areas.
  • UI 2000 can include a static POI image 2002 such as a trademark of a store, or a picture of a person.
  • UI 2000 can also include other media, and a static POI information portion 2004 for information that tends not to change such as restaurant hours, menu, contact information, etc.
  • UI 2000 can include an information section for dynamic information to be pushed to the user for the POI, e.g., coupons, advertisements, offers, sales, etc.
  • a dynamic interactive information are 2008 can be included where the user can fill out a survey, provide feedback to the POI owner, request the POI to contact the user, make a reservation, buy tickets, etc.
  • UI 2000 also can include a representation of the direction information output by the compass for reference purposes. Further, UI 2000 can include other third party static or dynamic content in area 2012 .
  • a synchronization process can bring either the client or service, respectively, up to date.
  • an ecosystem is enabled where a user can point at an object or point of interest, gain information about it that is likely to be relevant to the user, interact with the information concerning the point of interest, and add value to services ecosystem where the user interacts.
  • the system thus advantageously supports both static and dynamic content.
  • Other user interfaces can be considered such as left-right, or up-down arrangements for navigating categories or a special set of soft-keys can be adaptively provided.
  • a representative non-limiting overlay UI 2100 is shown having 3 POIs POI 1 , POI 2 and POI 3 .
  • the POIs are overlaid over actual image data being real time viewed on the device via an LCD screen or like display.
  • the actual image data can be of products on a shelf or other display or exhibit in a store.
  • the lens becomes the pointer, and the POI information can be overlaid intelligently for discovery of endpoints of interest.
  • a similar embodiment can be imagined even without a camera, such as a UI in which 3-D objects are virtually represented based on real geometries known for the objects relative to the user.
  • the device UI can be implemented consistent with a camera, or a virtual camera, view for intuitive use of such devices.
  • the pointer mechanism of the device could also switch based on whether the user was currently in live view mode for the camera or not.
  • real time image processing could discern an object of interest and based on image signatures, overlay POI information over such image in a similar manner to the above embodiments.
  • a variety of gestures can be employed to zoom in zoom out, perform tilt detection for looking down or up, or panning across a field of view to obtain a range of POIs associated with the panning scope.
  • a number or maximum number of desired endpoints delivered as results can be configured. How to filter can also be configured, e.g., 5 most likely, 5 closest, 5 closest to 100 feet away, 5 within category or sub-category, alphabetical order, etc.
  • a cone or other cross section across physical space is defined as a scope of possible points of interest.
  • the width or deepness of this cone or cross section can be configurable by the user to control the accuracy of the pointing, e.g., narrow or wide radius of points and how far out to search.
  • a variety of storage techniques such as relational storage techniques can be used.
  • Virtual Earth data can be used for mapping and aggregation of POI data can occur from third parties such as Tele Atlas, NavTeq, etc.
  • businesses not in the POI database will want to be discovered and thus, the service provides a similar, but far superior from a spatial relevance standpoint, Yellow Pages experiences where businesses will desire to have their additional information, such as menus, price sheets, coupons, pictures, virtual tours, etc. accessible via the system.
  • a synchronization platform or framework can keep the roaming caches in sync, thereby capturing what users are looking at and efficiently processing changes. Or, where a user goes offline, local changes can be recorded, and when the user goes back online, such local changes can be synchronized to the network or service store. Also, since the users are in effect pulling information they care about in the here and in the now through the act of pointing with the device, the system generates high cost per thousand impression (CPM) rates as compared to other forms of demographic targeting. Moreover, the system drives impulse buys, since the user may not be physically present in a store, but the user may be near the object, and by being nearby and pointing at the store, information about a sale concerning the object can be sent to the user.
  • CPM cost per thousand impression
  • a distance to project out the pointing vector can be explicit, configurable, contextual, etc.
  • the various embodiments described herein can employ any algorithm for distinguishing among boundaries of the endpoints, such as boundary boxes, or rectangles, triangles, circles, etc.
  • a default radius e.g. 150 feet could be selected, and such value can be configured or be context sensitive to the service provided.
  • On-line real estate sites can be leveraged for existing POI information. Since different POI databases may track different information at different granularities, a way of normalizing the POI data according to one convention or standard can also be implemented so that the residential real estate location data of Zillow can be integrated with GPS information from Starbucks of all the Starbucks by country.
  • Similar techniques can be implemented in a moving vehicle client that includes GPS, compass, accelerometer, etc.
  • points of interest e.g., gas stations
  • different subsets of points of interest can be determined for the user based not only on distance, but actual time it may take to get to the point of interest.
  • a gas station may be 100 yards to the right off the highway, the car may have already passed the corresponding exit, and thus more useful information to provide is what gas station will take the least amount of time to drive from a current location based on direction/location so as to provide points of interest that are up ahead on the road, and not already aged points of interest that would require turning around from one's destination in order to get to them.
  • the device can have an extension slot that accommodates direction information from an external directional device, such as a compass.
  • an external directional device such as a compass.
  • laptops or other portable electronic devices such devices can be outfitted with a card or board with a slot for a compass.
  • any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, one advantageous feature of a user's locality in real space is that it is inherently more limited than a general Internet search for information. As a result, a limited amount of data can be maintained on a user's device in cache memory and properly aged out as data becomes stale.
  • predictive caching and aging 2200 is conceptually illustrated by FIG. 22 in which a user's present location 2202 is discerned.
  • the local cache still includes age out candidate location 2210 , but as the velocity of the user indicates the user will be at predicted locations 2204 and 2206 in the future, these regions of POIs are downloaded to the mobile device. Accordingly, as the user travels to predicted location 2206 , it starts to be clear that the user no longer needs the data from the age out candidate location 2210 , which can then be removed, or flagged for removal when storage is challenged.
  • new point of interest can be added by a service or by a user. Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc.
  • a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone.
  • the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time.
  • a cube of data can be taken to the device, the user can go offline such that when the user reconnects, the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.
  • the predictive algorithms again depend on what the user is interested in finding, what service the user may be using, the context of the user, etc. They can also be based on velocity, direction, time, etc. For instance, if it is nighttime, assumptions based on demographics or preferences may lead the device to return information about nightclubs or all night diners. Or, instead of giving directions as driving directions that calculate distances as absolute distances, i.e., as the crow flies, a device can take road curves into account since instantaneous pointing information on roads can be collected and handled by a corresponding service when giving driving directions. Or, as another alternative, the direction one is heading on a road, such as a highway with a concrete divider, is relevant to the directions that a navigation system should give. Where a U-turn is unavailable and user passes an exit with a point of interest, for instance, directions should take this into account and consider the heading of the vehicle.
  • One way to obtain the service applications is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link.
  • Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.
  • the device can begin further communicating via another network. For instance, a device has two channels, and a user gets on a bus, but no longer have GPRS or GPS activity. Nonetheless the user is able to get the information the device needs from some other channel. Just because a tower, or satellites are down, does not mean that the device cannot connect through an alternative channel, e.g., the bus's GPS location information via Bluetooth.
  • a representative device can include, as described variously herein, client Side Storage for housing and providing fast access to cached POI data in the current region including associated dynamically updated or static information, such as annotations, coupons from businesses, etc. This includes usage data tracking and storage.
  • regional data can be a cached subset of the larger service data, always updated based on the region in which the client is roaming.
  • POI data could include as a non-limiting example, the following information:
  • a device can also include usage data and preferences to hold settings as well as usage data such as coupons “activated,” waypoints, businesses encountered per day, other users encountered, etc. to be analyzed by the cloud services for business intelligence analysis and reporting.
  • a device can also include a continuous update mechanism, which is a service that maintains the client's cached copy of a current region updated with the latest.
  • a continuous update mechanism which is a service that maintains the client's cached copy of a current region updated with the latest.
  • this can be achieved with a ping-to-pull model that pre-fetches and swaps out the client's cached region using travel direction and speed to facilitate roaming among different regions.
  • This is effectively a paging mechanism for upcoming POIs.
  • This also includes sending a new or modified POI for the region (with annotations+coupons), sending a new or modified annotation for the POIs (with coupons), or sending a new or modified coupon for the POI.
  • a device can also include a Hardware Abstraction Layer (HAL) having components responsible for abstracting the way the client communicates with the measuring instruments, e.g., the GPS driver for positioning and LOS accuracy (e.g., open eGPS), magnetic compass for heading and rotational information (e.g., gyroscopic), one or more accelerometers for gestured input and tilt (achieves 3D positional algorithms, assuming gyroscopic compass).
  • HAL Hardware Abstraction Layer
  • a device can also include methods/interfaces to make REST calls via GPRS/Wi-Fi and a file system and storage for storing and retrieving the application data and settings.
  • a device can also include user input and methods to map input to the virtual keys.
  • user input is to have softkeys as follows, though it is to be understood a great variety of user inputs can be used to achieve interaction with the user interfaces of the pointing based services.
  • a representative device can include a graphics and windowing stack to render the client side UI, as well as an audio stack to play sounds / alerts.
  • such a device may also include spatial and math computational components including a set of APIs to perform 3D collision testing between subdivided surfaces such as spherical shells (e.g., a simple hit testing model to adopt and boundary definitions for POs), rotate points, and cull as appropriate from conic sections.
  • spherical shells e.g., a simple hit testing model to adopt and boundary definitions for POs
  • rotate points e.g., rotate points, and cull as appropriate from conic sections.
  • FIGS. 23 and 24 illustrate two processes for a device when location (e.g., GPS) and direction (e.g., compass) events occur.
  • location e.g., GPS
  • direction e.g., compass
  • FIG. 23 upon the occurrence of a location or direction event, at 2300 , it is determined whether predictive caching should be initiated for a next region to which a user is travelling. At 2310 , if so, then the next region of data can be pre-fetched. At 2320 , old regional data no longer of relevance can be aged out.
  • any usage data can be uploaded to the service framework for business intelligence, input to an advertisement engine, etc.
  • FIG. 24 represents another process for filtering potential POIs after a pointing event.
  • a group of POIs are determined that pass an intersection algorithm for the direction of pointing of the device.
  • POIs in the group can be represented in some fashion on a UI, e.g., full view if only 1 POI, categorized view, 2-D map view, 3-D perspective view, or user images if other users, etc.
  • the possibilities for representation are limitless; the embodiments described herein are intuitive based on the general notion of pointing based direction services.
  • static content is determined and any dynamic content is acquired via synchronization. When new data becomes available, it is downloaded to stay up to date.
  • POI information is filtered further by user specific information (e.g., if it is the user's first time at the store, returning customer, loyalty program member, live baseball game offer for team clothing discounts, etc.).
  • static and dynamic content that is up to date is rendered for the POI. In addition, updates and/or interaction with POI information is allowed which can be synced back to the service.
  • the various embodiments of methods and devices for pointing based services and related embodiments described herein can be implemented in connection with any computer or other client or server device, which can be deployed as part of a computer network or in a distributed computing environment, and can be connected to any kind of data store.
  • the various embodiments described herein can be implemented in any computer system or environment having any number of memory or storage units, and any number of applications and processes occurring across any number of storage units. This includes, but is not limited to, an environment with server computers and client computers deployed in a network environment or a distributed computing environment, having remote or local storage.
  • FIG. 25 provides a non-limiting schematic diagram of an exemplary networked or distributed computing environment.
  • the distributed computing environment comprises computing objects 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc., which may include programs, methods, data stores, programmable logic, etc., as represented by applications 2530 , 2532 , 2534 , 2536 , 2538 .
  • objects 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc. may comprise different devices, such as PDAs, audio/video devices, mobile phones, MP3 players, laptops, etc.
  • Each object 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc. can communicate with one or more other objects 2510 , 2512 , etc. and computing objects or devices 2520 , 2522 , 2524 , 2526 , 2528 , etc. by way of the communications network 2540 , either directly or indirectly.
  • network 2540 may comprise other computing objects and computing devices that provide services to the system of FIG. 25 , and/or may represent multiple interconnected networks, which are not shown.
  • an application such as applications 2530 , 2532 , 2534 , 2536 , 2538 , that might make use of an API, or other object, software, firmware and/or hardware, suitable for communication with or implementation of the delayed interaction model as provided in accordance with various embodiments.
  • computing systems can be connected together by wired or wireless systems, by local networks or widely distributed networks.
  • networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks, though any network infrastructure can be used for exemplary communications made incident to the techniques as described in various embodiments.
  • a host of network topologies and network infrastructures such as client/server, peer-to-peer, hub and spoke, or hybrid architectures, can be utilized.
  • a client/server architecture particularly a networked system
  • a client is usually a computer that accesses shared network resources provided by another computer, e.g., a server.
  • computers 2520 , 2522 , 2524 , 2526 , 2528 , etc. can be thought of as clients and computers 2510 , 2512 , etc. can be thought of as servers where servers 2510 , 2512 , etc.
  • any computer can be considered a client, a server, or both, depending on the circumstances. Any of these computing devices may be processing data, or requesting services or tasks that may implicate the delayed interaction model and related techniques as described herein for one or more embodiments.
  • a server is typically a remote computer system accessible over a remote or local network, such as the Internet or wireless network infrastructures.
  • the client process may be active in a first computer system, and the server process may be active in a second computer system, communicating with one another over a communications medium, thus providing distributed functionality and allowing multiple clients to take advantage of the information-gathering capabilities of the server.
  • Any software objects utilized pursuant to the direction based services can be provided standalone, or distributed across multiple computing devices or objects.
  • the servers 2510 , 2512 , etc. can be Web servers with which the clients 2520 , 2522 , 2524 , 2526 , 2528 , etc. communicate via any of a number of known protocols, such as the hypertext transfer protocol (HTTP).
  • Servers 2510 , 2512 , etc. may also serve as clients 2520 , 2522 , 2524 , 2526 , 2528 , etc., as may be characteristic of a distributed computing environment.
  • any of the embodiments can partly be implemented via an operating system, for use by a developer of services for a device or object, and/or included within application software that operates in connection with the operable component(s).
  • Software may be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers, such as client workstations, servers or other devices.
  • client workstations such as client workstations, servers or other devices.
  • network interactions may be practiced with a variety of computer system configurations and protocols.
  • FIG. 26 thus illustrates an example of a suitable computing system environment 2600 in which one or more of the embodiments may be implemented, although as made clear above, the computing system environment 2600 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of any of the embodiments. Neither should the computing environment 2600 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 2600 .
  • an exemplary remote device for implementing one or more embodiments herein can include a general purpose computing device in the form of a handheld computer 2610 .
  • Components of handheld computer 2610 may include, but are not limited to, a processing unit 2620 , a system memory 2630 , and a system bus 2621 that couples various system components including the system memory to the processing unit 2620 .
  • Computer 2610 typically includes a variety of computer readable media and can be any available media that can be accessed by computer 2610 .
  • the system memory 2630 may include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) and/or random access memory (RAM).
  • ROM read only memory
  • RAM random access memory
  • memory 2630 may also include an operating system, application programs, other program modules, and program data.
  • a user may enter commands and information into the computer 2610 through input devices 2640
  • a monitor or other type of display device is also connected to the system bus 2621 via an interface, such as output interface 2650 .
  • computers may also include other peripheral output devices such as speakers and a printer, which may be connected through output interface 2650 .
  • the computer 2610 may operate in a networked or distributed environment using logical connections to one or more other remote computers, such as remote computer 2670 .
  • the remote computer 2670 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, or any other remote media consumption or transmission device, and may include any or all of the elements described above relative to the computer 2610 .
  • the logical connections depicted in FIG. 26 include a network 2671 , such local area network (LAN) or a wide area network (WAN), but may also include other networks/buses.
  • LAN local area network
  • WAN wide area network
  • Such networking environments are commonplace in homes, offices, enterprise-wide computer networks, intranets and the Internet.
  • Embodiments may be contemplated from the standpoint of an API (or other software object), as well as from a software or hardware object that provides pointing platform services in accordance with one or more of the described embodiments.
  • Various implementations and embodiments described herein may have aspects that are wholly in hardware, partly in hardware and partly in software, as well as in software.
  • exemplary is used herein to mean serving as an example, instance, or illustration.
  • the subject matter disclosed herein is not limited by such examples.
  • any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art.
  • the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, for the avoidance of doubt, such terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on computer and the computer can be a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.

Abstract

With the addition of directional information in the environment, a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest by pointing at the objects. Sometimes either the device user and/or the publishers of content cannot complete a content exchange due to connectivity to data or services becoming lost. A device provisioned for pointing or direction based services losing connectivity to a first network while engaging pointing based services. In response, one or more other sources for the pointing based services are identified on a second network or device to which the device can connect and the device automatically connects to the second network or device to receive the pointing based services, or data for use with the pointing based services (e.g., GPS information, point of interest data, direction data, etc.), from the one or more other sources.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Ser. No. 61/073,849, filed on Jun. 19, 2008, entitled “MOBILE COMPUTING DEVICES, ARCHITECTURE AND USER INTERFACES BASED ON DYNAMIC DIRECTION INFORMATION”, U.S. Provisional Application Ser. No. 61/074,415, filed on Jun. 20, 2008, entitled “MOBILE COMPUTING SERVICES BASED ON DEVICES WITH DYNAMIC DIRECTION INFORMATION”, and U.S. Provisional Application Ser. No. 61/074,590, filed on Jun. 20, 2008, entitled “MOBILE COMPUTING SERVICES BASED ON DEVICES WITH DYNAMIC DIRECTION INFORMATION”, the entireties of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The subject disclosure relates to the provision of direction-based services for a device based on direction information and/or other information, such as location information, and to automatic switching between disparate networks, sources of information and/or services upon which the direction-based services are based.
  • BACKGROUND
  • By way of background concerning some conventional systems, mobile devices, such as portable laptops, PDAs, mobile phones, navigation devices, and the like have been equipped with location based services, such as global positioning system (GPS) systems, WiFi, cell tower triangulation, etc., which can determine and record a position of mobile devices. For instance, GPS systems use triangulation of signals received from various satellites placed in orbit around Earth to determine device position. A variety of map-based services have emerged from the inclusion of such location based systems that help users of these devices to be found on a map and to facilitate point to point navigation in real-time and search for locations near a point on a map.
  • However, such navigation and search scenarios are currently limited to displaying relatively static information about endpoints and navigation routes. While some of these devices with location based navigation or search capabilities allow update of the bulk data representing endpoint information via a network, e.g., when connected to a networked portable computer (PC) or laptop, such data again becomes fixed in time. Accordingly, it would be desirable to provide a set of richer experiences for users than conventional experiences predicated on location and conventional processing of static bulk data representing potential endpoints of interest.
  • Moreover, with conventional navigation systems, a user may wish to request information about a particular point of interest (POI), but if the user becomes disconnected from a given network or information source (e.g., if the user goes underground losing visibility to GPS satellites, communications network interrupted or out of service, etc.), the location based services become dysfunctional. The user experience suffers as a result since users cannot interact with desired point of information.
  • The above-described deficiencies of today's location based systems and devices are merely intended to provide an overview of some of the problems of conventional systems, and are not intended to be exhaustive. Other problems with the state of the art and corresponding benefits of some of the various non-limiting embodiments may become further apparent upon review of the following detailed description.
  • SUMMARY
  • A simplified summary is provided herein to help enable a basic or general understanding of various aspects of exemplary, non-limiting embodiments that follow in the more detailed description and the accompanying drawings. This summary is not intended, however, as an extensive or exhaustive overview. Instead, the sole purpose of this summary is to present some concepts related to some exemplary non-limiting embodiments in a simplified form as a prelude to the more detailed description of the various embodiments that follow.
  • Direction based pointing services are provided for portable devices or mobile endpoints. Mobile endpoints can include a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a processing engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of the direction information and/or the location information.
  • Devices or endpoints can include compass(es), e.g., magnetic or gyroscopic, to determine a direction and location based systems for determining location, e.g., GPS. To supplement the positional information and/or the direction information, devices or endpoints can also include component(s) for determining speed and/or acceleration information for processing by the engine, e.g., to aid in the determination of gestures made with the device.
  • With the addition of directional information in the environment, a variety of service(s) can be provided on top of user identification or interaction with specific object(s) of interest. For instance, various embodiments automatically switch among sources for points of interest data, direction data, position data, direction based services, and/or various networks that interconnect the devices and the data and services for direction-based services.
  • Various embodiments for a device provisioned for pointing based services include receiving pointing based services by a device via a first network, but losing connectivity to the first network. In response, one or more other sources for the pointing based services are identified on a second network or device to which the device can connect and the device automatically connects to the second network or device to receive the pointing based services, or data for use with the pointing based services (e.g., GPS information, point of interest data, direction data, etc.), from the one or more other sources.
  • These and other embodiments are described in more detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various non-limiting embodiments are further described with reference to the accompanying drawings in which:
  • FIG. 1 illustrates a block diagram of a non-limiting device architecture for pointing based services including automatic data or services switchover capabilities;
  • FIG. 2 illustrates a block diagram of a non-limiting device architecture for pointing based services including automatic network switchover capabilities;
  • FIG. 3 is a block diagram illustrating a device that supports pointing based services and includes a location data connectivity switching subsystem;
  • FIG. 4 is a block diagram illustrating a device that supports pointing based services and includes a direction data connectivity switching subsystem;
  • FIG. 5 is a block diagram illustrating a device that supports pointing based services and includes a point of interest data connectivity switching subsystem;
  • FIG. 6 is a block diagram illustrating a device that supports pointing based services and includes a network switching subsystem;
  • FIG. 7 is a block diagram illustrating a device that supports pointing based services and includes a direction based service switching subsystem;
  • FIG. 8 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss;
  • FIG. 9 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of location information;
  • FIG. 10 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of direction information;
  • FIG. 11 is a flow diagram illustrating an exemplary non-limiting process for automatically recovering from connectivity loss in the context of loss of point of interest information;
  • FIG. 12 is a block diagram illustrating a representative architecture for supporting predictive pointing based services;
  • FIG. 13 is a block diagram illustrating a representative device for supporting predictive pointing based services;
  • FIG. 14 is a block diagram illustrating the formation of motion vectors for use in connection with location based services;
  • FIG. 15, FIG. 16 and FIG. 17 illustrate aspects of algorithms for determining intersection endpoints with a pointing direction of a device;
  • FIG. 18 represents a generic user interface for a mobile device for representing points of interest based on pointing information;
  • FIG. 19 represents some exemplary, non-limiting alternatives for user interfaces for representing point of interest information;
  • FIG. 20 represents some exemplary, non-limiting fields or user interface windows for displaying static and dynamic information about a given point of interest;
  • FIG. 21 illustrates a sample overlay user interface for overlaying point of interest information over a camera view of a mobile device;
  • FIG. 22 illustrates a process for predicting points of interest and aging out old points of interest in a region-based algorithm;
  • FIG. 23 illustrates a first process for a device upon receiving a location and direction event;
  • FIG. 24 illustrates a second process for a device upon receiving a location and direction event;
  • FIG. 25 is a block diagram representing an exemplary non-limiting networked environment in which embodiment(s) may be implemented; and
  • FIG. 26 is a block diagram representing an exemplary non-limiting computing system or operating environment in which aspects of embodiment(s) may be implemented.
  • DETAILED DESCRIPTION Overview
  • While each of the various embodiments herein are presented independently, e.g., as part of the sequence of respective Figures, one can appreciate that a portable device and/or associated network services, as described, can incorporate or combine two or more of any of the embodiments. Given that each of the various embodiments improve the overall services ecosystem in which users wish to operate, together a synergy results from combining different benefits. Accordingly, the combination of different embodiments described below shall be considered herein to represent a host of further alternate embodiments.
  • Among other things, current location services systems and services, e.g., GPS, cell triangulation, P2P location service, such as Bluetooth, WiFi, etc., tend to be based on the location of the device only, and tend to provide static experiences that are not tailored to a user because the data about endpoints of interest is relatively static, or fixed in time. Such conventional location systems have not factored in direction information into the experience either.
  • In this regard, one or more embodiments herein employ direction information in connection with location information enabling a pointing or directional approach to interacting with points of interest. In such systems, a user may become unable to receive pointing or direction based services because of disconnection from a communications network. Similarly, the user may experience interruption of receiving data needed to carry out the direction based services. For instance, the user may lose access to any of position data (e.g., disconnected from GPS satellites), direction information (e.g., compass not working), or point of interest data or services (e.g., cellular network unavailable), which may make fulfillment of any real time location or direction based services a further challenge.
  • Accordingly, in various non-limiting embodiments, when connectivity is lost to one or more parts of the provision of pointing based services, an automatic network switchover occurs, which can be based on automatically searching for and finding an alternate source for a given set of information or services sought. The switchover can be based on prioritization rules as well.
  • An exemplary non-limiting pointing based services enabled device includes an engine for analyzing location information (e.g., GPS), compass information (N, W, S, E), and movement information (e.g., accelerometer) to allow a platform for finding objects of interest in a user's environment. A variety of scenarios are provided based on a user finding information of interest about objects of interests, such as restaurants, or other items around an individual, and tailoring information to that user (e.g., coupons, advertisements). However, to maximize interaction with objects of interest, a way to switch over to alternate sources for information and services is desired. Such services can be offered as part of cloud services, web services, or from other devices near a given device, e.g., via Bluetooth.
  • In such a system, a user may interact with a lot of different POIs, and request information about those POIs, however, in the situation where a user loses connectivity to a data network, or loses a signal to a GPS satellite, rather than fail, it would be beneficial to provide requested information to a user from an alternate source.
  • A way to switchover to alternative sources is thus provided for information if any of the data or positional information is temporarily unavailable, e.g., from a nearby other device, or from location information received by a bus in which the user is travelling. A variety of scenarios are explored illustrating the benefits of being able to maintain a consistent user experience that minimizes failure.
  • In one embodiment, a device provisioned for pointing based services receives point of interest data from pointing based services based on pointing information associated with a direction of the device via a first network. If the device loses connectivity to the first network, another source of point of interest data to which the device can connect via a second network is identified and the device automatically connects to the second network to receive the point of interest information from the other source.
  • The other source can be an on-site data store of point of interest information pertaining locally to the device. The other source can be a data store of point of interest information pertaining to points of interest of a physical structure (e.g., a building or store such as Costco) where the device is located. The other source can be another nearby computing device having point of interest data that can be shared, e.g., upon receiving a request for permission to obtain the point of interest data.
  • In one embodiment, another device may not already include the data of interest, but the other device can provide access to needed data for direction based services via a third network unavailable to the device directly. Thus, for instance, the device connects to a second device, e.g., via Bluetooth, and the second device in effect provides access to the third network to the device, e.g., for a negotiated fee. In this way, the device obtains its point of interest data or direction based services and the second device profits from making such data or services available to the device.
  • Another scenario is where a user connected to a long range wireless communications network, such as a cellular network, becomes unable to connect to the long range network, e.g., if the user goes in a tunnel. Thus, the tunnel itself could host a short range network that covers the local area, or otherwise provide surrogate access to a longer range network. This way, when the device loses connection to the long range network, the short range network replaces the long range network automatically. For instance, when a mobile phone loses connection to a mobile device communications network, the mobile phone automatically switches to another device with needed data or network access via Bluetooth to provide a seamless user experience.
  • In one embodiment, a portable electronic device includes a memory that stores direction information representing information pertaining to orientation of the device, position information representing information pertaining to location of the device and point of interest information representing information pertaining to points of interest substantially within interactive range of the device. The device includes a positional component for receiving the position information as a function of a location of the portable electronic device and a directional component that measures the direction information as a function of an orientation of the portable electronic device.
  • The device further includes a switching component that switches among at least two sources for the position information when a source for the position information is not delivering position information to the device. The switching component can also switch among at least two sources for the direction information when a source for the direction information is not operating. The switching component can also switch among at least two sources for the point of interest information when a source for the point of interest information is unavailable.
  • The device can further include a processor (e.g., CPU, GPU, etc.) configured to process the position information and the direction information to determine identifier(s) of points of interest within scope of the device, to receive information corresponding to the identifier(s) of the points of interest, and to display information if the device interacts with at least one point of interest. The processor can process the position information and the direction information to determine identifiers of at least one point of interest within scope of the device, to receive advertisement content corresponding to the at least one identifier of the at least one point of interest, and to render the advertisement content if the device interacts with at least one point of interest.
  • The device can include a pointer that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information. The directional component can be a digital compass that outputs direction information.
  • In another embodiment, a method for a pointing based services enabled device can include determining direction information as a function of a direction for the device, determining position information as a function of a position for the device, receiving pointing based services based on the direction information and position information via a first network, losing connectivity by the device to the first network, identifying at least one other source for the pointing based services to which the device can connect on a second network and automatically connecting to the second network to receive the pointing based services from the at least one other source.
  • The method can further include determining motion information as a function of movement of the device and the receiving of pointing base services is based on the direction information, position information and the motion information. The connecting can include automatically connecting to a nearby device that hosts the pointing based services, e.g., via Bluetooth.
  • Details of various other exemplary, non-limiting embodiments are provided below.
  • Data Source/Network Switching for Devices Supporting Dynamic Direction Information
  • With direction based services, users can thus interact with a set of endpoints in a host of context sensitive ways to provide or update information associated with endpoints of interest, or to receive beneficial information or instruments (e.g., coupons, offers, etc.) from entities associated with the endpoints of interest, and where failure would otherwise occur due to loss of connectivity to data or a network, any of such actions can be facilitated by automatic switchover to alternate source(s) of data/networks.
  • For instance, as shown in FIG. 1, a direction based services enabled device 100 includes various sub-components that can be used in connection with the provision of such direction based services. For instance, as input to a direction based services engine 110, the device 100 uses point of interest data, location information and direction information as part of interacting with various direction based services. A user can also interact graphically or otherwise via key input with user interface 120, the commands for which are carried out by the direction based services engine 110. In this regard, in various embodiments, the device 100 can include any one or more of point of interest data source controller and interface 102, direction based services source controller and interface 104, location information source controller and interface 106 or direction information source controller and interface 108, which perform the automatic switchover among one or more sources for their respective information domains. Components 102, 104, 106, 108 can be combined or provided separately, or according to sub-combinations.
  • For instance, point of interest data source controller and interface 102 operates to automatically switch among different sources of point of interest data 112, 114, . . . , 116. Thus, if the device 100 is outside and then goes inside a store and becomes disconnected to a data source 112 for point of interest information, then the device 100 can automatically switch over to a server source 114 inside the store which provides a local geo-cache of point of interest information applicable to the store. When the user goes outside again, the server 114 is no longer visible to the device, and the device 100 automatically switches back to source 112 or another source 116 for point of interest data.
  • For another example, location information source controller and interface 106 can switch among different sources for location information, depending on power of the device, connectivity, etc. For instance, source 132 might be GPS signals, source 134 might be cellular tower triangulation techniques, and source 136 might be a local in-store set of transceivers that perform signal timing and triangulation for devices that are inside the store only so that a maximally effective in store pointing based experience is provided. Thus, controller and interface 106 automatically switches among different sources of location information on behalf of the direction based services enabled device 100.
  • For another example, direction information source controller and interface 108 can switch among different sources for direction information, depending on power of the device, connectivity, etc. As a non-limiting example, source 142 might be an on device digital compass, source 144 might be a compass on a bus or airplane in which the device 100 is travelling, and source 146 might be an external connection to a compass. Thus, controller and interface 108 automatically switches among different sources of direction information on behalf of the direction based services enabled device 100. In this regard, if the on device digital compass source 142 becomes disabled, and the user is travelling in a bus, then the user may switch over to a different source of direction information. When travelling in a bus, the direction information associated with the bus may be more relevant than the device orientation. Or, in one non-limiting embodiment, the device 100 can make use of both device orientation source 142 and the bus orientation source 144 to make both bus and device orientation a part of an interactive point of interest experience via direction based services.
  • In addition, the device 100 may include a direction based services source controller and interface 104. In this regard, there may be multiple different providers of the same or different direction based services from sources 122, 124, . . . 126, and where device 100 experiences failure of delivery of services from any of such sources, the device 100 automatically switches over to an alternate source for the service or services. As noted, the sources of point of interest data, direction based services, location information, and direction information may all be accessed via a variety of wired or wireless data/communications networks 130.
  • This is illustrated in more detail in the embodiment of the block diagram of FIG. 2 in which network switching controller and interface 140 is introduced. As a layer between point of interest data, direction based services, location information, and direction information, networks 130 can also have automatic switchover applied to them. For instance, when the device 100 switches over from location information source 132 to location information source 136, the device 100, via network switching controller and interface 140, may also correspondingly switch between network N1 to N2. In addition, as illustrated by networks N3, N4, and N5 in the context of direction information sources 142, 144 and 146, interface 140 may be able to reach a subset of sources, thus affecting potential prioritization of switchover. If N4 can reach all of the sources 142, 144, . . . , 146, then it may be the preferable network to try first. Other factors, such as power consumption, might also affect the prioritization, but all other factors being the same, a device would prefer a more ubiquitously available network choice.
  • FIG. 3 illustrates a non-limiting example of a mobile computing device 300 according to an embodiment. In this regard, a set of services 360 can be built based on location information 322 and direction information 332 collected by the phone. For instance, location information 322 can be recorded by a location subsystem 320 such as a GPS subsystem communicating with GPS satellites 340. Direction or pointing information 332 can be collected by a direction subsystem 330, such as a compass, e.g., gyroscopic, magnetic, digital compass, etc. In addition, optionally, movement information 312 can be gathered by the device 300, e.g., via tower triangulation algorithms, and/or acceleration of the device 300 can be measured as well, e.g., with an accelerometer. The collective information 350 can be used to gain a sense of not only where the device 300 is located in relation to other potential points of interest tracked or known by the overall set of services 360, but also what direction the user is pointing the device 300, so that the services 360 can appreciate at whom or what the user is pointing the device 300.
  • In addition, a gesture subsystem 370 can optionally be included, which can be predicated on any one or more of the motion information 312, location information 322 or direction information 332. In this regard, not only can direction information 332 and location information 322 be used to define a set of unique gestures, but also motion information 312 can be used to define an even more complicated set of gestures. The gesture monitor 370 produces gesture information 372, which can be input as appropriate in connection with delivering services 360.
  • As mentioned, in another aspect, a device 300 can include a client side memory 380, such as a cache, of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated. The context, such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside. Similarly, if a user is moving on a highway at 60 miles per hour, the block-by-block updates of information are no longer desirable, but rather a granularity can be provided and predictively cached on the device 300 that makes sense for the speed of the vehicle.
  • In this regard, such a mobile computing device 300 may include a location data connectivity switching subsystem 390, which switches among sources 340, 342, 344, etc. FIG. 4 illustrates that a device 400 based on the device of FIG. 3 can include direction data connectivity switching subsystem 490, which switches among sources 440, 442, 444, etc. As mentioned, device 400 may also benefit from combining the results of sources 440, 442, 444, etc. where multiple sources are available. FIG. 5 illustrates that a device 500 based on the device of FIG. 3 can include a POI data switching subsystem 590 that switches among various sources 540, 542, 544, etc. to retrieve POI information and data. FIG. 6 in turn illustrates a device 600 based on the device of FIG. 3 that uses a network switching subsystem 690 to switch among various networks, such as WiFi 640, Bluetooth 642 to another computing device 646, or cellular networks 644 to reach the set of services 360. Similarly, flattening out networks 740, the switching of which is handled by network switching subsystem 690, FIG. 7 illustrates that a direction based service switching subsystem 790 can be provided within a device 700 based on the device of FIG. 3 that switches among different direction based services 760, 762, 764, etc.
  • FIG. 8 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services. At 800, a device is engaging pointing based services using at least a first network for connectivity to one or more direction based service providers. At 810, such connectivity is lost for any reason. At 820, connectivity is regained quickly, or in real time, e.g., due to an automatic search for an alternate source for the missing aspect(s) of the failed direction based service being used at 800. One common scenario might be losing a long range network in favor of a short range network, or vice versa, when a device goes into, or conversely leaves, a confined space from an open space. At 830, or at anytime, the device may explicitly or implicitly be opted into a mesh device cooperation network, so that, for example, all of the devices inside a given store can collectively share information about points of interest in the store.
  • A user might be standing next to a frequent shopper of a store who has purchased the item of interest, and that user can have access to that information if the frequent shopper has opted in to the cooperative store network. Processing, memory, and other computing resources can be shared via a cooperative network as well.
  • FIG. 9 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of location information from a source. At 900, optionally, a user can opt into a mesh network for sharing of location information. This way, the user's device becomes part of sharing network that other devices can take advantage of in the event their connectivity is compromised. At 910, connectivity to device location services is lost, or the device may not even be equipped to support location services. At 920, location data is received from one or more other nearby sources (e.g., other devices) equipped with location subsystems. At 930, the surrogate location information provides a basis for a device, which otherwise could not receive direction based services based on a set of points of interest in the area, to receive and interact with direction based services.
  • FIG. 10 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of direction information from a source, such as an on-device digital compass. At 1000, a user can opt into a mesh network for sharing of direction information. At 1010, connectivity to the device's direction services, e.g., the on-device digital compass, is lost for some reason, e.g., the digital compass was made in an inferior factory, and stopped working after 6 months, a nearby magnetic force is compromising the results of the compass, etc. At 1020, in accordance with one or more embodiments, the direction data can be received from other nearby sources (e.g., other devices, a containing vehicle, etc.). At 1030, direction based services are carried out based on or as a function of the surrogate direction information.
  • FIG. 11 is a flow diagram of an exemplary non-limiting process that can be employed in the context of direction based services and the loss of point of interest data for device interaction via the direction based services. At 1100, the device loses connectivity to point of interest data for the given location, which is normally obtained from a first data network. As an example, a mobile phone user may walk into a Costco warehouse inviting interference with signal reception from the shielded primarily metal walls. At 1110, however, according to one or more embodiments herein, the point of interest data is received from one or more nearby sources. For example, Costco might make available a local geo-cache information available by WiFi about all of the objects in the store and allow users to receive the information as well. At 1120, direction based services are performed based on the points of interest using the surrogate point of interest information.
  • As an example of the power of this scenario, a user can walk into Costco, automatically acquire information about items of interest in the store, automatically use Costco's location information based on local tower triangulation within the store (or other location information), and then with direction information, as the user points at various objects, a voice audio or video notification or both can inform the user of a great deal on that object based on deals available today.
  • For existing motor vehicle navigation devices, or other conventional portable GPS navigation devices, where a device does not natively include directional means such as a compass, the device can have an extension slot that accommodates direction information from an external directional device, such as a compass. Similarly, for laptops or other portable electronic devices, such devices can be outfitted with a card or board with a slot for a compass. While any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, limited bandwidth may degrade the interactive experience. As a result, a limited amount of data can be predictively maintained on a user's device in cache memory and optionally aged out as data becomes stale, e.g., when relevance to the user falls below a threshold.
  • FIG. 12 is a block diagram of an exemplary general architecture for delivering pointer based services 1210 based on points of interest information retrieved from the network according to one or more embodiments. Location information 1200 (e.g., WiFi, GLS, tower triangulation, etc.), direction information 1202 (e.g., digital compass) and optionally user intent information 1204, which can be implicit or explicit, are input to services 1210, which may be any one or more of web services 1212, cloud services 1214 or other data services 1216. As a result, content 1240 is returned for efficient real-time interactions with POIs of current relevance. POI data and content can come from more than one storage layer or abstraction 1220, 1222, 1224, . . . , or abstraction 1230, 1232, 1234, . . . , e.g., from local server databases or remote third party storage locations.
  • In accordance with various embodiments described herein, an intelligent switch 1250 is inserted as a layer between the devices and their desire for services, and the services and their desire to deliver services, so as to automatically switch over to alternate networks in order to connect the two desires. In this regard, while one or more embodiments described herein have implied such switch in the device, such switch can be as far out in the network as may make sense for the given alternate sources for the same information or services needed to perform direction based services.
  • FIG. 13 illustrates an exemplary non-limiting device 1300 including processor(s) 1310 having a position engine or subsystem 1320 for determining a location of the device 1300 and a direction engine or subsystem 1330 for determining a direction or orientation of the device 1300. Then, by interacting with local application(s) 1340 and/or service(s) 1370, POI content can be delivered to the device, which can tailored to device intent and a place in which the device is present, or other factors. When the content is displayed according to an interaction, the tailored content can be rendered by graphic subsystem or display/UI 1350 or audio subsystem 1360.
  • In one non-limiting embodiment, point structure 1390 is included, e.g., a triangular or other polygonal piece that points along an orientation line 1395 upon which directional calculations are based. Similarly, the orientation line 1395 can be indicated by graphics subsystem display/UI 1350 with or without point structure 1390. In this regard, various embodiments herein enable POI ID information 1380 to be sent to services 1370 so that interactions based on the associated POIs can occur as assisted by services 1370. In this regard, whenever there is a disconnect between data/communications network and information or services that a device desires in connection with the performance of direction based services, the device 1300 employs intelligent switch 1375 to find a new source for the information and services, and automatically switch over to the new source.
  • Additionally, whether the point of interest at issue falls within the vector can factor in the error in precision of any of the measurements, e.g., different GPS subsystems have different error in precision. In this regard, one or more items or points of interest may be found along the vector path or arc, within a certain distance depending on context.
  • While there are a variety of implementations, and ways to sub-divide regions, whether overlapping or not, predictive caching and aging can thus be performed in which a user's present location is discerned. The local cache may still include age out candidate locations, but as the velocity of the user indicates the user will be at various other predicted locations in the future, these regions of POIs associated with the predicted locations are downloaded to the mobile device. Accordingly, as the user travels to predicted locations, the user no longer needs the data from the age out candidate locations, which can then be removed, or flagged for removal when storage is challenged.
  • Accordingly, using the regional data cache, callbacks and an update mechanism that is updated dynamically based on movement, new point of interest can be added by a service or by a user. Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc. In this regard, a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone. To appreciate the problem, the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time. Thus, predictively, a cube of data can be taken to the device, the user can go offline such that when the user reconnects. Moreover, the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.
  • Any device can include the embodiments described herein, including MP3 players, such as a Zune device, GPS navigation devices, bike computers, sunglass/visor systems, motor vehicles, mobile phones, laptops, PDA, etc.
  • One way to obtain the service applications, assuming the underlying measuring instruments to participate in the real-time gathering of directional information, is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link. Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.
  • With location services, it can be determined that a user's device is physically inside an actual store, or near a window display of a store. Coupling that to the user's interacting with an object of interest with direction information to enable direction-based services results in a new opportunity to take action based on the interaction with specific items.
  • As mentioned, a device can include a directional component that outputs direction information as a function of an orientation of the portable electronic device and that facilitates determining an intent of the device. The directional component can optionally be a digital compass that outputs the direction information. The device can determine a subset of items of interest relative to candidate items of interest within a 3-D space as a function of the positional information or the direction information.
  • Interacting with an endpoint can include orientating the device toward some item(s) of interest and determining direction information associated with the orientation of the device from which a subset of the item(s) of interest are identified. For instance, interacting can include pointing the device in a direction defining a pointing line generally towards items of interest in the place(s) and determining a set of candidate items of interest as a subset of items of interest that substantially intersect with the pointing line, and enabling the selection of one or more items from the set of candidate items.
  • In one embodiment, a method for a device provisioned for direction based services comprises determining direction information associated with a pointed to direction relative to a pre-defined orientation of the device and identifying POIs within an area defined as a function of the pointed to direction including determining which of a set of POIs intersect with the area. Next, based on information with respect to the POIs already received by the device, information corresponding to the POIs identified within the area is displayed, e.g., on a map or list. In one embodiment, as new POIs are within range of the device, the IDs associated with the designated POIs are transmitted to a network service enabling static information and/or dynamic information about the designated POIs to be received from the service.
  • The designation of POIs for interaction can include explicit input with respect to the designated one or more POIs, such as one or more of a gesture input, a keyword input, an audio input, a video camera input or a touchscreen input with respect to the one or more POIs. The designation of POIs for interaction can include implicit input with respect to the designated one or more POIs including making inferences about the interaction based on a context of present interaction.
  • The displaying of POI information can be made on a topographical map visually representing at least the area defined as a function of a pointed to direction and graphical indications of the POIs can be displayed within the area at corresponding locations on the topographical map view. The POIs can also be represented in a filtered list view, e.g., filtered by restaurants in the area. The designating of POIs can include designating pre-defined criteria explicitly or implicitly. The designating can include marking one or more POIs with touchscreen input relating to the one or more designated POIs, tagging the one or more POIs with tag information, or other ways to designate POIs for interaction, whereby content with respect to the POIs is downloaded in local memory of the device.
  • In another embodiment, a portable electronic device includes a positional component for receiving position information as a function of a location of the portable electronic device and a directional component that outputs direction information as a function of an orientation of the portable electronic device. In addition, the device includes a processor configured to process the position information and the direction information to determine identifiers or IDs of POIs within a pre-defined geographical area of the device, interact with a selected ID, having already received information about the POI corresponding to the selected identifier, and receive input regarding the selected ID defining an interaction.
  • Information about the selected ID defining the future interaction is transmitted along with the point of interest to a network service. In one embodiment, a pointer structure is provided on the device that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information. For example, this could be a triangular structure that comes to a point to show a primary orientation of the device. This could also be indicated on the display of the device during provision of direction based services.
  • In one embodiment, the position information and the direction information determine a pointing line and a set of candidate points of interest are determined as a subset of points of interest that substantially intersect with a function based on the pointing line. An intersection test for determining subsets of points of interest can include defining an arc based on an angle with respect to a pointing line, defining a cone based on an angle with respect to the pointing line, or a line function defining a rectangular space oriented along the pointing line (2-D or 3-D depending on the application). A speaker can render audio content if a condition upon which the predicted interaction is predicated occurs. The directional component can be a digital compass that outputs the direction information.
  • In another embodiment, a method comprises determining a place in which a portable device is located based on location information determined for the device and identifying a subset of items of interest in the place including determining an orientation of the device based on direction information of the device and determining the subset of items of interest in the place as a function of the orientation. Next, input with respect to an item of the subset of items is received defining an interaction with the item. Predicted interactions can include receiving a notification when a characteristic of an item meets a pre-defined condition, such as when a price of the item meets a target price condition, thereby initiating the predicted interaction.
  • Supplemental Context Regarding Pointing Devices, Architectures and Services
  • The following description contains supplemental context regarding potential non-limiting pointing devices, architectures and associated services to further aid in understanding one or more of the above embodiments. Any one or more of any additional features described in this section can be accommodated in any one or more of the embodiments described above with respect to delayed direction based services at a particular location for given POI(s). While such combinations of embodiments or features are possible, for the avoidance of doubt, no embodiments set forth in the subject disclosure should be considered limiting on any other embodiments described herein.
  • As mentioned, a broad range of scenarios can be enabled by a device that can take location and direction information about the device and build a service on top of that information. For example, by using an accelerometer in coordination with an on board digital compass, an application running on a mobile device updates what each endpoint is “looking at” or pointed towards, attempting hit detection on potential points of interest to either produce real-time information for the device or to allow the user to select a range, or using the GPS, a location on a map, and set information such as “Starbucks—10% off cappuccinos today” or “The Alamo—site of . . . ” for others to discover. One or more accelerometers can also be used to perform the function of determining direction information for each endpoint as well. As described herein, these techniques can become more granular to particular items within a Starbucks, such as “blueberry cheesecake” on display in the counter, enabling a new type of sale opportunity.
  • Accordingly, a general device for accomplishing this includes a processing engine to resolve a line of sight vector sent from a mobile endpoint and a system to aggregate that data as a platform, enabling a host of new scenarios predicated on the pointing information known for the device. The act of pointing with a device, such as the user's mobile phone, thus becomes a powerful vehicle for users to discover and interact with points of interest around the individual in a way that is tailored for the individual. Synchronization of data can also be performed to facilitate roaming and sharing of POV data and contacts among different users of the same service.
  • In a variety of embodiments described herein, 2-dimensional (2D), 3-dimensional (3D) or N-dimensional directional-based search, discovery, and interactivity services are enabled for endpoints in the system of potential interest to the user.
  • The pointing information and corresponding algorithms depend upon the assets available in a device for producing the pointing or directional information. The pointing information, however produced according to an underlying set of measurement components, and interpreted by a processing engine, can be one or more vectors. A vector or set of vectors can have a “width” or “arc” associated with the vector for any margin of error associated with the pointing of the device. A panning angle can be defined by a user with at least two pointing actions to encompass a set of points of interest, e.g., those that span a certain angle defined by a panning gesture by the user.
  • In one non-limiting embodiment, a portable electronic device includes a positional component for receiving positional information as a function of a location of the portable electronic device, a directional component that outputs direction information as a function of an orientation of the portable electronic device and a location based engine that processes the positional information and the direction information to determine a subset of points of interest relative to the portable electronic device as a function of at least the positional information and the direction information.
  • The positional component can be a positional GPS component for receiving GPS data as the positional information. The directional component can be a magnetic compass and/or a gyroscopic compass that outputs the direction information. The device can include acceleration component(s), such as accelerometer(s), that outputs acceleration information associated with movement of the portable electronic device. The use of a separate sensor can also be used to further compensate for tilt and altitude adjustment calculations.
  • In one embodiment, the device includes a cache memory for dynamically storing a subset of endpoints of interest that are relevant to the portable electronic device and at least one interface to a network service for transmitting the positional information and the direction information to the network service. In return, based on real-time changes to the positional information and direction/pointing information, the device dynamically receives in the cache memory an updated subset of endpoints that are potentially relevant to the portable electronic device.
  • For instance, the subset of endpoints can be updated as a function of endpoints of interest within a pre-defined distance substantially along a vector defined by the orientation of the portable electronic device. Alternatively or in addition, the subset of endpoints can be updated as a function of endpoints of interest relevant to a current context of the portable electronic device. In this regard, the device can include a set of Representational State Transfer (REST)-based application programming interfaces (APIs), or other stateless set of APIs, so that the device can communicate with the service over different networks, e.g., Wi-Fi, a GPRS network, etc. or communicate with other users of the service, e.g., Bluetooth. For the avoidance of doubt, the embodiments are in no way limited to a REST based implementation, but rather any other state or stateful protocol could be used to obtain information from the service to the devices. For the avoidance of doubt, implementations of direction based services and devices are not dependent on REST based implementations, but could also be performed with REST, simple object access protocol (SOAP), really simple syndication (RSS), etc.
  • The directional component outputs direction information including compass information based on calibrated and compensated heading/directionality information. The directional component can also include direction information indicating upward or downward tilt information associated with a current upward or downward tilt of the portable electronic device, so that the services can detect when a user is pointing upwards or downwards with the device in addition to a certain direction. The height of the vectors itself can also be taken into account to distinguish between an event of pointing with a device from the top of a building (likely pointing to other buildings, bridges, landmarks, etc.) and the same event from the bottom of the building (likely pointing to a shop at ground level), or towards a ceiling or floor to differentiate among shelves in a supermarket. A 3-axis magnetic field sensor can also be used to implement a compass to obtain tilt readings.
  • Secondary sensors, such as altimeters or pressure readers, can also be included in a mobile device and used to detect a height of the device, e.g., what floor a device is on in a parking lot or floor of a department store (changing the associated map/floorplan data). Where a device includes a compass with a planar view of the world (e.g., 2-axis compass), the inclusion of one or more accelerometers in the device can be used to supplement the motion vector measured for a device as a virtual third component of the motion vector, e.g., to provide measurements regarding a third degree of freedom. This option may be deployed where the provision of a 3-axis compass is too expensive, or otherwise unavailable. In this regard, any type of compass, or combination of compasses can be used according to the sensitivity or degree of directional information for a given application or set of services. Thus, electromagnetic compass(es), digital compass(es), SW, etc., or any combination of compass(es) are all contemplated for a device in order to interact with POIs. Moreover, any one or more of the compass(es) can include support for 1, 2 or 3 axes.
  • In this respect, a gesturing component can also be included in the device to determine a current gesture of a user of the portable electronic device from a set of pre-defined gestures. For example, gestures can include zoom in, zoom out, panning to define an arc, all to help filter over potential subsets of points of interest for the user.
  • For instance, web services can effectively resolve vector coordinates sent from mobile endpoints into <x,y,z> or other coordinates using location data, such as GPS data, as well as configurable, synchronized POV information similar to that found in a GPS system in an automobile. In this regard, any of the embodiments can be applied similarly in any motor vehicle device. One non-limiting use is also facilitation of endpoint discovery for synchronization of data of interest to or from the user from or to the endpoint.
  • Among other algorithms for interpreting position/motion/direction information, as shown in FIG. 14, a device 1400 employing the direction based location based services 1402 as described herein in a variety of embodiments herein include a way to discern between near objects, such as POI 1414 and far objects, such as POI 1416. Depending on the context of usage, the time, the user's past, the device state, the speed of the device, the nature of the POIs, etc., the service can determine a general distance associated with a motion vector. Thus, a motion vector 1406 will implicate POI 1414, but not POI 1416, and the opposite would be true for motion vector 1408.
  • In addition, a device 1400 includes an algorithm for discerning items substantially along a direction at which the device is pointing, and those not substantially along a direction at which the device is pointing. In this respect, while motion vector 1404 might implicate POI 1412, without a specific panning gesture that encompassed more directions/vectors, POIs 1414 and 1416 would likely not be within the scope of points of interest defined by motion vector 1404. The distance or reach of a vector can also be tuned by a user, e.g., via a slider control or other control, to quickly expand or contract the scope of endpoints encompassed by a given “pointing” interaction with the device.
  • In one non-limiting embodiment, the determination of at what or whom the user is pointing is performed by calculating an absolute “Look” vector, within a suitable margin of error, by a reading from an accelerometer's tilt and a reading from the magnetic compass. Then, an intersection of endpoints determines an initial scope, which can be further refined depending on the particular service employed, i.e., any additional filter. For instance, for an apartment search service, endpoints falling within the look vector that are not apartments ready for lease, can be pre-filtered.
  • In addition to the look vector determination, the engine can also compensate for, or begin the look vector, where the user is by establish positioning (˜15 feet) through an A-GPS stack (or other location based or GPS subsystem including those with assistance strategies) and also compensate for any significant movement/acceleration of the device, where such information is available.
  • As mentioned, in another aspect, a device can include a client side cache of potentially relevant points of interest, which, based on the user's movement history can be dynamically updated. The context, such as geography, speed, etc. of the user can be factored in when updating. For instance, if a user's velocity is 2 miles an hour, the user may be walking and interested in updates at a city block by city block level, or at a lower level granularity if they are walking in the countryside. Similarly, if a user is moving on a highway at 60 miles per hour, the block-by-block updates of information are no longer desirable, but rather a granularity can be provided to the device that makes sense for the speed of the vehicle.
  • In an automobile context, the location becomes the road on which the automobile is travelling, and the particular items are the places and things that are passed on the roadside much like products in a particular retail store on a shelf or in a display. The pointing based services thus creates a virtual “billboard” opportunity for items of interest generally along a user's automobile path. Proximity to location can lead to an impulse buy, e.g., a user might stop by a museum they are passing and pointing at with their device, if offered a discount on admission.
  • In various alternative embodiments, gyroscopic or magnetic compasses can provide directional information. A REST based architecture enables data communications to occur over different networks, such as Wi-Fi and GPRS architectures. REST based APIs can be used, though any stateless messaging can be used that does not require a long keep alive for communicated data/messages. This way, since networks can go down with GPRS antennae, seamless switching can occur to Wi-Fi or Bluetooth networks to continue according to the pointing based services enabled by the embodiments described herein.
  • A device as provided herein according to one or more embodiments can include a file system to interact with a local cache, store updates for synchronization to the service, exchange information by Bluetooth with other users of the service, etc. Accordingly, operating from a local cache, at least the data in the local cache is still relevant at a time of disconnection, and thus, the user can still interact with the data. Finally, the device can synchronize according to any updates made at a time of re-connection to a network, or to another device that has more up to date GPS data, POI data, etc. In this regard, a switching architecture can be adopted for the device to perform a quick transition from connectivity from one networked system (e.g., cell phone towers) to another computer network (e.g., Wi-Fi) to a local network (e.g., mesh network of Bluetooth connected devices).
  • With respect to user input, a set of soft keys, touch keys, etc. can be provided to facilitate in the directional-based pointing services provided herein. A device can include a windowing stack in order to overlay different windows, or provide different windows of information regarding a point of interest (e.g., hours and phone number window versus interactive customer feedback window). Audio can be rendered or handled as input by the device. For instance, voice input can be handled by the service to explicitly point without the need for a physical movement of the device. For instance, a user could say into a device “what is this product right in front of me? No, not that one, the one above it” and have the device transmit current direction/movement information to a service, which in turn intelligently, or iteratively, determines what particular item of interest the user is pointing at, and returns a host of relevant information about the item.
  • One non-limiting way for determining a set of points of interest is illustrated in FIG. 15. In FIG. 15, a device 1500 is pointed (e.g., point and click) in a direction D1, which according to the device or service parameters, implicitly defines an area within arc 1510 and distance 1520 that encompasses POI 1530, but does not encompass POI 1532. Such an algorithm will also need to determine any edge case POIs, i.e., whether POIs such as POI 1534 are within the scope of pointing in direction D1, where the POI only partially falls within the area defined by arc 1510 and distance 1520.
  • Other gestures that can be of interest in for a gesturing subsystem include recognizing a user's gesture for zoom in or zoom out. Zoom in/zoom out can be done in terms of distance like FIG. 16. In FIG. 16, a device 1600 pointed in direction D1 may include zoomed in view which includes points of interest within distance 1620 and arc 1610, or a medium zoomed view representing points of interest between distance 1620 and 1622, or a zoomed out view representing points of interest beyond distance 1622. These zoom zones correspond to POIs 1630, 1632 and 1634, respectively. More or less zones can be considered depending upon a variety of factors, the service, user preference, etc.
  • For another non-limiting example, with location information and direction information, a user can input a first direction via a click, and then a second direction after moving the device via a second click, which in effect defines an arc 1710 for objects of interest in the system as illustrated in FIG. 17. For instance, via first pointing act by the user at time t1 in direction D1 and a second pointing act at time t2 by the user in direction D2, an arc 1710 is implicitly defined. The area of interest implicitly includes a search of points of object within a distance 1720, which can be zoomed in and out, or selected by the service based on a known granularity of interest, selected by the user, etc. This can be accomplished with a variety of forms of input to define the two directions. For instance, the first direction can be defined upon a click-and-hold button event, or other engage-and-hold user interface element, and the second direction can be defined upon release of the button. Similarly, two consecutive clicks corresponding to the two different directions D1 and D2 can also be implemented.
  • Also, instead of focusing on real distance, zooming in or out could also represent a change in terms of granularity, or size, or hierarchy of objects. For example, a first pointing gesture with the device may result in a shopping mall appearing, but with another gesture, a user could carry out a recognizable gesture to gain or lose a level of hierarchical granularity with the points of interest on display. For instance, after such gesture, the points of interest could be zoomed in to the level of the stores at the shopping mall and what they are currently offering.
  • In addition, a variety of even richer behaviors and gestures can be recognized when acceleration of the device in various axes can be discerned. Panning, arm extension/retraction, swirling of the device, backhand tennis swings, breaststroke arm action, golf swing motions could all signify something unique in terms of the behavior of the pointing device, and this is to just name a few motions that could be implemented in practice. Thus, any of the embodiments herein can define a set of gestures that serve to help the user interact with a set of services built on the pointing platform, to help users easily gain information about points of information in their environment.
  • Furthermore, with relatively accurate upward and downward tilt of the device, in addition to directional information such as calibrated and compensated heading/directional information, other services can be enabled. Typically, if a device is ground level, the user is outside, and the device is “pointed” up towards the top of buildings, the granularity of information about points of interest sought by the user (building level) is different than if the user was pointing at the first floor shops of the building (shops level), even where the same compass direction is implicated. Similarly, where a user is at the top of a landmark such as the Empire State building, a downward tilt at the street level (street level granularity) would implicate information about different points of interest that if the user of the device pointed with relatively no tilt at the Statue of Liberty (landmark/building level of granularity).
  • Also, when a device is moving in a car, it may appear that direction is changing as the user maintains a pointing action on a single location, but the user is still pointing at the same thing due to displacement. Thus, thus time varying location can be factored into the mathematics and engine of resolving at what the user is pointing with the device to compensate for the user experience based upon which all items are relative.
  • Accordingly, armed with the device's position, one or more web or cloud services can analyze the vector information to determine at what or whom the user is looking/pointing. The service can then provide additional information such as ads, specials, updates, menus, happy hour choices, etc., depending on the endpoint selected, the context of the service, the location (urban or rural), the time (night or day), etc. As a result, instead of a blank contextless Internet search, a form of real-time visual search for users in real 3-D environments is provided.
  • In one non-limiting embodiment, the direction based pointing services are implemented in connection with a pair of glasses, headband, etc. having a corresponding display means that acts in concert with the user's looking to highlight or overlay features of interest around the user.
  • As shown in FIG. 18, once a set of objects is determined from the pointing information according to a variety of contexts of a variety of services, a mobile device 1800 can display the objects via representation 1802 according to a variety of user experiences tailored to the service at issue. For instance, a virtual camera experience can be provided, where POI graphics or information can be positioned relative to one another to simulate an imaging experience. A variety of other user interface experiences can be provided based on the pointing direction as well.
  • For instance, a set of different choices are shown in FIG. 19. UI 1900 and 1902 illustrate navigation of hierarchical POI information. For instance, level1 categories may include category1, category2, category3, category4 and category5, but if a user selects around the categories with a thumb-wheel, up-down control, or the like, and chooses one such as category2. Then, subcategory1, subcategory2, subcategory3 and subcategory4 are displayed as subcategories of category2. Then, if the user selects, for instance, subcategory4, perhaps few enough POIs, such as buildings 1900 and 1910 are found in the subcategory in order to display on a 2D map UI 1904 along the pointing direction, or alternatively as a 3D virtual map view 1906 along the pointing direction.
  • Once a single POI is implicated or selected, then a full screen view for the single POI can be displayed, such as the exemplary UI 2000. UI 2000 can have one or more of any of the following representative areas. UI 2000 can include a static POI image 2002 such as a trademark of a store, or a picture of a person. UI 2000 can also include other media, and a static POI information portion 2004 for information that tends not to change such as restaurant hours, menu, contact information, etc. In addition, UI 2000 can include an information section for dynamic information to be pushed to the user for the POI, e.g., coupons, advertisements, offers, sales, etc. In addition, a dynamic interactive information are 2008 can be included where the user can fill out a survey, provide feedback to the POI owner, request the POI to contact the user, make a reservation, buy tickets, etc. UI 2000 also can include a representation of the direction information output by the compass for reference purposes. Further, UI 2000 can include other third party static or dynamic content in area 2012.
  • When things change from the perspective of either the service or the client, a synchronization process can bring either the client or service, respectively, up to date. In this way, an ecosystem is enabled where a user can point at an object or point of interest, gain information about it that is likely to be relevant to the user, interact with the information concerning the point of interest, and add value to services ecosystem where the user interacts. The system thus advantageously supports both static and dynamic content.
  • Other user interfaces can be considered such as left-right, or up-down arrangements for navigating categories or a special set of soft-keys can be adaptively provided.
  • Where a device includes a camera, in one embodiment shown in FIG. 21, a representative non-limiting overlay UI 2100 is shown having 3 POIs POI1, POI2 and POI3. The POIs are overlaid over actual image data being real time viewed on the device via an LCD screen or like display. The actual image data can be of products on a shelf or other display or exhibit in a store. Thus, as the user aims the camera around his or her environment, the lens becomes the pointer, and the POI information can be overlaid intelligently for discovery of endpoints of interest. Moreover, a similar embodiment can be imagined even without a camera, such as a UI in which 3-D objects are virtually represented based on real geometries known for the objects relative to the user.
  • Thus, the device UI can be implemented consistent with a camera, or a virtual camera, view for intuitive use of such devices. The pointer mechanism of the device could also switch based on whether the user was currently in live view mode for the camera or not. Moreover, assuming sufficient processing power and storage, real time image processing could discern an object of interest and based on image signatures, overlay POI information over such image in a similar manner to the above embodiments. In this regard, with the device provided herein, a variety of gestures can be employed to zoom in zoom out, perform tilt detection for looking down or up, or panning across a field of view to obtain a range of POIs associated with the panning scope.
  • With respect to a representative set of user settings, a number or maximum number of desired endpoints delivered as results can be configured. How to filter can also be configured, e.g., 5 most likely, 5 closest, 5 closest to 100 feet away, 5 within category or sub-category, alphabetical order, etc. In each case, based on a pointing direction, implicitly a cone or other cross section across physical space is defined as a scope of possible points of interest. In this regard, the width or deepness of this cone or cross section can be configurable by the user to control the accuracy of the pointing, e.g., narrow or wide radius of points and how far out to search.
  • To support processing of vector information and aggregating POI databases from third parties, a variety of storage techniques, such as relational storage techniques can be used. For instance, Virtual Earth data can be used for mapping and aggregation of POI data can occur from third parties such as Tele Atlas, NavTeq, etc. In this regard, businesses not in the POI database will want to be discovered and thus, the service provides a similar, but far superior from a spatial relevance standpoint, Yellow Pages experiences where businesses will desire to have their additional information, such as menus, price sheets, coupons, pictures, virtual tours, etc. accessible via the system.
  • In addition, a synchronization platform or framework can keep the roaming caches in sync, thereby capturing what users are looking at and efficiently processing changes. Or, where a user goes offline, local changes can be recorded, and when the user goes back online, such local changes can be synchronized to the network or service store. Also, since the users are in effect pulling information they care about in the here and in the now through the act of pointing with the device, the system generates high cost per thousand impression (CPM) rates as compared to other forms of demographic targeting. Moreover, the system drives impulse buys, since the user may not be physically present in a store, but the user may be near the object, and by being nearby and pointing at the store, information about a sale concerning the object can be sent to the user.
  • As mentioned, different location subsystems, such as tower triangulation, GPS, A-GPS, E-GPS, etc. have different tolerances. For instance, with GPS, tolerances can be achieved to about 10 meters. With A-GPS, tolerances can be tightened to about 12 feet. In turn, with E-GPS, tolerance may be a different error margin still. Compensating for the different tolerances is part of the interpretation engine for determining intersection of a pointing vector and a set of points of interest. In addition, as shown in FIGS. 4-6, a distance to project out the pointing vector can be explicit, configurable, contextual, etc.
  • In this regard, the various embodiments described herein can employ any algorithm for distinguishing among boundaries of the endpoints, such as boundary boxes, or rectangles, triangles, circles, etc. As a default radius, e.g., 150 feet could be selected, and such value can be configured or be context sensitive to the service provided. On-line real estate sites can be leveraged for existing POI information. Since different POI databases may track different information at different granularities, a way of normalizing the POI data according to one convention or standard can also be implemented so that the residential real estate location data of Zillow can be integrated with GPS information from Starbucks of all the Starbucks by country.
  • In addition, similar techniques can be implemented in a moving vehicle client that includes GPS, compass, accelerometer, etc. By filtering based on scenarios (e.g., I need gas), different subsets of points of interest (e.g., gas stations) can be determined for the user based not only on distance, but actual time it may take to get to the point of interest. In this regard, while a gas station may be 100 yards to the right off the highway, the car may have already passed the corresponding exit, and thus more useful information to provide is what gas station will take the least amount of time to drive from a current location based on direction/location so as to provide points of interest that are up ahead on the road, and not already aged points of interest that would require turning around from one's destination in order to get to them.
  • For existing motor vehicle navigation devices, or other conventional portable GPS navigation devices, where a device does not natively include directional means such as a compass, the device can have an extension slot that accommodates direction information from an external directional device, such as a compass. Similarly, for laptops or other portable electronic devices, such devices can be outfitted with a card or board with a slot for a compass. While any of the services described herein can make web service calls as part of the pointing and retrieval of endpoint process, as mentioned, one advantageous feature of a user's locality in real space is that it is inherently more limited than a general Internet search for information. As a result, a limited amount of data can be maintained on a user's device in cache memory and properly aged out as data becomes stale.
  • While there are a variety of implementations, and ways to sub-divide regions, whether overlapping or not, predictive caching and aging 2200 is conceptually illustrated by FIG. 22 in which a user's present location 2202 is discerned. At this point, the local cache still includes age out candidate location 2210, but as the velocity of the user indicates the user will be at predicted locations 2204 and 2206 in the future, these regions of POIs are downloaded to the mobile device. Accordingly, as the user travels to predicted location 2206, it starts to be clear that the user no longer needs the data from the age out candidate location 2210, which can then be removed, or flagged for removal when storage is challenged.
  • Accordingly, using the regional data cache, callbacks and an update mechanism that is updated dynamically based on movement, new point of interest can be added by a service or by a user. Update is thus performed continuously or substantially continuously based on updated travel, velocity, speed, etc. In this regard, a user can add a new point of interest in the region, add info to a local cache, and then upload to the zone. To appreciate the problem, the number of worldwide POIs is practically limitless, however only a small number of POIs will be relevant to a user at a given time. Thus, predictively, a cube of data can be taken to the device, the user can go offline such that when the user reconnects, the device is intelligent to figure out what has changed, been weighted, etc., so that the device can synchronize with the network services and expose the user's changes for other people.
  • The predictive algorithms again depend on what the user is interested in finding, what service the user may be using, the context of the user, etc. They can also be based on velocity, direction, time, etc. For instance, if it is nighttime, assumptions based on demographics or preferences may lead the device to return information about nightclubs or all night diners. Or, instead of giving directions as driving directions that calculate distances as absolute distances, i.e., as the crow flies, a device can take road curves into account since instantaneous pointing information on roads can be collected and handled by a corresponding service when giving driving directions. Or, as another alternative, the direction one is heading on a road, such as a highway with a concrete divider, is relevant to the directions that a navigation system should give. Where a U-turn is unavailable and user passes an exit with a point of interest, for instance, directions should take this into account and consider the heading of the vehicle.
  • One way to obtain the service applications, assuming the underlying measuring instruments to participate in the real-time gathering of directional information, is to message to a service to obtain the application, e.g., by text messaging to service, or getting a client download link. Another vehicle for enabling the service is to provide it natively in the operating system or applications of a mobile devices. Since a hardware abstraction layer accommodates different methods for collecting position, direction, acceleration information, the same platform can be used on any device regardless of the precise underlying hardware.
  • In another aspect of any of the embodiments described herein, because stateless messaging is employed, if communications drop with one network, the device can begin further communicating via another network. For instance, a device has two channels, and a user gets on a bus, but no longer have GPRS or GPS activity. Nonetheless the user is able to get the information the device needs from some other channel. Just because a tower, or satellites are down, does not mean that the device cannot connect through an alternative channel, e.g., the bus's GPS location information via Bluetooth.
  • With respect to exemplary mobile client architectures, a representative device can include, as described variously herein, client Side Storage for housing and providing fast access to cached POI data in the current region including associated dynamically updated or static information, such as annotations, coupons from businesses, etc. This includes usage data tracking and storage. In addition, regional data can be a cached subset of the larger service data, always updated based on the region in which the client is roaming. For instance, POI data could include as a non-limiting example, the following information:
  •    POI coordinates and data //{−70.26322, 43.65412,
    “STARBUCK'S”}
       Localized annotations //Menu, prices, hours of operation, etc
       Coupons and ads //Classes of coupons (new user,
    returning, etc)
       Support for different kinds of information (e.g., blob v structured
    information (blob for storage and media; structured for tags,
    annotations, etc.)
  • A device can also include usage data and preferences to hold settings as well as usage data such as coupons “activated,” waypoints, businesses encountered per day, other users encountered, etc. to be analyzed by the cloud services for business intelligence analysis and reporting.
  • A device can also include a continuous update mechanism, which is a service that maintains the client's cached copy of a current region updated with the latest. Among other ways, this can be achieved with a ping-to-pull model that pre-fetches and swaps out the client's cached region using travel direction and speed to facilitate roaming among different regions. This is effectively a paging mechanism for upcoming POIs. This also includes sending a new or modified POI for the region (with annotations+coupons), sending a new or modified annotation for the POIs (with coupons), or sending a new or modified coupon for the POI.
  • A device can also include a Hardware Abstraction Layer (HAL) having components responsible for abstracting the way the client communicates with the measuring instruments, e.g., the GPS driver for positioning and LOS accuracy (e.g., open eGPS), magnetic compass for heading and rotational information (e.g., gyroscopic), one or more accelerometers for gestured input and tilt (achieves 3D positional algorithms, assuming gyroscopic compass).
  • As described earlier, a device can also include methods/interfaces to make REST calls via GPRS/Wi-Fi and a file system and storage for storing and retrieving the application data and settings.
  • A device can also include user input and methods to map input to the virtual keys. For instance, one non-limiting way to accomplish user input is to have softkeys as follows, though it is to be understood a great variety of user inputs can be used to achieve interaction with the user interfaces of the pointing based services.
  •   SK up/down:    //Up and down on choices
      SK right, SK ok/confirm: //Choose an option or drill down/next
    page
      SK left, SK cancel/back, //Go back to a previous window, cancel
      Exit / Incoming Call events //Exit the app or minimize
      In addition, a representative device can include a graphics and
    windowing stack to render the client side UI, as well as an audio stack
    to play sounds / alerts.
  • As mentioned, such a device may also include spatial and math computational components including a set of APIs to perform 3D collision testing between subdivided surfaces such as spherical shells (e.g., a simple hit testing model to adopt and boundary definitions for POs), rotate points, and cull as appropriate from conic sections.
  • As described in various embodiments herein, FIGS. 23 and 24 illustrate two processes for a device when location (e.g., GPS) and direction (e.g., compass) events occur. In FIG. 23, upon the occurrence of a location or direction event, at 2300, it is determined whether predictive caching should be initiated for a next region to which a user is travelling. At 2310, if so, then the next region of data can be pre-fetched. At 2320, old regional data no longer of relevance can be aged out. At 2330, any usage data can be uploaded to the service framework for business intelligence, input to an advertisement engine, etc.
  • FIG. 24 represents another process for filtering potential POIs after a pointing event. Upon the detection of a location and direction event, at 2400, for POIs in the device's local cache, a group of POIs are determined that pass an intersection algorithm for the direction of pointing of the device. At 2410, POIs in the group can be represented in some fashion on a UI, e.g., full view if only 1 POI, categorized view, 2-D map view, 3-D perspective view, or user images if other users, etc. The possibilities for representation are limitless; the embodiments described herein are intuitive based on the general notion of pointing based direction services.
  • At 2420, upon selection of a POI, static content is determined and any dynamic content is acquired via synchronization. When new data becomes available, it is downloaded to stay up to date. At 2430, POI information is filtered further by user specific information (e.g., if it is the user's first time at the store, returning customer, loyalty program member, live baseball game offer for team clothing discounts, etc.). At 2440, static and dynamic content that is up to date is rendered for the POI. In addition, updates and/or interaction with POI information is allowed which can be synced back to the service.
  • Exemplary Networked and Distributed Environments
  • One of ordinary skill in the art can appreciate that the various embodiments of methods and devices for pointing based services and related embodiments described herein can be implemented in connection with any computer or other client or server device, which can be deployed as part of a computer network or in a distributed computing environment, and can be connected to any kind of data store. In this regard, the various embodiments described herein can be implemented in any computer system or environment having any number of memory or storage units, and any number of applications and processes occurring across any number of storage units. This includes, but is not limited to, an environment with server computers and client computers deployed in a network environment or a distributed computing environment, having remote or local storage.
  • FIG. 25 provides a non-limiting schematic diagram of an exemplary networked or distributed computing environment. The distributed computing environment comprises computing objects 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc., which may include programs, methods, data stores, programmable logic, etc., as represented by applications 2530, 2532, 2534, 2536, 2538. It can be appreciated that objects 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc. may comprise different devices, such as PDAs, audio/video devices, mobile phones, MP3 players, laptops, etc.
  • Each object 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc. can communicate with one or more other objects 2510, 2512, etc. and computing objects or devices 2520, 2522, 2524, 2526, 2528, etc. by way of the communications network 2540, either directly or indirectly. Even though illustrated as a single element in FIG. 25, network 2540 may comprise other computing objects and computing devices that provide services to the system of FIG. 25, and/or may represent multiple interconnected networks, which are not shown. Each object 2510, 2512, etc. or 2520, 2522, 2524, 2526, 2528, etc. can also contain an application, such as applications 2530, 2532, 2534, 2536, 2538, that might make use of an API, or other object, software, firmware and/or hardware, suitable for communication with or implementation of the delayed interaction model as provided in accordance with various embodiments.
  • There are a variety of systems, components, and network configurations that support distributed computing environments. For example, computing systems can be connected together by wired or wireless systems, by local networks or widely distributed networks. Currently, many networks are coupled to the Internet, which provides an infrastructure for widely distributed computing and encompasses many different networks, though any network infrastructure can be used for exemplary communications made incident to the techniques as described in various embodiments.
  • Thus, a host of network topologies and network infrastructures, such as client/server, peer-to-peer, hub and spoke, or hybrid architectures, can be utilized. In a client/server architecture, particularly a networked system, a client is usually a computer that accesses shared network resources provided by another computer, e.g., a server. In the illustration of FIG. 25, as a non-limiting example, computers 2520, 2522, 2524, 2526, 2528, etc. can be thought of as clients and computers 2510, 2512, etc. can be thought of as servers where servers 2510, 2512, etc. provide data services, such as receiving data from client computers 2520, 2522, 2524, 2526, 2528, etc., storing of data, processing of data, transmitting data to client computers 2520, 2522, 2524, 2526, 2528, etc., although any computer can be considered a client, a server, or both, depending on the circumstances. Any of these computing devices may be processing data, or requesting services or tasks that may implicate the delayed interaction model and related techniques as described herein for one or more embodiments.
  • A server is typically a remote computer system accessible over a remote or local network, such as the Internet or wireless network infrastructures. The client process may be active in a first computer system, and the server process may be active in a second computer system, communicating with one another over a communications medium, thus providing distributed functionality and allowing multiple clients to take advantage of the information-gathering capabilities of the server. Any software objects utilized pursuant to the direction based services can be provided standalone, or distributed across multiple computing devices or objects.
  • In a network environment in which the communications network/bus 2540 is the Internet, for example, the servers 2510, 2512, etc. can be Web servers with which the clients 2520, 2522, 2524, 2526, 2528, etc. communicate via any of a number of known protocols, such as the hypertext transfer protocol (HTTP). Servers 2510, 2512, etc. may also serve as clients 2520, 2522, 2524, 2526, 2528, etc., as may be characteristic of a distributed computing environment.
  • Exemplary Computing Device
  • As mentioned, various embodiments described herein apply to any device wherein it may be desirable to perform pointing based services, and delay interactions with points of interest. It should be understood, therefore, that handheld, portable and other computing devices and computing objects of all kinds are contemplated for use in connection with the various embodiments described herein, i.e., anywhere that a device may request pointing based services. Accordingly, the below general purpose remote computer described below in FIG. 26 is but one example, and the embodiments of the subject disclosure may be implemented with any client having network/bus interoperability and interaction.
  • Although not required, any of the embodiments can partly be implemented via an operating system, for use by a developer of services for a device or object, and/or included within application software that operates in connection with the operable component(s). Software may be described in the general context of computer-executable instructions, such as program modules, being executed by one or more computers, such as client workstations, servers or other devices. Those skilled in the art will appreciate that network interactions may be practiced with a variety of computer system configurations and protocols.
  • FIG. 26 thus illustrates an example of a suitable computing system environment 2600 in which one or more of the embodiments may be implemented, although as made clear above, the computing system environment 2600 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of any of the embodiments. Neither should the computing environment 2600 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 2600.
  • With reference to FIG. 26, an exemplary remote device for implementing one or more embodiments herein can include a general purpose computing device in the form of a handheld computer 2610. Components of handheld computer 2610 may include, but are not limited to, a processing unit 2620, a system memory 2630, and a system bus 2621 that couples various system components including the system memory to the processing unit 2620.
  • Computer 2610 typically includes a variety of computer readable media and can be any available media that can be accessed by computer 2610. The system memory 2630 may include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) and/or random access memory (RAM). By way of example, and not limitation, memory 2630 may also include an operating system, application programs, other program modules, and program data.
  • A user may enter commands and information into the computer 2610 through input devices 2640 A monitor or other type of display device is also connected to the system bus 2621 via an interface, such as output interface 2650. In addition to a monitor, computers may also include other peripheral output devices such as speakers and a printer, which may be connected through output interface 2650.
  • The computer 2610 may operate in a networked or distributed environment using logical connections to one or more other remote computers, such as remote computer 2670. The remote computer 2670 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, or any other remote media consumption or transmission device, and may include any or all of the elements described above relative to the computer 2610. The logical connections depicted in FIG. 26 include a network 2671, such local area network (LAN) or a wide area network (WAN), but may also include other networks/buses. Such networking environments are commonplace in homes, offices, enterprise-wide computer networks, intranets and the Internet.
  • As mentioned above, while exemplary embodiments have been described in connection with various computing devices, networks and advertising architectures, the underlying concepts may be applied to any network system and any computing device or system in which it is desirable to derive information about surrounding points of interest.
  • There are multiple ways of implementing one or more of the embodiments described herein, e.g., an appropriate API, tool kit, driver code, operating system, control, standalone or downloadable software object, etc. which enables applications and services to use the pointing based services. Embodiments may be contemplated from the standpoint of an API (or other software object), as well as from a software or hardware object that provides pointing platform services in accordance with one or more of the described embodiments. Various implementations and embodiments described herein may have aspects that are wholly in hardware, partly in hardware and partly in software, as well as in software.
  • The word “exemplary” is used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art. Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, for the avoidance of doubt, such terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.
  • As mentioned, the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. As used herein, the terms “component,” “system” and the like are likewise intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on computer and the computer can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
  • The aforementioned systems have been described with respect to interaction between several components. It can be appreciated that such systems and components can include those components or specified sub-components, some of the specified components or sub-components, and/or additional components, and according to various permutations and combinations of the foregoing. Sub-components can also be implemented as components communicatively coupled to other components rather than included within parent components (hierarchical). Additionally, it should be noted that one or more components may be combined into a single component providing aggregate functionality or divided into several separate sub-components, and any one or more middle layers, such as a management layer, may be provided to communicatively couple to such sub-components in order to provide integrated functionality. Any components described herein may also interact with one or more other components not specifically described herein but generally known by those of skill in the art.
  • In view of the exemplary systems described supra, methodologies that may be implemented in accordance with the disclosed subject matter will be better appreciated with reference to the flowcharts of the various figures. While for purposes of simplicity of explanation, the methodologies are shown and described as a series of blocks, it is to be understood and appreciated that the claimed subject matter is not limited by the order of the blocks, as some blocks may occur in different orders and/or concurrently with other blocks from what is depicted and described herein. Where non-sequential, or branched, flow is illustrated via flowchart, it can be appreciated that various other branches, flow paths, and orders of the blocks, may be implemented which achieve the same or a similar result. Moreover, not all illustrated blocks may be required to implement the methodologies described hereinafter.
  • While the various embodiments have been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function without deviating therefrom. Still further, one or more aspects of the above described embodiments may be implemented in or across a plurality of processing chips or devices, and storage may similarly be effected across a plurality of devices. Therefore, the present invention should not be limited to any single embodiment, but rather should be construed in breadth and scope in accordance with the appended claims.

Claims (20)

1. A method for a device provisioned for pointing based services, comprising:
receiving point of interest data from one or more pointing based services based on pointing information associated with at least one direction of the device via a first network;
losing connectivity to the first network;
identifying at least one other source of point of interest data to which the device can connect via a second network; and
automatically connecting to the second network to receive the point of interest information from the at least one other source.
2. The method of claim 1, wherein the identifying includes automatically searching for an on-site data store of point of interest information pertaining locally to the device.
3. The method of claim 1, wherein the identifying includes automatically searching for a data store of point of interest information pertaining to points of interest of a physical structure where the device is located.
4. The method of claim 1, wherein the identifying includes automatically identifying at least one other computing device having stored thereon point of interest data.
5. The method of claim 4, further comprising:
requesting permission to receive the point of interest data from the at least one other computing device.
6. The method of claim 1, wherein the identifying includes automatically identifying at least one other computing device having access to point of interest data to which the at least one other computing device can connect via a third network.
7. The method of claim 1, further comprising:
receiving point of interest data from one or more pointing based services based on pointing information associated with at least one direction of the device via the second network.
8. The method of claim 1, wherein the losing connectivity includes losing connectivity to a long range wireless communications network and the identifying includes identifying at least one other source of point of interest data to which the device can connect via a short range wireless communications network.
9. The method of claim 8, wherein the losing connectivity includes losing connectivity to a mobile device communications network and the identifying includes identifying at least one other source of point of interest data to which the device can connect via Bluetooth.
10. A portable electronic device, comprising:
a memory that stores at least information related to at least direction information representing information pertaining to orientation of the device, position information representing information pertaining to location of the device and point of interest information representing information pertaining to points of interest substantially within interactive range of the device;
a positional component for receiving the position information as a function of a location of the portable electronic device;
a directional component that measures the direction information as a function of an orientation of the portable electronic device; and
a switching component that switches among at least two sources for the position information when at least one source of the at least two sources for the position information is not delivering position information to the device.
11. The device of claim 10, wherein the switching component switches among at least two sources for the direction information when at least one source of the at least two sources for the direction information is not operating.
12. The device of claim 10, wherein the switching component switches among at least two sources for the point of interest information when at least one source of the at least two sources for the point of interest information is unavailable.
13. The device of claim 10, further comprising:
at least one processor configured to process the position information and the direction information to determine at least one identifier of at least one point of interest within scope of the device, to receive information corresponding to the at least one identifier of the at least one point of interest, and to display information if the device interacts with the at least one point of interest with the device.
14. The device of claim 10, further comprising:
at least one processor configured to process the position information and the direction information to determine at least one identifier of at least one point of interest within scope of the device, to receive advertisement content corresponding to the at least one identifier of the at least one point of interest, and to render the advertisement content if the device interacts with the at least one point of interest with the device.
15. The device of claim 10, further comprising:
a pointer that visually indicates the orientation of the portable electronic device based upon which the directional component outputs the direction information.
16. The device of claim 10, wherein the directional component is a digital compass that outputs the direction information.
17. A method for a pointing based services enabled device, comprising:
determining direction information as a function of a direction for the device;
determining position information as a function of a position for the device;
receiving pointing based services based on the direction information and position information via a first network;
losing connectivity by the device to the first network;
identifying at least one other source for the pointing based services to which the device can connect on a second network; and
automatically connecting to the second network to receive the pointing based services from the at least one other source.
18. The method of claim 17, further comprising:
determining motion information as a function of movement of the device and the receiving includes receiving pointing base services based on the direction information, position information and the motion information.
19. The method of claim 17, wherein the connecting includes automatically connecting to a nearby device that hosts the pointing based services.
20. The method of claim 17, wherein the connecting includes automatically connecting via Bluetooth.
US12/476,426 2008-06-19 2009-06-02 Source switching for devices supporting dynamic direction information Abandoned US20090315766A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/476,426 US20090315766A1 (en) 2008-06-19 2009-06-02 Source switching for devices supporting dynamic direction information
US14/516,066 US20150066365A1 (en) 2008-06-19 2014-10-16 Source switching for devices supporting dynamic direction information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US7384908P 2008-06-19 2008-06-19
US7459008P 2008-06-20 2008-06-20
US7441508P 2008-06-20 2008-06-20
US12/476,426 US20090315766A1 (en) 2008-06-19 2009-06-02 Source switching for devices supporting dynamic direction information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/516,066 Continuation US20150066365A1 (en) 2008-06-19 2014-10-16 Source switching for devices supporting dynamic direction information

Publications (1)

Publication Number Publication Date
US20090315766A1 true US20090315766A1 (en) 2009-12-24

Family

ID=41430673

Family Applications (8)

Application Number Title Priority Date Filing Date
US12/476,426 Abandoned US20090315766A1 (en) 2008-06-19 2009-06-02 Source switching for devices supporting dynamic direction information
US12/476,417 Active 2029-11-27 US9200901B2 (en) 2008-06-19 2009-06-02 Predictive services for devices supporting dynamic direction information
US12/483,982 Active 2030-01-15 US8200246B2 (en) 2008-06-19 2009-06-12 Data synchronization for devices supporting direction-based services
US12/483,920 Abandoned US20090319178A1 (en) 2008-06-19 2009-06-12 Overlay of information associated with points of interest of direction based data services
US13/485,320 Active US8615257B2 (en) 2008-06-19 2012-05-31 Data synchronization for devices supporting direction-based services
US14/516,066 Abandoned US20150066365A1 (en) 2008-06-19 2014-10-16 Source switching for devices supporting dynamic direction information
US14/934,008 Active 2030-03-29 US10057724B2 (en) 2008-06-19 2015-11-05 Predictive services for devices supporting dynamic direction information
US16/107,753 Active US10728706B2 (en) 2008-06-19 2018-08-21 Predictive services for devices supporting dynamic direction information

Family Applications After (7)

Application Number Title Priority Date Filing Date
US12/476,417 Active 2029-11-27 US9200901B2 (en) 2008-06-19 2009-06-02 Predictive services for devices supporting dynamic direction information
US12/483,982 Active 2030-01-15 US8200246B2 (en) 2008-06-19 2009-06-12 Data synchronization for devices supporting direction-based services
US12/483,920 Abandoned US20090319178A1 (en) 2008-06-19 2009-06-12 Overlay of information associated with points of interest of direction based data services
US13/485,320 Active US8615257B2 (en) 2008-06-19 2012-05-31 Data synchronization for devices supporting direction-based services
US14/516,066 Abandoned US20150066365A1 (en) 2008-06-19 2014-10-16 Source switching for devices supporting dynamic direction information
US14/934,008 Active 2030-03-29 US10057724B2 (en) 2008-06-19 2015-11-05 Predictive services for devices supporting dynamic direction information
US16/107,753 Active US10728706B2 (en) 2008-06-19 2018-08-21 Predictive services for devices supporting dynamic direction information

Country Status (1)

Country Link
US (8) US20090315766A1 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090319175A1 (en) * 2008-06-19 2009-12-24 Microsoft Corporation Mobile computing devices, architecture and user interfaces based on dynamic direction information
US20090318168A1 (en) * 2008-06-19 2009-12-24 Microsoft Corporation Data synchronization for devices supporting direction-based services
US20100057571A1 (en) * 2007-05-01 2010-03-04 Sony Corporation Information processing system, portable information terminal and its control method, information providing device and its control method, and program
US20100185657A1 (en) * 2009-01-12 2010-07-22 Chunyan Wang Method for searching database for recorded location data set and system thereof
US20100315433A1 (en) * 2009-06-11 2010-12-16 Takeshita Kazutaka Mobile terminal, server device, community generation system, display control method, and program
US20110138016A1 (en) * 2009-12-08 2011-06-09 Samsung Electronics Co., Ltd. Dynamic local function binding apparatus and method
US20110217965A1 (en) * 2010-03-03 2011-09-08 Htc Corporation Method, system and computer-readable medium for synchronizing spot information
WO2011142700A1 (en) 2010-05-12 2011-11-17 Telefonaktiebolaget L M Ericsson (Publ) Method, computer program and apparatus for determining an object in sight
WO2011149560A1 (en) * 2010-05-24 2011-12-01 Sony Computer Entertainment America Llc Direction-conscious information sharing
US8073565B2 (en) * 2000-06-07 2011-12-06 Apple Inc. System and method for alerting a first mobile data processing system nearby a second mobile data processing system
EP2410772A1 (en) * 2010-07-20 2012-01-25 Sony Corporation Communication control device, communication control system, communication control method, and program for location-based services
US8126987B2 (en) 2009-11-16 2012-02-28 Sony Computer Entertainment Inc. Mediation of content-related services
US20120072110A1 (en) * 2010-09-17 2012-03-22 Atheros Communications, Inc. Indoor positioning using pressure sensors
CN102420936A (en) * 2010-07-30 2012-04-18 株式会社泛泰 Apparatus and method for providing road view
WO2012115861A1 (en) * 2011-02-25 2012-08-30 Motorola Mobility Llc Intelligent presentation of advertising with navigation
US8260320B2 (en) 2008-11-13 2012-09-04 Apple Inc. Location specific content
WO2012162012A1 (en) * 2011-05-20 2012-11-29 Motorola Solutions, Inc. Electronic communication systems and methods for real-time location and information coordination
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
WO2013024278A1 (en) * 2011-08-12 2013-02-21 Overlay Media Limited Context-awareness on mobile devices
WO2013024279A1 (en) * 2011-08-12 2013-02-21 Overlay Media Limited Context-awareness statistics on mobile devices
US8467991B2 (en) 2008-06-20 2013-06-18 Microsoft Corporation Data services based on gesture and location information of device
WO2013128078A1 (en) * 2012-02-29 2013-09-06 Nokia Corporation Method and apparatus for rendering items in a user interface
DE102012208733A1 (en) * 2012-05-24 2013-11-28 Bayerische Motoren Werke Aktiengesellschaft Method for determining location of object e.g. shop by user of vehicle, involves determining direction vector and object position data with respect to predetermined reference point and absolute position in geographic coordinate system
CN103460677A (en) * 2011-04-07 2013-12-18 歌乐株式会社 Wireless communication terminal and operating system
US20140006587A1 (en) * 2012-06-27 2014-01-02 Mieko Kusano Systems and methods for mobile music zones
EP2690407A1 (en) * 2012-07-23 2014-01-29 GN Store Nord A/S A hearing device providing spoken information on selected points of interest
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
JP2014511523A (en) * 2011-02-11 2014-05-15 アルカテル−ルーセント Determining active real objects to run software applications
WO2014078551A1 (en) * 2012-11-16 2014-05-22 Apple Inc. System and method for negotiating control of a shared audio or visual resource
JP2014146378A (en) * 2011-03-07 2014-08-14 Kba2 Inc System and method for analytic data gathering from image provider at event or geographic location
US20140258403A1 (en) * 2013-03-11 2014-09-11 Lee Elmore Service tracking display grid system and method
US20150032367A1 (en) * 2013-07-26 2015-01-29 Here Global B.V. Route Verification from Wireless Networks
US8966557B2 (en) 2001-01-22 2015-02-24 Sony Computer Entertainment Inc. Delivery of digital content
US9109921B1 (en) * 2013-06-19 2015-08-18 Amazon Technologies, Inc. Contextual based navigation element
WO2015164070A1 (en) * 2014-04-25 2015-10-29 Google Inc. System and method for providing individualized portable asset applications
DE102014208663A1 (en) * 2014-05-08 2015-11-12 Conti Temic Microelectronic Gmbh DEVICE AND METHOD FOR PROVIDING INFORMATION DATA TO A VEHICLE ENVIRONMENT OBJECT IN A VIDEO IMAGE CURRENT
US9304000B2 (en) * 2011-07-27 2016-04-05 Denso Corporation Cooperation system, navigation system, in-vehicle apparatus and portable terminal
US9483405B2 (en) 2007-09-20 2016-11-01 Sony Interactive Entertainment Inc. Simplified run-time program translation for emulating complex processor pipelines
US9514717B2 (en) 2011-09-26 2016-12-06 Nokia Technology Oy Method and apparatus for rendering items in a user interface
US9661468B2 (en) 2009-07-07 2017-05-23 Microsoft Technology Licensing, Llc System and method for converting gestures into digital graffiti
US20170161937A1 (en) * 2015-12-08 2017-06-08 Amazon Technologies, Inc. Interactive points of interest for 3d-representations
US20170195846A1 (en) * 2014-12-08 2017-07-06 HomeAway.com, Inc. Methods and mobile devices to implement traveler interactions and activity to channelize customized data
US9983407B2 (en) 2015-09-11 2018-05-29 Honda Motor Co., Ltd. Managing points of interest
US10200818B2 (en) 2012-10-23 2019-02-05 Qualcomm Incorporated Real-time path suggestion for a location-enabled mobile device
US10267639B2 (en) 2012-12-04 2019-04-23 Nokia Technologies Oy Method and apparatus for validating potential points of interest using user and device characteristics
US20190156669A1 (en) * 2017-07-17 2019-05-23 Here Global B.V. Method and apparatus for selectively using different types of networks to obtain information regarding one or more traffic signals and intersections
IT201800007887A1 (en) * 2018-08-06 2020-02-06 Levantech Srl A method for identifying an area of interest and information relating to that area of interest along a path
US11095593B2 (en) 2019-06-17 2021-08-17 Billups, Inc. Verification system for message delivery and processing
EP4221161A1 (en) * 2022-01-31 2023-08-02 Deutsche Telekom AG Sharing of an extended reality on a mobile client device
WO2023160794A1 (en) * 2022-02-24 2023-08-31 Harman Becker Automotive Systems Gmbh Navigation device

Families Citing this family (208)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7379975B2 (en) * 2004-04-16 2008-05-27 Nokia Corporation Electric device, computer program, system and method of setting up user applications
US8150943B2 (en) * 2006-03-10 2012-04-03 Staples The Office Superstore, Llc Methods and apparatus for dynamically generating web pages
US20100020229A1 (en) * 2007-04-30 2010-01-28 General Electric Company Wearable personal video/audio device method and system
WO2008152765A1 (en) * 2007-06-11 2008-12-18 Mitsubishi Electric Corporation Navigation system
CN102037324B (en) 2008-04-01 2015-05-13 德卡尔塔公司 Method and system for point-of-interest search along a route
US9477727B2 (en) * 2008-08-01 2016-10-25 Sybase, Inc. Abstracting data for use by a mobile device having occasional connectivity
TW201013430A (en) 2008-09-17 2010-04-01 Ibm Method and system for providing suggested tags associated with a target page for manipulation by a user
KR20100055254A (en) * 2008-11-17 2010-05-26 엘지전자 주식회사 Method for providing poi information for mobile terminal and apparatus thereof
US20100125406A1 (en) * 2008-11-19 2010-05-20 Nokia Corporation Methods, apparatuses, and computer program products for providing point of interest navigation services
US8208943B2 (en) 2009-02-02 2012-06-26 Waldeck Technology, Llc Anonymous crowd tracking
US9105014B2 (en) 2009-02-03 2015-08-11 International Business Machines Corporation Interactive avatar in messaging environment
US20120047087A1 (en) 2009-03-25 2012-02-23 Waldeck Technology Llc Smart encounters
EP2414778B1 (en) * 2009-04-01 2018-06-06 Uber Technologies, Inc. Point of interest search along a route with return
US9240015B2 (en) * 2009-05-08 2016-01-19 A2Zlogix, Inc. Method and system for synchronizing delivery of promotional material to computing devices
US8676497B2 (en) * 2009-07-21 2014-03-18 Alpine Electronics, Inc. Method and apparatus to search and process POI information
US9344841B2 (en) * 2009-08-24 2016-05-17 Samsung Electronics Co., Ltd Mobile device and server exchanging information with mobile apparatus
US8374626B2 (en) * 2009-09-10 2013-02-12 Samsung Electronics Co., Ltd System and method for providing location information service using mobile code
KR101648339B1 (en) * 2009-09-24 2016-08-17 삼성전자주식회사 Apparatus and method for providing service using a sensor and image recognition in portable terminal
US20110077852A1 (en) * 2009-09-25 2011-03-31 Mythreyi Ragavan User-defined marked locations for use in conjunction with a personal navigation device
WO2011039947A1 (en) * 2009-10-01 2011-04-07 日本電気株式会社 Imaging device and control method for same, imaging system and non-transient computer-readable medium with stored program
US8312392B2 (en) * 2009-10-02 2012-11-13 Qualcomm Incorporated User interface gestures and methods for providing file sharing functionality
US20110093515A1 (en) * 2009-10-15 2011-04-21 Mary Elizabeth Albanese Mobile local search platform
KR101768101B1 (en) * 2009-10-30 2017-08-30 엘지전자 주식회사 Information displaying apparatus and method thereof
US8473512B2 (en) 2009-11-06 2013-06-25 Waldeck Technology, Llc Dynamic profile slice
US8909662B2 (en) * 2009-12-30 2014-12-09 Sybase, Inc. Message based mobile object with native PIM integration
US9336291B2 (en) 2009-12-30 2016-05-10 Sybase, Inc. Message based synchronization for mobile business objects
US8788458B2 (en) 2009-12-30 2014-07-22 Sybase, Inc. Data caching for mobile applications
US8914396B2 (en) * 2009-12-30 2014-12-16 At&T Intellectual Property I, L.P. System and method for an iterative disambiguation interface
BR112012018511A2 (en) * 2010-01-29 2019-06-18 Koninklijke Philps Electronics N V interactive lighting control system, system input device, interactive lighting control method, computer, computer program and registration vehicle
US9229227B2 (en) 2010-02-28 2016-01-05 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a light transmissive wedge shaped illumination system
US9128281B2 (en) 2010-09-14 2015-09-08 Microsoft Technology Licensing, Llc Eyepiece with uniformly illuminated reflective display
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US9285589B2 (en) 2010-02-28 2016-03-15 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered control of AR eyepiece applications
US9091851B2 (en) 2010-02-28 2015-07-28 Microsoft Technology Licensing, Llc Light control in head mounted displays
US20120212406A1 (en) * 2010-02-28 2012-08-23 Osterhout Group, Inc. Ar glasses with event and sensor triggered ar eyepiece command and control facility of the ar eyepiece
US20120249797A1 (en) 2010-02-28 2012-10-04 Osterhout Group, Inc. Head-worn adaptive display
JP2013521576A (en) * 2010-02-28 2013-06-10 オスターハウト グループ インコーポレイテッド Local advertising content on interactive head-mounted eyepieces
US20150309316A1 (en) 2011-04-06 2015-10-29 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US9129295B2 (en) 2010-02-28 2015-09-08 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a fast response photochromic film system for quick transition from dark to clear
US9134534B2 (en) 2010-02-28 2015-09-15 Microsoft Technology Licensing, Llc See-through near-eye display glasses including a modular image source
US9097890B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc Grating in a light transmissive illumination system for see-through near-eye display glasses
US9759917B2 (en) 2010-02-28 2017-09-12 Microsoft Technology Licensing, Llc AR glasses with event and sensor triggered AR eyepiece interface to external devices
US9223134B2 (en) 2010-02-28 2015-12-29 Microsoft Technology Licensing, Llc Optical imperfections in a light transmissive illumination system for see-through near-eye display glasses
US9366862B2 (en) 2010-02-28 2016-06-14 Microsoft Technology Licensing, Llc System and method for delivering content to a group of see-through near eye display eyepieces
US9341843B2 (en) 2010-02-28 2016-05-17 Microsoft Technology Licensing, Llc See-through near-eye display glasses with a small scale image source
US10180572B2 (en) 2010-02-28 2019-01-15 Microsoft Technology Licensing, Llc AR glasses with event and user action control of external applications
US9097891B2 (en) 2010-02-28 2015-08-04 Microsoft Technology Licensing, Llc See-through near-eye display glasses including an auto-brightness control for the display brightness based on the brightness in the environment
US8341099B2 (en) * 2010-03-12 2012-12-25 Microsoft Corporation Semantics update and adaptive interfaces in connection with information as a service
US8751743B2 (en) 2010-03-15 2014-06-10 Howard University Apparatus and method for context-aware mobile data management
US20110237274A1 (en) * 2010-03-25 2011-09-29 Palm, Inc. Mobile computing device having relative positioning circuit
KR20110121179A (en) * 2010-04-30 2011-11-07 삼성전자주식회사 Apparatus and method for estimating relative location in terminal
KR101572892B1 (en) * 2010-05-06 2015-11-30 엘지전자 주식회사 Mobile terminal and Method for displying image thereof
US8805783B2 (en) 2010-05-27 2014-08-12 Microsoft Corporation Synchronization of subsets of data including support for varying set membership
US9030536B2 (en) 2010-06-04 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for presenting media content
US9787974B2 (en) 2010-06-30 2017-10-10 At&T Intellectual Property I, L.P. Method and apparatus for delivering media content
US8640182B2 (en) * 2010-06-30 2014-01-28 At&T Intellectual Property I, L.P. Method for detecting a viewing apparatus
US8593574B2 (en) 2010-06-30 2013-11-26 At&T Intellectual Property I, L.P. Apparatus and method for providing dimensional media content based on detected display capability
US8918831B2 (en) 2010-07-06 2014-12-23 At&T Intellectual Property I, Lp Method and apparatus for managing a presentation of media content
US9049426B2 (en) 2010-07-07 2015-06-02 At&T Intellectual Property I, Lp Apparatus and method for distributing three dimensional media content
US8489641B1 (en) * 2010-07-08 2013-07-16 Google Inc. Displaying layers of search results on a map
US9232274B2 (en) 2010-07-20 2016-01-05 At&T Intellectual Property I, L.P. Apparatus for adapting a presentation of media content to a requesting device
US9560406B2 (en) 2010-07-20 2017-01-31 At&T Intellectual Property I, L.P. Method and apparatus for adapting a presentation of media content
US9032470B2 (en) 2010-07-20 2015-05-12 At&T Intellectual Property I, Lp Apparatus for adapting a presentation of media content according to a position of a viewing apparatus
US10225683B1 (en) * 2010-08-02 2019-03-05 Intellectual Ventures Fund 79 Llc Systems, methods, and mediums for receiving reminders and/or identifying available goods and/or services
US8994716B2 (en) 2010-08-02 2015-03-31 At&T Intellectual Property I, Lp Apparatus and method for providing media content
US20120066071A1 (en) * 2010-08-05 2012-03-15 Thomas Scott W Intelligent electronic information deployment
EP2418613A1 (en) * 2010-08-10 2012-02-15 Quipos Solutions GmbH System for implementing and/or expanding a point of service system and method for operating the system
US8438502B2 (en) 2010-08-25 2013-05-07 At&T Intellectual Property I, L.P. Apparatus for controlling three-dimensional images
US8438246B2 (en) * 2010-09-15 2013-05-07 Sony Mobile Communications Ab Device management using a RESTful interface
US8983763B2 (en) * 2010-09-22 2015-03-17 Nokia Corporation Method and apparatus for determining a relative position of a sensing location with respect to a landmark
US8947511B2 (en) 2010-10-01 2015-02-03 At&T Intellectual Property I, L.P. Apparatus and method for presenting three-dimensional media content
KR101774997B1 (en) * 2010-10-14 2017-09-04 엘지전자 주식회사 An electronic device, a method for transmitting data
US8958822B2 (en) * 2010-10-25 2015-02-17 Alohar Mobile Inc. Determining points of interest of a mobile user
US8380427B2 (en) * 2010-12-03 2013-02-19 Google Inc. Showing realistic horizons on mobile computing devices
KR101350033B1 (en) * 2010-12-13 2014-01-14 주식회사 팬택 Terminal and method for providing augmented reality
US10102242B2 (en) 2010-12-21 2018-10-16 Sybase, Inc. Bulk initial download of mobile databases
US9922342B2 (en) 2010-12-28 2018-03-20 Google Llc Evaluating user activity in social environments
US8633979B2 (en) 2010-12-29 2014-01-21 GM Global Technology Operations LLC Augmented road scene illustrator system on full windshield head-up display
US9057874B2 (en) * 2010-12-30 2015-06-16 GM Global Technology Operations LLC Virtual cursor for road scene object selection on full windshield head-up display
US20130304862A1 (en) * 2011-02-09 2013-11-14 Doubletwist Corporation Systems and methods for device-agnostic wireless synchronization
US9497500B1 (en) * 2011-03-03 2016-11-15 Fly-N-Hog Media Group, Inc. System and method for controlling external displays using a handheld device
US9445046B2 (en) 2011-06-24 2016-09-13 At&T Intellectual Property I, L.P. Apparatus and method for presenting media content with telepresence
US9602766B2 (en) 2011-06-24 2017-03-21 At&T Intellectual Property I, L.P. Apparatus and method for presenting three dimensional objects with telepresence
US9030522B2 (en) 2011-06-24 2015-05-12 At&T Intellectual Property I, Lp Apparatus and method for providing media content
US8947497B2 (en) 2011-06-24 2015-02-03 At&T Intellectual Property I, Lp Apparatus and method for managing telepresence sessions
US8818405B2 (en) * 2011-06-30 2014-08-26 Suman Sheilendra Recognition system
US8587635B2 (en) 2011-07-15 2013-11-19 At&T Intellectual Property I, L.P. Apparatus and method for providing media services with telepresence
US8683008B1 (en) 2011-08-04 2014-03-25 Google Inc. Management of pre-fetched mapping data incorporating user-specified locations
US8938257B2 (en) 2011-08-19 2015-01-20 Qualcomm, Incorporated Logo detection for indoor positioning
US8624725B1 (en) * 2011-09-22 2014-01-07 Amazon Technologies, Inc. Enhanced guidance for electronic devices having multiple tracking modes
US8280414B1 (en) 2011-09-26 2012-10-02 Google Inc. Map tile data pre-fetching based on mobile device generated event analysis
US8204966B1 (en) 2011-09-26 2012-06-19 Google Inc. Map tile data pre-fetching based on user activity analysis
US20130084805A1 (en) * 2011-10-04 2013-04-04 Research In Motion Limited Orientation Determination For A Mobile Device
WO2013050216A1 (en) 2011-10-04 2013-04-11 International Business Machines Corporation Pre-emptive content caching in mobile networks
US8358903B1 (en) 2011-10-31 2013-01-22 iQuest, Inc. Systems and methods for recording information on a mobile computing device
US9547406B1 (en) 2011-10-31 2017-01-17 Google Inc. Velocity-based triggering
US8793031B2 (en) 2011-11-10 2014-07-29 Microsoft Corporation Data selection and sharing between a vehicle and a user device
US9275374B1 (en) 2011-11-15 2016-03-01 Google Inc. Method and apparatus for pre-fetching place page data based upon analysis of user activities
US8711181B1 (en) 2011-11-16 2014-04-29 Google Inc. Pre-fetching map data using variable map tile radius
US9063951B1 (en) 2011-11-16 2015-06-23 Google Inc. Pre-fetching map data based on a tile budget
US8886715B1 (en) 2011-11-16 2014-11-11 Google Inc. Dynamically determining a tile budget when pre-fetching data in a client device
US20130131972A1 (en) * 2011-11-18 2013-05-23 Microsoft Corporation Computing-device localization based on inertial sensors
US8924503B2 (en) * 2011-12-07 2014-12-30 International Business Machines Corporation Data services using location patterns and intelligent caching
US9305107B2 (en) 2011-12-08 2016-04-05 Google Inc. Method and apparatus for pre-fetching place page data for subsequent display on a mobile computing device
US9197713B2 (en) 2011-12-09 2015-11-24 Google Inc. Method and apparatus for pre-fetching remote resources for subsequent display on a mobile computing device
US9389088B2 (en) 2011-12-12 2016-07-12 Google Inc. Method of pre-fetching map data for rendering and offline routing
US8803920B2 (en) 2011-12-12 2014-08-12 Google Inc. Pre-fetching map tile data along a route
US8660735B2 (en) * 2011-12-14 2014-02-25 General Motors Llc Method of providing information to a vehicle
CN103165016B (en) * 2011-12-16 2017-09-05 上海博泰悦臻电子设备制造有限公司 Display methods and device, the navigation system of interest point name
US9026480B2 (en) * 2011-12-21 2015-05-05 Telenav, Inc. Navigation system with point of interest classification mechanism and method of operation thereof
US9836770B2 (en) 2012-02-24 2017-12-05 Ad Persistence, Llc Data capture for user interaction with promotional materials
US9332387B2 (en) 2012-05-02 2016-05-03 Google Inc. Prefetching and caching map data based on mobile network coverage
US10155168B2 (en) 2012-05-08 2018-12-18 Snap Inc. System and method for adaptable avatars
US8874682B2 (en) 2012-05-23 2014-10-28 Sybase, Inc. Composite graph cache management
US9110807B2 (en) 2012-05-23 2015-08-18 Sybase, Inc. Cache conflict detection
CN103514113A (en) * 2012-06-18 2014-01-15 联胜(中国)科技有限公司 Electronic data exchange system and method
US9646522B2 (en) * 2012-06-29 2017-05-09 Intel Corporation Enhanced information delivery using a transparent display
US8849942B1 (en) 2012-07-31 2014-09-30 Google Inc. Application programming interface for prefetching map data
US9460416B2 (en) * 2012-08-16 2016-10-04 Microsoft Technology Licensing, Llc Reading mode for interactive slide presentations with accompanying notes
US20140095296A1 (en) * 2012-10-01 2014-04-03 Ebay Inc. Systems and methods for analyzing and reporting geofence performance metrics
WO2014053696A1 (en) * 2012-10-05 2014-04-10 Nokia Corporation Method and apparatus for providing point of interest information associated with broadcast content
US9432806B2 (en) 2012-12-04 2016-08-30 Ebay Inc. Dynamic geofence based on members within
CN104995666B (en) * 2012-12-21 2019-04-23 苹果公司 Method for indicating virtual information in true environment
US10514541B2 (en) * 2012-12-27 2019-12-24 Microsoft Technology Licensing, Llc Display update time reduction for a near-eye display
AU2013100243B4 (en) 2012-12-28 2013-09-26 Uniloc Usa, Inc. Pedestrian traffic monitoring and analysis
US9197618B2 (en) * 2012-12-31 2015-11-24 Here Global B.V. Method and apparatus for location-based authorization to access online user groups
US8814683B2 (en) 2013-01-22 2014-08-26 Wms Gaming Inc. Gaming system and methods adapted to utilize recorded player gestures
US9554244B2 (en) 2013-01-24 2017-01-24 Sap Se Distribution of location and movement information of meeting participants
US9959674B2 (en) 2013-02-26 2018-05-01 Qualcomm Incorporated Directional and X-ray view techniques for navigation using a mobile device
AU2013100804B4 (en) * 2013-03-07 2014-02-20 Uniloc Luxembourg S.A. Predictive delivery of information based on device history
US20140280230A1 (en) * 2013-03-13 2014-09-18 Qualcomm Incorporated Hierarchical orchestration of data providers for the retrieval of point of interest metadata
US9474039B2 (en) 2013-03-14 2016-10-18 Aruba Networks, Inc. Method and system for determining a location of wireless device
WO2014151054A2 (en) * 2013-03-15 2014-09-25 Honda Motor Co., Ltd. Systems and methods for vehicle user interface
US9824387B2 (en) * 2013-03-15 2017-11-21 Proximity Concepts, LLC Systems and methods involving proximity, mapping, indexing, mobile, advertising and/or other features
US8818716B1 (en) 2013-03-15 2014-08-26 Honda Motor Co., Ltd. System and method for gesture-based point of interest search
KR20140117192A (en) * 2013-03-26 2014-10-07 삼성전자주식회사 Server, Terminal apparatus, service transit server and control method thereof
US9454848B2 (en) * 2013-05-20 2016-09-27 Nokia Technologies Oy Image enhancement using a multi-dimensional model
US9621937B1 (en) * 2013-06-25 2017-04-11 BlackArrow Ad selection in opt-in media experience based on multiple group membership and participation
KR20150027553A (en) * 2013-09-04 2015-03-12 한국전자통신연구원 System and method for dynamic visualization of poi(point of interest) features, and refresh method of poi features
WO2015073006A1 (en) * 2013-11-14 2015-05-21 Empire Technology Development Llc Data synchronization
US10068354B2 (en) * 2014-01-02 2018-09-04 Deere & Company Obtaining and displaying agricultural data
US9910501B2 (en) * 2014-01-07 2018-03-06 Toshiba Global Commerce Solutions Holdings Corporation Systems and methods for implementing retail processes based on machine-readable images and user gestures
US10685364B2 (en) * 2014-02-27 2020-06-16 Here Global B.V. Method and apparatus for causing a recommendation of a point of interest
US10015720B2 (en) 2014-03-14 2018-07-03 GoTenna, Inc. System and method for digital communication between computing devices
US10318990B2 (en) * 2014-04-01 2019-06-11 Ebay Inc. Selecting users relevant to a geofence
US10936050B2 (en) 2014-06-16 2021-03-02 Honda Motor Co., Ltd. Systems and methods for user indication recognition
US20160018969A1 (en) * 2014-07-21 2016-01-21 Verizon Patent And Licensing Inc. Method and apparatus for contextual notifications and user interface
US20160048857A1 (en) * 2014-08-12 2016-02-18 Chintan Jain Systems and methods of collecting data to determine interest
JP6715826B2 (en) * 2014-08-25 2020-07-01 ザ エスエスシージー グループ,エルエルシー Content management and presentation system and method
US20170115749A1 (en) * 2014-10-26 2017-04-27 Chian Chiu Li Systems And Methods For Presenting Map And Other Information Based On Pointing Direction
US20160150048A1 (en) * 2014-11-24 2016-05-26 Facebook, Inc. Prefetching Location Data
US10863354B2 (en) 2014-11-24 2020-12-08 Facebook, Inc. Automated check-ins
JP6550736B2 (en) * 2014-12-08 2019-07-31 富士ゼロックス株式会社 Shooting target management program and information processing apparatus
TWI585433B (en) * 2014-12-26 2017-06-01 緯創資通股份有限公司 Electronic device and method for displaying target object thereof
US9537971B2 (en) * 2015-01-29 2017-01-03 Huawei Technologies Co., Ltd. Systems, devices and methods for distributed content pre-fetching in mobile communication networks
CN104794171B (en) * 2015-03-31 2018-06-05 百度在线网络技术(北京)有限公司 Mark the method and device of picture geographical location information
US10360617B2 (en) 2015-04-24 2019-07-23 Walmart Apollo, Llc Automated shopping apparatus and method in response to consumption
US20170032418A1 (en) * 2015-07-27 2017-02-02 R.R. Donnelley & Sons Company Customized variable content marketing distribution
WO2017021420A1 (en) * 2015-08-03 2017-02-09 Here Global B.V. Method and apparatus for syncing an embedded system with plurality of devices
KR102551239B1 (en) * 2015-09-02 2023-07-05 인터디지털 씨이 페이튼트 홀딩스, 에스에이에스 Method, apparatus and system for facilitating navigation in an extended scene
CN114756520A (en) 2015-10-02 2022-07-15 谷歌有限责任公司 Method and system for synchronizing offline data in a computing system
CN106372095B (en) * 2015-10-16 2020-02-07 北京智谷睿拓技术服务有限公司 Electronic map display method and device and vehicle-mounted equipment
US10581952B1 (en) * 2015-11-06 2020-03-03 Scruggs Equipment Company, Inc. Device and method for manufacturer-independent interface between mobile computers and remotely accessible data storage
ES2946192T3 (en) * 2015-11-30 2023-07-13 Signify Holding Bv Distinguishing devices that have positions and directions
CN105554688A (en) * 2015-12-15 2016-05-04 上海智洋网络科技有限公司 Positioning system and application method
GB2562430A (en) 2016-01-19 2018-11-14 Walmart Apollo Llc Consumable item ordering system
US10257305B2 (en) * 2016-02-08 2019-04-09 International Business Machines Corporation Preemptive content distribution
US10824320B2 (en) * 2016-03-07 2020-11-03 Facebook, Inc. Systems and methods for presenting content
US10339365B2 (en) 2016-03-31 2019-07-02 Snap Inc. Automated avatar generation
US10360708B2 (en) 2016-06-30 2019-07-23 Snap Inc. Avatar based ideogram generation
US10401187B2 (en) * 2016-07-15 2019-09-03 Here Global B.V. Method, apparatus and computer program product for a navigation system user interface
TWI622298B (en) * 2016-08-23 2018-04-21 和碩聯合科技股份有限公司 Advertisement image generation system and advertisement image generating method thereof
US11044405B1 (en) 2016-09-16 2021-06-22 Apple Inc. Location systems for electronic device interactions with environment
US10432559B2 (en) * 2016-10-24 2019-10-01 Snap Inc. Generating and displaying customized avatars in electronic messages
US20180158157A1 (en) * 2016-12-02 2018-06-07 Bank Of America Corporation Geo-targeted Property Analysis Using Augmented Reality User Devices
US10452751B2 (en) * 2017-01-09 2019-10-22 Bluebeam, Inc. Method of visually interacting with a document by dynamically displaying a fill area in a boundary
CN108322885B (en) * 2017-01-12 2021-08-24 腾讯科技(深圳)有限公司 Interactive information acquisition method, interactive information setting method, user terminal and system
US10599915B2 (en) * 2017-01-19 2020-03-24 International Business Machines Corporation Providing suggested content based on user detected gesture
US10454857B1 (en) 2017-01-23 2019-10-22 Snap Inc. Customized digital avatar accessories
WO2018200043A1 (en) 2017-04-27 2018-11-01 Snap Inc. Location privacy management on map-based social media platforms
US10212541B1 (en) 2017-04-27 2019-02-19 Snap Inc. Selective location-based identity communication
US11893647B2 (en) 2017-04-27 2024-02-06 Snap Inc. Location-based virtual avatars
US9838850B2 (en) * 2017-05-12 2017-12-05 Mapsted Corp. Systems and methods for determining indoor location and floor of a mobile device
KR101915578B1 (en) * 2017-06-14 2018-11-06 (주)에프엑스기어 System for picking an object base on view-direction and method thereof
CN107656961B (en) 2017-08-04 2020-03-27 阿里巴巴集团控股有限公司 Information display method and device
US11238494B1 (en) 2017-12-11 2022-02-01 Sprint Communications Company L.P. Adapting content presentation based on mobile viewsheds
US10579098B2 (en) * 2017-12-14 2020-03-03 Disney Enterprises, Inc. Inferring the transfer of a physical object associated with a wearable device
US20190215646A1 (en) * 2018-01-05 2019-07-11 Nuance Communications, Inc. Geospecific information system and method
US10944669B1 (en) 2018-02-09 2021-03-09 GoTenna, Inc. System and method for efficient network-wide broadcast in a multi-hop wireless network using packet echos
EP3831021A1 (en) 2018-07-27 2021-06-09 Gotenna Inc. VINEtm ZERO-CONTROL ROUTING USING DATA PACKET INSPECTION FOR WIRELESS MESH NETWORKS
US11218639B1 (en) * 2018-10-12 2022-01-04 Staples, Inc. Mobile interface for marking and organizing images
US11032370B2 (en) * 2018-11-14 2021-06-08 Toyota Jidosha Kabushiki Kaisha Wireless communications in a vehicular macro cloud
US11321411B1 (en) * 2018-12-28 2022-05-03 Meta Platforms, Inc. Systems and methods for providing content
US10783714B2 (en) 2019-01-29 2020-09-22 Verizon Patent And Licensing Inc. Methods and systems for automatically tailoring a form of an extended reality overlay object
US10882398B2 (en) * 2019-02-13 2021-01-05 Xevo Inc. System and method for correlating user attention direction and outside view
EP3935882A4 (en) 2019-03-08 2022-11-16 Gotenna Inc. Method for utilization-based traffic throttling in a wireless mesh network
US11216830B1 (en) 2019-04-09 2022-01-04 Sprint Communications Company L.P. Mobile communication device location data analysis supporting build-out decisions
US10657806B1 (en) 2019-04-09 2020-05-19 Sprint Communications Company L.P. Transformation of point of interest geometries to lists of route segments in mobile communication device traffic analysis
US10555130B1 (en) 2019-04-09 2020-02-04 Sprint Communications Company L.P. Pre-processing of mobile communication device geolocations according to travel mode in traffic analysis
US11067411B1 (en) 2019-04-09 2021-07-20 Sprint Communications Company L.P. Route segmentation analysis for points of interest
US10694321B1 (en) 2019-04-09 2020-06-23 Sprint Communications Company L.P. Pattern matching in point-of-interest (POI) traffic analysis
US10645531B1 (en) 2019-04-29 2020-05-05 Sprint Communications Company L.P. Route building engine tuning framework
US10715950B1 (en) * 2019-04-29 2020-07-14 Sprint Communications Company L.P. Point of interest (POI) definition tuning framework
US20230194274A1 (en) * 2019-08-12 2023-06-22 Google Llc Using Radio Frequency Signal Strength to Improve Route Options in a Navigation Service
US20210072027A1 (en) * 2019-09-09 2021-03-11 Caci, Inc. - Federal Systems and methods for providing localization and navigation services
US11551264B2 (en) * 2019-09-17 2023-01-10 Dish Network L.L.C. Systems and methods for intelligent ad-based routing
US11244411B2 (en) * 2020-03-30 2022-02-08 Sharp Nec Display Solutions. Ltd. Information processing system, method, and computer readable medium for graphical user interface
CN113343128A (en) * 2021-05-31 2021-09-03 阿波罗智联(北京)科技有限公司 Method, device, equipment and storage medium for pushing information

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745545A (en) * 1985-06-28 1988-05-17 Cray Research, Inc. Memory reference control in a multiprocessor
US5767795A (en) * 1996-07-03 1998-06-16 Delta Information Systems, Inc. GPS-based information system for vehicles
US5781908A (en) * 1995-12-18 1998-07-14 J.D. Edwards World Source Company File data synchronizer in a distributed data computer network
US5892900A (en) * 1996-08-30 1999-04-06 Intertrust Technologies Corp. Systems and methods for secure transaction management and electronic rights protection
US6243076B1 (en) * 1998-09-01 2001-06-05 Synthetic Environments, Inc. System and method for controlling host system interface with point-of-interest data
US6252544B1 (en) * 1998-01-27 2001-06-26 Steven M. Hoffberg Mobile communication device
US20020002504A1 (en) * 2000-05-05 2002-01-03 Andrew Engel Mobile shopping assistant system and device
US6353398B1 (en) * 1999-10-22 2002-03-05 Himanshu S. Amin System for dynamically pushing information to a user utilizing global positioning system
US6360167B1 (en) * 1999-01-29 2002-03-19 Magellan Dis, Inc. Vehicle navigation system with location-based multi-media annotation
US20020042750A1 (en) * 2000-08-11 2002-04-11 Morrison Douglas C. System method and article of manufacture for a visual self calculating order system over the world wide web
US6372974B1 (en) * 2001-01-16 2002-04-16 Intel Corporation Method and apparatus for sharing music content between devices
US6374180B1 (en) * 2000-09-18 2002-04-16 Magellan Dis, Inc. Points of interest for a navigation system
US6381603B1 (en) * 1999-02-22 2002-04-30 Position Iq, Inc. System and method for accessing local information by using referencing position system
US6381465B1 (en) * 1999-08-27 2002-04-30 Leap Wireless International, Inc. System and method for attaching an advertisement to an SMS message for wireless transmission
US20020059256A1 (en) * 1998-03-03 2002-05-16 Pumatech, Inc., A Delaware Corporation Remote data access and synchronization
US20020077905A1 (en) * 2000-08-11 2002-06-20 Tvx Internet Services, Inc. Integrated system for differentiation and positioning of a commercial offering
US6421602B1 (en) * 2001-01-03 2002-07-16 Motorola, Inc. Method of navigation guidance for a distributed communications system having communications nodes
US6424524B2 (en) * 1998-08-21 2002-07-23 Compaq Information Technologies Group, L.P. Wedge-shaped port replicator for portable computer
US20030036848A1 (en) * 2001-08-16 2003-02-20 Sheha Michael A. Point of interest spatial rating search method and system
US6526335B1 (en) * 2000-01-24 2003-02-25 G. Victor Treyz Automobile personal computer systems
US20030046164A1 (en) * 2001-07-16 2003-03-06 Junichi Sato Method for providing content distribution service and terminal device
US6542818B1 (en) * 2002-01-29 2003-04-01 General Motors Corporation Method and system for real-time recording and uploading of vehicle routes for routing assistance and traffic reporting
US6587835B1 (en) * 2000-02-09 2003-07-01 G. Victor Treyz Shopping assistance with handheld computing device
US20030142853A1 (en) * 2001-11-08 2003-07-31 Pelco Security identification system
US6672506B2 (en) * 1996-01-25 2004-01-06 Symbol Technologies, Inc. Statistical sampling security methodology for self-scanning checkout system
US6678882B1 (en) * 1999-06-30 2004-01-13 Qwest Communications International Inc. Collaborative model for software systems with synchronization submodel with merge feature, automatic conflict resolution and isolation of potential changes for reuse
US20040024727A1 (en) * 2002-07-30 2004-02-05 Sandvine Incorporated Method and system of re-sharing files with modifications
US20040107072A1 (en) * 2002-12-03 2004-06-03 Arne Dietrich Ins-based user orientation and navigation
US20040122870A1 (en) * 2002-12-24 2004-06-24 Joong-Ki Park Method for data synchronization and update conflict resolution between mobile clients and server in mobile system
US20040128324A1 (en) * 2002-12-30 2004-07-01 Arnold Sheynman Digital content preview generation and distribution among peer devices
US20040203863A1 (en) * 2002-06-28 2004-10-14 Heikki Huomo System and method for initiating location-dependent applications on mobile devices
US6837436B2 (en) * 1996-09-05 2005-01-04 Symbol Technologies, Inc. Consumer interactive shopping system
US20050015436A1 (en) * 2003-05-09 2005-01-20 Singh Ram P. Architecture for partition computation and propagation of changes in data replication
US6850837B2 (en) * 2000-03-14 2005-02-01 Navteq North America, Llc Method and system for providing reminders about points of interests while traveling
US20050027755A1 (en) * 2003-07-31 2005-02-03 Shah Ashish B. Systems and methods for synchronizing with multiple data stores
US20050044187A1 (en) * 2003-08-21 2005-02-24 Microsoft Corporation Systems and methods for providing conflict handling for peer-to-peer synchronization of units of information manageable by a hardware/software interface system
US20050049993A1 (en) * 2003-08-21 2005-03-03 Microsoft Corporation Systems and methods for data modeling in an item-based storage platform
US20050063563A1 (en) * 2003-09-23 2005-03-24 Soliman Samir S. System and method for geolocation using imaging techniques
US20050071280A1 (en) * 2003-09-25 2005-03-31 Convergys Information Management Group, Inc. System and method for federated rights management
US6895503B2 (en) * 2001-05-31 2005-05-17 Contentguard Holdings, Inc. Method and apparatus for hierarchical assignment of rights to documents and documents having such rights
US6898517B1 (en) * 2001-07-24 2005-05-24 Trimble Navigation Limited Vehicle-based dynamic advertising
US6912398B1 (en) * 2000-04-10 2005-06-28 David Domnitz Apparatus and method for delivering information to an individual based on location and/or time
US6983293B2 (en) * 2002-07-24 2006-01-03 International Business Machines Corporation Mid-tier-based conflict resolution method and system usable for message synchronization and replication
US6992619B2 (en) * 2003-08-01 2006-01-31 Intel Corporation Use of global positioning satellites (GPS) to discover and select local services
US20060047776A1 (en) * 2004-08-31 2006-03-02 Chieng Stephen S Automated failover in a cluster of geographically dispersed server nodes using data replication over a long distance communication link
US7010501B1 (en) * 1998-05-29 2006-03-07 Symbol Technologies, Inc. Personal shopping system
US20060061551A1 (en) * 1999-02-12 2006-03-23 Vega Vista, Inc. Motion detection and tracking system to control navigation and display of portable displays including on-chip gesture detection
US20060069798A1 (en) * 2004-09-03 2006-03-30 Microsoft Corporation Digital rights management scheme for an on-demand distributed streaming system
US7031875B2 (en) * 2001-01-24 2006-04-18 Geo Vector Corporation Pointing systems for addressing objects
US7032003B1 (en) * 2001-08-13 2006-04-18 Union Gold Holdings, Ltd. Hybrid replication scheme with data and actions for wireless devices
US7040541B2 (en) * 1996-09-05 2006-05-09 Symbol Technologies, Inc. Portable shopping and order fulfillment system
US20060107330A1 (en) * 2003-01-02 2006-05-18 Yaacov Ben-Yaacov Method and system for tracking and managing rights for digital music
US20060106879A1 (en) * 2004-11-16 2006-05-18 International Business Machines Corporation Conflict resolution in a synchronization framework
US20060106881A1 (en) * 2004-10-25 2006-05-18 Empower Technologies System and method for global data synchronization
US20060123010A1 (en) * 2004-09-15 2006-06-08 John Landry System and method for managing data in a distributed computer system
US20070004451A1 (en) * 2005-06-30 2007-01-04 C Anderson Eric Controlling functions of a handheld multifunction device
US20070008110A1 (en) * 2004-01-17 2007-01-11 Huawei Technologies Co., Ltd. Method for obtaining direction of target location through a handset
US20070016368A1 (en) * 2005-07-13 2007-01-18 Charles Chapin Generating Human-Centric Directions in Mapping Systems
US20070015515A1 (en) * 2003-09-25 2007-01-18 Nec Corporation Position information service providing system and method thereof
US7171378B2 (en) * 1998-05-29 2007-01-30 Symbol Technologies, Inc. Portable electronic terminal and data processing system
US7191218B1 (en) * 2000-02-24 2007-03-13 International Business Machines Corporation Database synchronization for mobile computing devices
US7198192B2 (en) * 2005-02-01 2007-04-03 Electronic Data Systems Corporation Wireless mobile instant product price comparison and product review
US20070080216A1 (en) * 2001-05-25 2007-04-12 At&T Corp. User interface systems
US20070118278A1 (en) * 2005-11-18 2007-05-24 Michael Finn Geographic database with detailed local data
US20070130217A1 (en) * 2005-10-13 2007-06-07 Unwired Software, Inc. Many to many data synchronization
US20070139366A1 (en) * 2005-12-21 2007-06-21 Dunko Gregory A Sharing information between devices
US20080004802A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Route planning with contingencies
US20080027632A1 (en) * 2006-03-28 2008-01-31 Mauderer Hans P Storage and visualization of points of interest in a navigation system
US7340333B2 (en) * 2004-07-26 2008-03-04 Gm Global Technology Operations, Inc. Multifunction control system
US20080056535A1 (en) * 2006-09-01 2008-03-06 Harman Becker Automotive Systems Gmbh Image recongition system
US20080065322A1 (en) * 2006-03-31 2008-03-13 Brian Ng Motor vehicle and navigation arrangement for a motor vehicle
US20080077319A1 (en) * 2006-09-27 2008-03-27 Xanavi Informatics Corporation Navigation System Using Intersection Information
US20080113674A1 (en) * 2006-11-10 2008-05-15 Mohammad Faisal Baig Vicinity-based community for wireless users
US20080140835A1 (en) * 2003-06-05 2008-06-12 Intertrust Technologies Corp. Interoperable systems and methods for peer-to-peer service orchestration
US7389179B2 (en) * 2001-01-24 2008-06-17 Telenav, Inc. Real-time navigation system for mobile environment
US20090006194A1 (en) * 2007-06-27 2009-01-01 Microsoft Corporation Location, destination and other contextual information-based mobile advertisements
US20090005077A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Location-Based Services
US20090005076A1 (en) * 2007-06-28 2009-01-01 Scott Forstall Location-Based Information Services
US20090040370A1 (en) * 2007-08-07 2009-02-12 Palm, Inc. Displaying image data and geographic element data
US20090076723A1 (en) * 2007-09-14 2009-03-19 Palm, Inc. Targeting Location Through Haptic Feedback Signals
US20090102859A1 (en) * 2007-10-18 2009-04-23 Yahoo! Inc. User augmented reality for camera-enabled mobile devices
US20090143078A1 (en) * 2007-11-30 2009-06-04 Palm, Inc. Techniques to manage a radio based on location information
US20100008255A1 (en) * 2008-06-20 2010-01-14 Microsoft Corporation Mesh network services for devices supporting dynamic direction information
US20100016022A1 (en) * 2008-07-15 2010-01-21 Sony Ericsson Mobile Communications Ab Methods and Apparatus for Providing Services Information with a Femtocell Wireless Base Station
US7653576B2 (en) * 2006-08-01 2010-01-26 International Business Machines Corporation Method for pricing items
US20100030646A1 (en) * 2005-12-13 2010-02-04 Yahoo! Inc. System for providing location predictive advertising
US20100076968A1 (en) * 2008-05-27 2010-03-25 Boyns Mark R Method and apparatus for aggregating and presenting data associated with geographic locations
US7720844B2 (en) * 2007-07-03 2010-05-18 Vulcan, Inc. Method and system for continuous, dynamic, adaptive searching based on a continuously evolving personal region of interest
US7747528B1 (en) * 2004-02-11 2010-06-29 Yt Acquisition Corporation System and method for delaying payment processing for biometrically-initiated financial transactions
US20110093227A1 (en) * 2006-12-08 2011-04-21 Andrew Shane Huang Systems and methods for location, motion, and contact detection and tracking in a networked audiovisual device
US8165034B2 (en) * 2007-03-16 2012-04-24 Jon Buchwald Configurable zone-based location detection
US8170795B2 (en) * 2005-01-18 2012-05-01 Harman Becker Automotive Systems Gmbh Navigation system with animated intersection view
US8407003B2 (en) * 2006-08-15 2013-03-26 Tomtom International B.V. Method of generating improved map data for use in navigation devices, map data and navigation device therefor

Family Cites Families (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262199A (en) 1978-05-26 1981-04-14 The Marconi Company Limited Infra-red target detection and recognition system
US5424524A (en) * 1993-06-24 1995-06-13 Ruppert; Jonathan P. Personal scanner/computer for displaying shopping lists and scanning barcodes to aid shoppers
US6321158B1 (en) 1994-06-24 2001-11-20 Delorme Publishing Company Integrated routing/mapping information
US5948040A (en) 1994-06-24 1999-09-07 Delorme Publishing Co. Travel reservation information and planning system
JP3474022B2 (en) 1995-04-20 2003-12-08 株式会社日立製作所 Map display device, map display method, arithmetic processing unit for map display device, and navigation system
US7426437B2 (en) 1997-10-22 2008-09-16 Intelligent Technologies International, Inc. Accident avoidance systems and methods
US6208290B1 (en) * 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link
JP3658659B2 (en) 1995-11-15 2005-06-08 カシオ計算機株式会社 Image processing device
US5787262A (en) 1996-06-26 1998-07-28 Microsoft Corporation System and method for distributed conflict resolution between data objects replicated across a computer network
EP1019807B1 (en) 1997-02-27 2017-04-05 Siebel Systems, Inc. Method of migrating to a successive level of a software distribution incorporating local modifications
DE69810768D1 (en) 1997-06-03 2003-02-20 Stephen Bide PORTABLE NAVIGATION SYSTEM WITH DIRECTION DETECTOR, POSITION DETECTOR AND DATABASE
JP4251673B2 (en) 1997-06-24 2009-04-08 富士通株式会社 Image presentation device
US6409086B1 (en) 1997-08-08 2002-06-25 Symbol Technolgies, Inc. Terminal locking system
US6680694B1 (en) * 1997-08-19 2004-01-20 Siemens Vdo Automotive Corporation Vehicle information system
US9177476B2 (en) 1997-10-22 2015-11-03 American Vehicular Sciences Llc Method and system for guiding a person to a location
WO1999042947A2 (en) 1998-02-18 1999-08-26 Geovector Corporation Apparatus and methods for presentation of information relating to objects being addressed
JP2000017242A (en) 1998-06-29 2000-01-18 Minnesota Mining & Mfg Co <3M> Hot-melt adhesive composition, pressure-sensitive adhesive film and method for bonding with hot-melt adhesive composition
US6317754B1 (en) 1998-07-03 2001-11-13 Mitsubishi Electric Research Laboratories, Inc System for user control of version /Synchronization in mobile computing
US6076070A (en) 1998-07-23 2000-06-13 Cendant Publishing, Inc. Apparatus and method for on-line price comparison of competitor's goods and/or services over a computer network
US6810405B1 (en) 1998-08-18 2004-10-26 Starfish Software, Inc. System and methods for synchronizing data between multiple datasets
US6369794B1 (en) 1998-09-09 2002-04-09 Matsushita Electric Industrial Co., Ltd. Operation indication outputting device for giving operation indication according to type of user's action
JP2000123027A (en) 1998-10-13 2000-04-28 Sony Corp Information providing system, server and information providing method
US6332127B1 (en) 1999-01-28 2001-12-18 International Business Machines Corporation Systems, methods and computer program products for providing time and location specific advertising via the internet
US6212392B1 (en) 1999-02-26 2001-04-03 Signal Soft Corp. Method for determining if the location of a wireless communication device is within a specified area
US6308201B1 (en) 1999-04-08 2001-10-23 Palm, Inc. System and method for sharing data among a plurality of personal digital assistants
US20010030664A1 (en) 1999-08-16 2001-10-18 Shulman Leo A. Method and apparatus for configuring icon interactivity
CA2350604A1 (en) 1999-11-10 2001-05-17 Foodwagon.Com, Inc. System and method for retail price information
US6429808B1 (en) 1999-11-12 2002-08-06 Motorola, Inc. Method and apparatus for assisted GPS integrity maintenance
US6580837B1 (en) * 1999-12-07 2003-06-17 Intel Corporation Up-sampling decimated color plane data
US6771294B1 (en) 1999-12-29 2004-08-03 Petri Pulli User interface
US6317688B1 (en) 2000-01-31 2001-11-13 Rockwell Collins Method and apparatus for achieving sole means navigation from global navigation satelite systems
CA2298194A1 (en) 2000-02-07 2001-08-07 Profilium Inc. Method and system for delivering and targeting advertisements over wireless networks
US20020165771A1 (en) 2001-05-07 2002-11-07 Walker Jay S. Method and apparatus for establishing prices for a plurality of products
US7457628B2 (en) 2000-02-29 2008-11-25 Smarter Agent, Llc System and method for providing information based on geographic position
US6643669B1 (en) 2000-03-14 2003-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Method for optimization of synchronization between a client's database and a server database
US7142205B2 (en) 2000-03-29 2006-11-28 Autodesk, Inc. Single gesture map navigation graphical user interface for a personal digital assistant
GB0008931D0 (en) 2000-04-11 2000-05-31 Hewlett Packard Co Shopping assistance method and apparatus
US6636873B1 (en) 2000-04-17 2003-10-21 Oracle International Corporation Methods and systems for synchronization of mobile devices with a remote database
JP2001312507A (en) 2000-04-28 2001-11-09 Netyear Group Corp System for data transmission from host and its method
AU2001259480A1 (en) 2000-05-05 2001-11-20 Megachips Corporation System and method for obtaining and storing information for deferred browsing
DE60142335D1 (en) 2000-05-16 2010-07-22 Nokia Corp METHOD AND DEVICE FOR VIEWING AND ACCESSING DOWNLOADED CONTEXT DEPENDENT INFORMATION
US7133892B2 (en) 2000-06-16 2006-11-07 Nvidia International, Inc. Method and computer program product for customized information management by allowing a first habitat to access other habitats to retrieve information from the other habitats
US7118498B2 (en) 2000-06-16 2006-10-10 Skyhawke Technologies, Llc Personal golfing assistant and method and system for graphically displaying golf related information and for collection, processing and distribution of golf related data
US20020191034A1 (en) 2000-06-28 2002-12-19 Sowizral Henry A. Size conditioned visibility search system and method
US6327533B1 (en) 2000-06-30 2001-12-04 Geospatial Technologies, Inc. Method and apparatus for continuously locating an object
US6930715B1 (en) 2000-07-21 2005-08-16 The Research Foundation Of The State University Of New York Method, system and program product for augmenting an image of a scene with information about the scene
US6466938B1 (en) 2000-07-31 2002-10-15 Motorola, Inc. Method and apparatus for locating a device using a database containing hybrid location data
US6529144B1 (en) 2000-09-22 2003-03-04 Motorola Inc. Method and apparatus for motion activated control of an electronic device
US6351710B1 (en) 2000-09-28 2002-02-26 Michael F. Mays Method and system for visual addressing
CN1496646A (en) 2000-10-18 2004-05-12 �ʼҷ����ֵ������޹�˾ System for storing and accessing information units
US8130242B2 (en) 2000-11-06 2012-03-06 Nant Holdings Ip, Llc Interactivity via mobile image recognition
US7680324B2 (en) 2000-11-06 2010-03-16 Evryx Technologies, Inc. Use of image-derived information as search criteria for internet and other search engines
JP2002140620A (en) 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd System for providing comparison information
US6377793B1 (en) 2000-12-06 2002-04-23 Xybernaut Corporation System and method of accessing and recording messages at coordinate way points
US20030101059A1 (en) 2000-12-08 2003-05-29 Heyman Martin D. System and method of accessing and recording messages at coordinate way points
WO2002048920A2 (en) 2000-12-12 2002-06-20 Time Warner Entertainment Company, L.P. Digital asset data type definitions
US7072956B2 (en) 2000-12-22 2006-07-04 Microsoft Corporation Methods and systems for context-aware policy determination and enforcement
US6795710B1 (en) 2001-01-05 2004-09-21 Palmone, Inc. Identifying client patterns using online location-based derivative analysis
US20020091568A1 (en) 2001-01-10 2002-07-11 International Business Machines Corporation Personalized profile based advertising system and method with integration of physical location using GPS
US20030069693A1 (en) 2001-01-16 2003-04-10 Snapp Douglas N. Geographic pointing device
US6873968B2 (en) 2001-02-10 2005-03-29 International Business Machines Corporation System, method and computer program product for on-line real-time price comparison and adjustment within a detachable virtual shopping cart
US7358985B2 (en) 2001-02-16 2008-04-15 Fuji Xerox Co., Ltd. Systems and methods for computer-assisted meeting capture
JP2002245333A (en) 2001-02-16 2002-08-30 Mitsubishi Electric Corp Store information providing system
US7103365B2 (en) 2001-02-21 2006-09-05 International Business Machines Corporation System and method for locating an alternate communication mechanism in case of a failure of a wireless communication device
US6542814B2 (en) 2001-03-07 2003-04-01 Horizon Navigation, Inc. Methods and apparatus for dynamic point of interest display
WO2002073818A1 (en) 2001-03-13 2002-09-19 Geovector Corporation Systems for providing point-to-call functionality
US6661353B1 (en) 2001-03-15 2003-12-09 Matsushita Avionics Systems Corporation Method for displaying interactive flight map information
AU2002305653A1 (en) 2001-05-22 2002-12-03 Coovi, Inc. Electronic incentive and promotion management system and method with secure redemption models for brick-and-mortar redemption of on-line coupons
US6452544B1 (en) 2001-05-24 2002-09-17 Nokia Corporation Portable map display system for presenting a 3D map image and method thereof
US7092964B1 (en) * 2001-06-22 2006-08-15 Navteq North America, Llc Method of collecting market research information
US20030046158A1 (en) 2001-09-04 2003-03-06 Kratky Jan Joseph Method and system for enhancing mobile advertisement targeting with virtual roadside billboards
US7571124B2 (en) 2001-09-24 2009-08-04 International Business Machines Corporation Location based services virtual bookmarking
US20030069690A1 (en) 2001-10-04 2003-04-10 General Motors Corporation Method and system for navigation-enhanced directory assistance
US20030078002A1 (en) * 2001-10-24 2003-04-24 Raghunandan Sanjeev Method for wireless link reestablishment
DE10156832B4 (en) 2001-11-20 2004-01-29 Siemens Ag Method and device for displaying information
GB0128220D0 (en) 2001-11-24 2002-01-16 Koninkl Philips Electronics Nv Location based delivery of service data
JP3811071B2 (en) 2002-01-15 2006-08-16 富士通株式会社 User terminal
JP2003242407A (en) 2002-02-18 2003-08-29 Fujitsu Ltd Information providing method, and information providing program
US20030174838A1 (en) 2002-03-14 2003-09-18 Nokia Corporation Method and apparatus for user-friendly peer-to-peer distribution of digital rights management protected content and mechanism for detecting illegal content distributors
US7149759B2 (en) 2002-03-25 2006-12-12 International Business Machines Corporation Method and system for detecting conflicts in replicated data in a database network
US20030195851A1 (en) 2002-04-11 2003-10-16 Ong Lance D. System for managing distribution of digital audio content
US20040032410A1 (en) 2002-05-09 2004-02-19 John Ryan System and method for generating a structured two-dimensional virtual presentation from less than all of a three-dimensional virtual reality model
US20030220966A1 (en) 2002-05-24 2003-11-27 International Business Machines Corporation System and method for dynamic content dependent conflict resolution
US7103844B2 (en) 2002-06-26 2006-09-05 International Business Machines Corporation Portal/portlet application data synchronization
US7854655B2 (en) 2002-07-27 2010-12-21 Sony Computer Entertainment America Inc. Obtaining input for controlling execution of a game program
US6763226B1 (en) 2002-07-31 2004-07-13 Computer Science Central, Inc. Multifunctional world wide walkie talkie, a tri-frequency cellular-satellite wireless instant messenger computer and network for establishing global wireless volp quality of service (qos) communications, unified messaging, and video conferencing via the internet
JP4300767B2 (en) 2002-08-05 2009-07-22 ソニー株式会社 Guide system, content server, portable device, information processing method, information processing program, and storage medium
AU2003286523A1 (en) 2002-10-21 2004-05-13 Johnson Controls Technology Company Point-of-interest display system
US7184020B2 (en) 2002-10-30 2007-02-27 Matsushita Electric Industrial Co., Ltd. Operation instructing device, operation instructing method, and operation instructing program
US7289179B2 (en) * 2002-11-08 2007-10-30 Samsung Electronics Co., Ltd. Liquid crystal display
US20040153473A1 (en) 2002-11-21 2004-08-05 Norman Hutchinson Method and system for synchronizing data in peer to peer networking environments
USD494584S1 (en) 2002-12-05 2004-08-17 Symbol Technologies, Inc. Mobile companion
US20040203891A1 (en) 2002-12-10 2004-10-14 International Business Machines Corporation Dynamic service binding providing transparent switching of information services having defined coverage regions
AU2003280203A1 (en) 2002-12-20 2004-07-14 Koninklijke Philips Electronics N.V. Providing a user with location-based information
US8364951B2 (en) * 2002-12-30 2013-01-29 General Instrument Corporation System for digital rights management using distributed provisioning and authentication
US7321824B1 (en) 2002-12-30 2008-01-22 Aol Llc Presenting a travel route using more than one presentation style
KR100965662B1 (en) * 2003-01-11 2010-06-24 삼성전자주식회사 Navigation system using paging channel and method for providing traffic information
US7783523B2 (en) 2003-01-17 2010-08-24 California Distribution Center, Inc. Automated pricing system
US6795768B2 (en) 2003-02-20 2004-09-21 Motorola, Inc. Handheld object selector
KR100518832B1 (en) 2003-03-18 2005-10-05 삼성전자주식회사 a input system based on three dimensional Inertial Navigation System and method for trajectory estimation thereof
US7136945B2 (en) 2003-03-31 2006-11-14 Sony Corporation Method and apparatus for extending protected content access with peer to peer applications
GB0308629D0 (en) 2003-04-14 2003-05-21 Tagboard Ltd Payment apparatus and method
US20040259573A1 (en) 2003-06-20 2004-12-23 Steven D. Cheng System and method for providing position alerting with a mobile device
US20040260464A1 (en) 2003-06-23 2004-12-23 Winnie Wong Point of interest (POI) search method and apparatus for navigation system
JP2005044427A (en) 2003-07-25 2005-02-17 Toshiba Corp Semiconductor storage device
US7440985B2 (en) 2003-07-31 2008-10-21 Microsoft Corporation Filtered replication of data stores
US7756825B2 (en) 2003-07-31 2010-07-13 Microsoft Corporation Synchronization peer participant model
US20060236258A1 (en) 2003-08-11 2006-10-19 Core Mobility, Inc. Scheduling of rendering of location-based content
US7401104B2 (en) 2003-08-21 2008-07-15 Microsoft Corporation Systems and methods for synchronizing computer systems through an intermediary file system share or device
GB0324108D0 (en) * 2003-10-14 2003-11-19 Stereonics Ltd Binoculars with camera system
US7489299B2 (en) 2003-10-23 2009-02-10 Hillcrest Laboratories, Inc. User interface devices and methods employing accelerometers
EP1692602A4 (en) 2003-10-31 2007-10-24 Landmark Technology Partners I Intelligent client architecture computer system and method
US7245923B2 (en) 2003-11-20 2007-07-17 Intelligent Spatial Technologies Mobile device and geographic information system background and summary of the related art
US20050159974A1 (en) 2004-01-15 2005-07-21 Cairo Inc. Techniques for identifying and comparing local retail prices
US20050172261A1 (en) 2004-01-30 2005-08-04 Yuknewicz Paul J. Architecture for creating a user interface using a data schema
US7526768B2 (en) 2004-02-04 2009-04-28 Microsoft Corporation Cross-pollination of multiple sync sources
US10417298B2 (en) 2004-12-02 2019-09-17 Insignio Technologies, Inc. Personalized content processing and delivery system and media
US8014763B2 (en) 2004-02-28 2011-09-06 Charles Martin Hymes Wireless communications with proximal targets identified visually, aurally, or positionally
US20050203905A1 (en) 2004-03-12 2005-09-15 Samsung Electronics Co., Ltd. Method of synchronizing data between server and user terminal using messenger service system and system using the same
US20050212760A1 (en) 2004-03-23 2005-09-29 Marvit David L Gesture based user interface supporting preexisting symbols
US20050212753A1 (en) 2004-03-23 2005-09-29 Marvit David L Motion controlled remote controller
CA2559726C (en) 2004-03-24 2015-10-20 A9.Com, Inc. System and method for displaying images in an online directory
US8453138B2 (en) 2004-04-13 2013-05-28 Red Bend Ltd. Method and apparatus for generating an update package
US8015211B2 (en) 2004-04-21 2011-09-06 Architecture Technology Corporation Secure peer-to-peer object storage system
EP2343699A1 (en) 2004-04-30 2011-07-13 Hillcrest Laboratories, Inc. Methods and devices for identifying users based on tremor
US20050256786A1 (en) 2004-05-17 2005-11-17 Ian Michael Sands System and method for communicating product information
WO2005117569A2 (en) * 2004-05-28 2005-12-15 University Of Toledo, The A method for producing direct in vitro flowering and viable seed from cotyledon, radicle, and leaf explants and plants produced therefrom
WO2005116794A1 (en) 2004-05-28 2005-12-08 Koninklijke Philips Electronics N.V. License management in a privacy preserving information distribution system
US8684839B2 (en) 2004-06-18 2014-04-01 Igt Control of wager-based game using gesture recognition
US7460953B2 (en) 2004-06-30 2008-12-02 Navteq North America, Llc Method of operating a navigation system using images
US7827176B2 (en) 2004-06-30 2010-11-02 Google Inc. Methods and systems for endorsing local search results
US7489925B2 (en) * 2004-07-01 2009-02-10 Scenera Technologies, Llc Method and apparatus for automatically sending a captured image to a phone call participant
US7886024B2 (en) 2004-07-01 2011-02-08 Microsoft Corporation Sharing media objects in a network
JP2006023793A (en) 2004-07-06 2006-01-26 Sony Corp Information processor, program and program providing server
WO2006025044A2 (en) 2004-07-29 2006-03-09 Ziv Ben-Yehuda System and method for travel planning
JP4391909B2 (en) 2004-08-05 2009-12-24 本田技研工業株式会社 Bumper beam manufacturing method
US20070271317A1 (en) 2004-08-16 2007-11-22 Beinsync Ltd. System and Method for the Synchronization of Data Across Multiple Computing Devices
US20060041663A1 (en) 2004-08-20 2006-02-23 Icentric Corporation Location based dynamic information services
US20060064346A1 (en) 2004-08-31 2006-03-23 Qualcomm Incorporated Location based service (LBS) system and method for targeted advertising
GB2417846A (en) 2004-09-03 2006-03-08 Sony Comp Entertainment Europe Rendering an image of a display object to generate a reflection of a captured video image
GB2419433A (en) 2004-10-20 2006-04-26 Glasgow School Of Art Automated Gesture Recognition
US7490056B2 (en) 2004-11-04 2009-02-10 Ebay Inc. System to generate an aggregate interest indication with respect to an information item
US20060176516A1 (en) 2004-11-29 2006-08-10 Rothschild Trust Holdings, Llc System and method for embedding and retrieving information in digital images and using the information to copyright the digital images
US7734585B2 (en) * 2004-12-03 2010-06-08 Oracle International Corporation Updateable fan-out replication with reconfigurable master association
US20060122035A1 (en) 2004-12-08 2006-06-08 Felix Ronnie D Virtual reality exercise system and method
US20070165554A1 (en) * 2004-12-23 2007-07-19 Agovo Communications Inc. System, Method and Portable Communication Device
US7720436B2 (en) 2006-01-09 2010-05-18 Nokia Corporation Displaying network objects in mobile devices based on geolocation
US7593943B2 (en) * 2005-01-14 2009-09-22 Microsoft Corporation Method and system for synchronizing multiple user revisions to a shared object
US7589616B2 (en) 2005-01-20 2009-09-15 Avaya Inc. Mobile devices including RFID tag readers
US7809607B2 (en) 2005-01-28 2010-10-05 Qualcomm Incorporated Method and system for providing reverse online auction and mobile commerce
US8214353B2 (en) 2005-02-18 2012-07-03 International Business Machines Corporation Support for schema evolution in a multi-node peer-to-peer replication environment
US20060194596A1 (en) 2005-02-26 2006-08-31 Li Deng System and method for direct peer to peer mobile messaging
US7925212B2 (en) 2005-03-07 2011-04-12 Broadcom Corporation Automatic network and device configuration for handheld devices based on bluetooth device proximity
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US20060256008A1 (en) 2005-05-13 2006-11-16 Outland Research, Llc Pointing interface for person-to-person information exchange
US7602944B2 (en) 2005-04-06 2009-10-13 March Networks Corporation Method and system for counting moving objects in a digital video stream
US7466244B2 (en) 2005-04-21 2008-12-16 Microsoft Corporation Virtual earth rooftop overlay and bounding
US8964054B2 (en) 2006-08-18 2015-02-24 The Invention Science Fund I, Llc Capturing selected image objects
US9621749B2 (en) 2005-06-02 2017-04-11 Invention Science Fund I, Llc Capturing selected image objects
WO2006121986A2 (en) * 2005-05-06 2006-11-16 Facet Technology Corp. Network-based navigation system having virtual drive-thru advertisements integrated with actual imagery from along a physical route
US7775428B2 (en) 2005-05-06 2010-08-17 Berkun Kenneth A Systems and methods for generating, reading and transferring identifiers
US20060256007A1 (en) 2005-05-13 2006-11-16 Outland Research, Llc Triangulation method and apparatus for targeting and accessing spatially associated information
US20060259574A1 (en) 2005-05-13 2006-11-16 Outland Research, Llc Method and apparatus for accessing spatially associated information
JP4722554B2 (en) 2005-05-20 2011-07-13 株式会社ナビタイムジャパン POI information providing system, POI information providing method, information distribution server, terminal device
US7848765B2 (en) 2005-05-27 2010-12-07 Where, Inc. Location-based services
US20060271286A1 (en) 2005-05-27 2006-11-30 Outland Research, Llc Image-enhanced vehicle navigation systems and methods
US7523146B2 (en) 2005-06-21 2009-04-21 Apple Inc. Apparatus and method for peer-to-peer N-way synchronization in a decentralized environment
US20060291482A1 (en) 2005-06-23 2006-12-28 Cisco Technology, Inc. Method and apparatus for providing a metropolitan mesh network
US7647171B2 (en) 2005-06-29 2010-01-12 Microsoft Corporation Learning, storing, analyzing, and reasoning about the loss of location-identifying signals
US7925995B2 (en) 2005-06-30 2011-04-12 Microsoft Corporation Integration of location logs, GPS signals, and spatial resources for identifying user activities, goals, and context
US8933889B2 (en) 2005-07-29 2015-01-13 Nokia Corporation Method and device for augmented reality message hiding and revealing
JP4792866B2 (en) * 2005-08-05 2011-10-12 アイシン・エィ・ダブリュ株式会社 Navigation system
JP2007072730A (en) 2005-09-06 2007-03-22 Improove Technologies Co Ltd Dynamic promotion system and dynamic promotion method in ec site
US20070060114A1 (en) 2005-09-14 2007-03-15 Jorey Ramer Predictive text completion for a mobile communication facility
US8666376B2 (en) 2005-09-14 2014-03-04 Millennial Media Location based mobile shopping affinity program
KR100735555B1 (en) 2005-09-15 2007-07-04 삼성전자주식회사 Apparatus and method for operating according to movement
US8422481B2 (en) 2005-09-20 2013-04-16 Maxtech Communication Networks Ltd. Real time peer to peer network
US20070078596A1 (en) 2005-09-30 2007-04-05 John Grace Landmark enhanced directions
US7782359B2 (en) 2005-10-26 2010-08-24 Olympus Corporation Image capture apparatus and method
US8160400B2 (en) 2005-11-17 2012-04-17 Microsoft Corporation Navigating images using image based geometric alignment and object based controls
US7501981B2 (en) 2005-11-18 2009-03-10 Texas Instruments Incorporated Methods and apparatus to detect and correct integrity failures in satellite positioning system receivers
US20070282564A1 (en) 2005-12-06 2007-12-06 Microvision, Inc. Spatially aware mobile projection
US7620404B2 (en) 2005-12-22 2009-11-17 Pascal Chesnais Methods and apparatus for organizing and presenting contact information in a mobile communication system
US20070161382A1 (en) 2006-01-09 2007-07-12 Melinger Daniel J System and method including asynchronous location-based messaging
US20080215234A1 (en) 2007-03-01 2008-09-04 Pieter Geelen Portable navigation device
US20070260398A1 (en) 2006-03-08 2007-11-08 David Stelpstra Portable navigation device with accelerometer
US7519470B2 (en) 2006-03-15 2009-04-14 Microsoft Corporation Location-based caching for mobile devices
EP2233887A1 (en) 2006-03-15 2010-09-29 Qualcomm Incorporated Method and apparatus for determining relevant point of interest information based upon route of user
US7536201B2 (en) 2006-03-29 2009-05-19 Sony Ericsson Mobile Communications Ab Motion sensor character generation for mobile device
US7913192B2 (en) 2006-03-31 2011-03-22 Research In Motion Limited Methods and apparatus for retrieving and displaying map-related data for visually displayed maps of mobile communication devices
JP2007280212A (en) * 2006-04-10 2007-10-25 Sony Corp Display control device, display control method and display control program
US8917716B2 (en) 2006-04-17 2014-12-23 Muse Green Investments LLC Mesh network telephone system
FI20060470A0 (en) 2006-05-12 2006-05-12 Nokia Corp Orientation-based retrieval of messages
EP1857944B1 (en) 2006-05-15 2016-07-06 BlackBerry Limited Information search dependent on the position and direction of a portable electronic device
WO2007136691A2 (en) * 2006-05-18 2007-11-29 Rent-A-Toll, Ltd. Determining a toll amount
US8571580B2 (en) * 2006-06-01 2013-10-29 Loopt Llc. Displaying the location of individuals on an interactive map display on a mobile communication device
US20080154740A1 (en) 2006-06-09 2008-06-26 Chun-Kyoung Lee Apparatuses, Methods and Systems for Electronic Real Estate Transactions
US20070290037A1 (en) 2006-06-14 2007-12-20 Arellanes Paul T Method, Computer Program Product And Portable Electronic Device For Providing Pricing Information To Assist A User In Comparative Shopping
CN101479689A (en) 2006-06-23 2009-07-08 Nxp股份有限公司 NFC enabled pointing with a mobile device
WO2008014255A2 (en) 2006-07-24 2008-01-31 Exbiblio B.V. Referral award system for portable devices
US8234578B2 (en) 2006-07-25 2012-07-31 Northrop Grumman Systems Corporatiom Networked gesture collaboration system
US7801058B2 (en) 2006-07-27 2010-09-21 Mobitrum Corporation Method and system for dynamic information exchange on mesh network devices
JP4825617B2 (en) 2006-08-08 2011-11-30 生活協同組合コープさっぽろ Product information providing system, product information providing method, and server system
US7646296B2 (en) * 2006-08-11 2010-01-12 Honda Motor Co., Ltd. Method and system for receiving and sending navigational data via a wireless messaging service on a navigation system
US7725547B2 (en) 2006-09-06 2010-05-25 International Business Machines Corporation Informing a user of gestures made by others out of the user's line of sight
WO2008036686A2 (en) 2006-09-18 2008-03-27 Multiplied Media Corporation System, methods, and apparatus for interactive advertising
US20080091518A1 (en) 2006-09-28 2008-04-17 Henry Eisenson Adaptive cellular network advertising system
US20080082254A1 (en) 2006-10-02 2008-04-03 Yka Huhtala Route-assisted GPS location sensing via mobile device
US20080092057A1 (en) 2006-10-05 2008-04-17 Instrinsyc Software International, Inc Framework for creation of user interfaces for electronic devices
JP2008131217A (en) 2006-11-20 2008-06-05 Funai Electric Co Ltd Portable device
US20080122785A1 (en) * 2006-11-25 2008-05-29 John Paul Harmon Portable display with improved functionality
US8243022B2 (en) 2006-11-27 2012-08-14 Microsoft Corporation Federated virtual graffiti
US20080132249A1 (en) 2006-12-05 2008-06-05 Palm, Inc. Local caching of map data based on carrier coverage data
US20080147730A1 (en) 2006-12-18 2008-06-19 Motorola, Inc. Method and system for providing location-specific image information
WO2008074519A1 (en) * 2006-12-21 2008-06-26 International Business Machines Corporation A method and system for presenting information associated with a location
US20090265671A1 (en) 2008-04-21 2009-10-22 Invensense Mobile devices with motion gesture recognition
US20080177460A1 (en) 2007-01-10 2008-07-24 Adrian Blackwood Navigation device and method for enhancing traffic data
US7693953B2 (en) 2007-01-12 2010-04-06 Microsoft Corporation Providing Web services for wireless communication devices
US7966321B2 (en) 2007-01-17 2011-06-21 Google Inc. Presentation of local results
US7620659B2 (en) 2007-02-09 2009-11-17 Microsoft Corporation Efficient knowledge representation in data synchronization systems
US20080201074A1 (en) 2007-02-15 2008-08-21 Garmin Ltd. System and method for creating and sharing navigation routes with electronic devices
US20080281794A1 (en) 2007-03-06 2008-11-13 Mathur Anup K "Web 2.0 information search and presentation" with "consumer == author" and "dynamic Information relevance" models delivered to "mobile and web consumers".
CN101270998A (en) 2007-03-20 2008-09-24 联发科技(合肥)有限公司 Electronic device and method for reminding interest point according to road section
US20080250337A1 (en) 2007-04-05 2008-10-09 Nokia Corporation Identifying interesting locations based on commonalities in location based postings
US8229458B2 (en) 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
JP2008257644A (en) 2007-04-09 2008-10-23 Sony Ericsson Mobilecommunications Japan Inc Cellular phone terminal and database system
WO2008128133A1 (en) 2007-04-13 2008-10-23 Pelago, Inc. Location-based information determination
US20080268876A1 (en) * 2007-04-24 2008-10-30 Natasha Gelfand Method, Device, Mobile Terminal, and Computer Program Product for a Point of Interest Based Scheme for Improving Mobile Visual Searching Functionalities
WO2008134595A1 (en) 2007-04-27 2008-11-06 Pelago, Inc. Determining locations of interest based on user visits
US20080273109A1 (en) 2007-05-02 2008-11-06 Drew Bamford Portable device with interactive display and geographical location capability
WO2008141427A1 (en) 2007-05-17 2008-11-27 Fat Free Mobile Inc. Method and system for automatically generating web page transcoding instructions
JP4729531B2 (en) 2007-05-18 2011-07-20 富士通株式会社 Server device for spatial information service
US7962152B2 (en) 2007-05-24 2011-06-14 Virgin Mobile Usa, L.P. Location determination for wireless mobile devices
US7990394B2 (en) 2007-05-25 2011-08-02 Google Inc. Viewing and navigating within panoramic images, and applications thereof
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US8260809B2 (en) 2007-06-28 2012-09-04 Microsoft Corporation Voice-based search processing
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US8311526B2 (en) 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US20090030778A1 (en) 2007-07-23 2009-01-29 Motivepath, Inc. System, method and apparatus for secure multiparty location based services
US9843351B2 (en) 2007-07-26 2017-12-12 Nokia Technologies Oy Gesture activated close-proximity communication
US20090037273A1 (en) 2007-07-31 2009-02-05 Jian Zhu Systems and methods for displaying advertisement information
US8005611B2 (en) 2007-07-31 2011-08-23 Rosenblum Alan J Systems and methods for providing tourist information based on a location
US7826999B1 (en) 2007-08-20 2010-11-02 Pni Corporation Magnetic tilt compensated heading compass with adaptive zoffset
US9261979B2 (en) 2007-08-20 2016-02-16 Qualcomm Incorporated Gesture-based mobile interaction
US20090054077A1 (en) 2007-08-23 2009-02-26 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for sending data relating to a target to a mobile device
JP2009080662A (en) 2007-09-26 2009-04-16 Brother Ind Ltd Information provision system, mobile terminal device, information management server, information provision method and program used therefor
US20090287527A1 (en) 2007-10-19 2009-11-19 Siemens Aktiengesellschaft Device for communicating orders for transportation, vehicle-base communication device, communication system and method
US7853296B2 (en) 2007-10-31 2010-12-14 Motorola Mobility, Inc. Mobile virtual and augmented reality system
US20100214111A1 (en) 2007-12-21 2010-08-26 Motorola, Inc. Mobile virtual and augmented reality system
WO2009094043A1 (en) 2008-01-21 2009-07-30 Kameraflage Inc. Methods and systems for displaying messages in a wide-spectrum display
US8504945B2 (en) 2008-02-01 2013-08-06 Gabriel Jakobson Method and system for associating content with map zoom function
US11159909B2 (en) 2008-02-05 2021-10-26 Victor Thomas Anderson Wireless location establishing device
US8217964B2 (en) 2008-02-14 2012-07-10 Nokia Corporation Information presentation based on display screen orientation
US20090237328A1 (en) 2008-03-20 2009-09-24 Motorola, Inc. Mobile virtual and augmented reality system
US7487017B1 (en) 2008-03-31 2009-02-03 International Business Machines Corporation Systems and methods for generating pattern keys for use in navigation systems to predict user destinations
US8700301B2 (en) 2008-06-19 2014-04-15 Microsoft Corporation Mobile computing devices, architecture and user interfaces based on dynamic direction information
US20090315766A1 (en) 2008-06-19 2009-12-24 Microsoft Corporation Source switching for devices supporting dynamic direction information
US20090319166A1 (en) 2008-06-20 2009-12-24 Microsoft Corporation Mobile computing services based on devices with dynamic direction information
US8098894B2 (en) 2008-06-20 2012-01-17 Yahoo! Inc. Mobile imaging device as navigator
US20090315775A1 (en) 2008-06-20 2009-12-24 Microsoft Corporation Mobile computing services based on devices with dynamic direction information
US20100205628A1 (en) 2009-02-12 2010-08-12 Davis Bruce L Media processing methods and arrangements
US9646008B2 (en) 2008-11-20 2017-05-09 Sony Interactive Entertainment Inc. Modifying virtual item states in conjunction with digital broadcast
US8788977B2 (en) 2008-11-20 2014-07-22 Amazon Technologies, Inc. Movement recognition as input mechanism
US8547342B2 (en) 2008-12-22 2013-10-01 Verizon Patent And Licensing Inc. Gesture-based delivery from mobile device
US20100228612A1 (en) 2009-03-09 2010-09-09 Microsoft Corporation Device transaction model and services based on directional information of device
US20100332324A1 (en) 2009-06-25 2010-12-30 Microsoft Corporation Portal services based on interactions with points of interest discovered via directional device information
US8872767B2 (en) 2009-07-07 2014-10-28 Microsoft Corporation System and method for converting gestures into digital graffiti
US8260269B2 (en) 2009-11-25 2012-09-04 Visa International Service Association Input device with an accelerometer

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745545A (en) * 1985-06-28 1988-05-17 Cray Research, Inc. Memory reference control in a multiprocessor
US5781908A (en) * 1995-12-18 1998-07-14 J.D. Edwards World Source Company File data synchronizer in a distributed data computer network
US6672506B2 (en) * 1996-01-25 2004-01-06 Symbol Technologies, Inc. Statistical sampling security methodology for self-scanning checkout system
US5767795A (en) * 1996-07-03 1998-06-16 Delta Information Systems, Inc. GPS-based information system for vehicles
US5892900A (en) * 1996-08-30 1999-04-06 Intertrust Technologies Corp. Systems and methods for secure transaction management and electronic rights protection
US6837436B2 (en) * 1996-09-05 2005-01-04 Symbol Technologies, Inc. Consumer interactive shopping system
US7040541B2 (en) * 1996-09-05 2006-05-09 Symbol Technologies, Inc. Portable shopping and order fulfillment system
US7063263B2 (en) * 1996-09-05 2006-06-20 Symbol Technologies, Inc. Consumer interactive shopping system
US7195157B2 (en) * 1996-09-05 2007-03-27 Symbol Technologies, Inc. Consumer interactive shopping system
US6252544B1 (en) * 1998-01-27 2001-06-26 Steven M. Hoffberg Mobile communication device
US20020059256A1 (en) * 1998-03-03 2002-05-16 Pumatech, Inc., A Delaware Corporation Remote data access and synchronization
US7010501B1 (en) * 1998-05-29 2006-03-07 Symbol Technologies, Inc. Personal shopping system
US7171378B2 (en) * 1998-05-29 2007-01-30 Symbol Technologies, Inc. Portable electronic terminal and data processing system
US6424524B2 (en) * 1998-08-21 2002-07-23 Compaq Information Technologies Group, L.P. Wedge-shaped port replicator for portable computer
US6243076B1 (en) * 1998-09-01 2001-06-05 Synthetic Environments, Inc. System and method for controlling host system interface with point-of-interest data
US6360167B1 (en) * 1999-01-29 2002-03-19 Magellan Dis, Inc. Vehicle navigation system with location-based multi-media annotation
US20060061551A1 (en) * 1999-02-12 2006-03-23 Vega Vista, Inc. Motion detection and tracking system to control navigation and display of portable displays including on-chip gesture detection
US6381603B1 (en) * 1999-02-22 2002-04-30 Position Iq, Inc. System and method for accessing local information by using referencing position system
US6678882B1 (en) * 1999-06-30 2004-01-13 Qwest Communications International Inc. Collaborative model for software systems with synchronization submodel with merge feature, automatic conflict resolution and isolation of potential changes for reuse
US6381465B1 (en) * 1999-08-27 2002-04-30 Leap Wireless International, Inc. System and method for attaching an advertisement to an SMS message for wireless transmission
US7385501B2 (en) * 1999-10-22 2008-06-10 Himanshu S. Amin System for dynamically pushing information to a user utilizing global positioning system
US6741188B1 (en) * 1999-10-22 2004-05-25 John M. Miller System for dynamically pushing information to a user utilizing global positioning system
US6353398B1 (en) * 1999-10-22 2002-03-05 Himanshu S. Amin System for dynamically pushing information to a user utilizing global positioning system
US6526335B1 (en) * 2000-01-24 2003-02-25 G. Victor Treyz Automobile personal computer systems
US6587835B1 (en) * 2000-02-09 2003-07-01 G. Victor Treyz Shopping assistance with handheld computing device
US7191218B1 (en) * 2000-02-24 2007-03-13 International Business Machines Corporation Database synchronization for mobile computing devices
US6850837B2 (en) * 2000-03-14 2005-02-01 Navteq North America, Llc Method and system for providing reminders about points of interests while traveling
US6912398B1 (en) * 2000-04-10 2005-06-28 David Domnitz Apparatus and method for delivering information to an individual based on location and/or time
US20020002504A1 (en) * 2000-05-05 2002-01-03 Andrew Engel Mobile shopping assistant system and device
US20020042750A1 (en) * 2000-08-11 2002-04-11 Morrison Douglas C. System method and article of manufacture for a visual self calculating order system over the world wide web
US20020077905A1 (en) * 2000-08-11 2002-06-20 Tvx Internet Services, Inc. Integrated system for differentiation and positioning of a commercial offering
US6374180B1 (en) * 2000-09-18 2002-04-16 Magellan Dis, Inc. Points of interest for a navigation system
US6421602B1 (en) * 2001-01-03 2002-07-16 Motorola, Inc. Method of navigation guidance for a distributed communications system having communications nodes
US6372974B1 (en) * 2001-01-16 2002-04-16 Intel Corporation Method and apparatus for sharing music content between devices
US7031875B2 (en) * 2001-01-24 2006-04-18 Geo Vector Corporation Pointing systems for addressing objects
US7389179B2 (en) * 2001-01-24 2008-06-17 Telenav, Inc. Real-time navigation system for mobile environment
US20070080216A1 (en) * 2001-05-25 2007-04-12 At&T Corp. User interface systems
US6895503B2 (en) * 2001-05-31 2005-05-17 Contentguard Holdings, Inc. Method and apparatus for hierarchical assignment of rights to documents and documents having such rights
US20030046164A1 (en) * 2001-07-16 2003-03-06 Junichi Sato Method for providing content distribution service and terminal device
US6898517B1 (en) * 2001-07-24 2005-05-24 Trimble Navigation Limited Vehicle-based dynamic advertising
US7032003B1 (en) * 2001-08-13 2006-04-18 Union Gold Holdings, Ltd. Hybrid replication scheme with data and actions for wireless devices
US7321826B2 (en) * 2001-08-16 2008-01-22 Networks In Motion, Inc. Point on interest spatial rating search
US20030036848A1 (en) * 2001-08-16 2003-02-20 Sheha Michael A. Point of interest spatial rating search method and system
US20030142853A1 (en) * 2001-11-08 2003-07-31 Pelco Security identification system
US6542818B1 (en) * 2002-01-29 2003-04-01 General Motors Corporation Method and system for real-time recording and uploading of vehicle routes for routing assistance and traffic reporting
US20040203863A1 (en) * 2002-06-28 2004-10-14 Heikki Huomo System and method for initiating location-dependent applications on mobile devices
US6983293B2 (en) * 2002-07-24 2006-01-03 International Business Machines Corporation Mid-tier-based conflict resolution method and system usable for message synchronization and replication
US20040024727A1 (en) * 2002-07-30 2004-02-05 Sandvine Incorporated Method and system of re-sharing files with modifications
US20040107072A1 (en) * 2002-12-03 2004-06-03 Arne Dietrich Ins-based user orientation and navigation
US20040122870A1 (en) * 2002-12-24 2004-06-24 Joong-Ki Park Method for data synchronization and update conflict resolution between mobile clients and server in mobile system
US20040128324A1 (en) * 2002-12-30 2004-07-01 Arnold Sheynman Digital content preview generation and distribution among peer devices
US20060107330A1 (en) * 2003-01-02 2006-05-18 Yaacov Ben-Yaacov Method and system for tracking and managing rights for digital music
US20050015436A1 (en) * 2003-05-09 2005-01-20 Singh Ram P. Architecture for partition computation and propagation of changes in data replication
US20080140835A1 (en) * 2003-06-05 2008-06-12 Intertrust Technologies Corp. Interoperable systems and methods for peer-to-peer service orchestration
US20050027755A1 (en) * 2003-07-31 2005-02-03 Shah Ashish B. Systems and methods for synchronizing with multiple data stores
US6992619B2 (en) * 2003-08-01 2006-01-31 Intel Corporation Use of global positioning satellites (GPS) to discover and select local services
US20050044187A1 (en) * 2003-08-21 2005-02-24 Microsoft Corporation Systems and methods for providing conflict handling for peer-to-peer synchronization of units of information manageable by a hardware/software interface system
US20050049993A1 (en) * 2003-08-21 2005-03-03 Microsoft Corporation Systems and methods for data modeling in an item-based storage platform
US20050063563A1 (en) * 2003-09-23 2005-03-24 Soliman Samir S. System and method for geolocation using imaging techniques
US20050071280A1 (en) * 2003-09-25 2005-03-31 Convergys Information Management Group, Inc. System and method for federated rights management
US20070015515A1 (en) * 2003-09-25 2007-01-18 Nec Corporation Position information service providing system and method thereof
US20070008110A1 (en) * 2004-01-17 2007-01-11 Huawei Technologies Co., Ltd. Method for obtaining direction of target location through a handset
US7747528B1 (en) * 2004-02-11 2010-06-29 Yt Acquisition Corporation System and method for delaying payment processing for biometrically-initiated financial transactions
US7340333B2 (en) * 2004-07-26 2008-03-04 Gm Global Technology Operations, Inc. Multifunction control system
US20060047776A1 (en) * 2004-08-31 2006-03-02 Chieng Stephen S Automated failover in a cluster of geographically dispersed server nodes using data replication over a long distance communication link
US20060069798A1 (en) * 2004-09-03 2006-03-30 Microsoft Corporation Digital rights management scheme for an on-demand distributed streaming system
US20070100834A1 (en) * 2004-09-15 2007-05-03 John Landry System and method for managing data in a distributed computer system
US20060123010A1 (en) * 2004-09-15 2006-06-08 John Landry System and method for managing data in a distributed computer system
US20060106881A1 (en) * 2004-10-25 2006-05-18 Empower Technologies System and method for global data synchronization
US20060106879A1 (en) * 2004-11-16 2006-05-18 International Business Machines Corporation Conflict resolution in a synchronization framework
US8170795B2 (en) * 2005-01-18 2012-05-01 Harman Becker Automotive Systems Gmbh Navigation system with animated intersection view
US7198192B2 (en) * 2005-02-01 2007-04-03 Electronic Data Systems Corporation Wireless mobile instant product price comparison and product review
US20070004451A1 (en) * 2005-06-30 2007-01-04 C Anderson Eric Controlling functions of a handheld multifunction device
US20070016368A1 (en) * 2005-07-13 2007-01-18 Charles Chapin Generating Human-Centric Directions in Mapping Systems
US20070130217A1 (en) * 2005-10-13 2007-06-07 Unwired Software, Inc. Many to many data synchronization
US20070118278A1 (en) * 2005-11-18 2007-05-24 Michael Finn Geographic database with detailed local data
US20100030646A1 (en) * 2005-12-13 2010-02-04 Yahoo! Inc. System for providing location predictive advertising
US20070139366A1 (en) * 2005-12-21 2007-06-21 Dunko Gregory A Sharing information between devices
US20080027632A1 (en) * 2006-03-28 2008-01-31 Mauderer Hans P Storage and visualization of points of interest in a navigation system
US20080065322A1 (en) * 2006-03-31 2008-03-13 Brian Ng Motor vehicle and navigation arrangement for a motor vehicle
US20080004802A1 (en) * 2006-06-30 2008-01-03 Microsoft Corporation Route planning with contingencies
US7653576B2 (en) * 2006-08-01 2010-01-26 International Business Machines Corporation Method for pricing items
US8407003B2 (en) * 2006-08-15 2013-03-26 Tomtom International B.V. Method of generating improved map data for use in navigation devices, map data and navigation device therefor
US20080056535A1 (en) * 2006-09-01 2008-03-06 Harman Becker Automotive Systems Gmbh Image recongition system
US20080077319A1 (en) * 2006-09-27 2008-03-27 Xanavi Informatics Corporation Navigation System Using Intersection Information
US20080113674A1 (en) * 2006-11-10 2008-05-15 Mohammad Faisal Baig Vicinity-based community for wireless users
US20110093227A1 (en) * 2006-12-08 2011-04-21 Andrew Shane Huang Systems and methods for location, motion, and contact detection and tracking in a networked audiovisual device
US8165034B2 (en) * 2007-03-16 2012-04-24 Jon Buchwald Configurable zone-based location detection
US20090006194A1 (en) * 2007-06-27 2009-01-01 Microsoft Corporation Location, destination and other contextual information-based mobile advertisements
US20090005076A1 (en) * 2007-06-28 2009-01-01 Scott Forstall Location-Based Information Services
US20090005077A1 (en) * 2007-06-28 2009-01-01 Apple Inc. Location-Based Services
US7720844B2 (en) * 2007-07-03 2010-05-18 Vulcan, Inc. Method and system for continuous, dynamic, adaptive searching based on a continuously evolving personal region of interest
US20090040370A1 (en) * 2007-08-07 2009-02-12 Palm, Inc. Displaying image data and geographic element data
US20090076723A1 (en) * 2007-09-14 2009-03-19 Palm, Inc. Targeting Location Through Haptic Feedback Signals
US20090102859A1 (en) * 2007-10-18 2009-04-23 Yahoo! Inc. User augmented reality for camera-enabled mobile devices
US20090143078A1 (en) * 2007-11-30 2009-06-04 Palm, Inc. Techniques to manage a radio based on location information
US20100076968A1 (en) * 2008-05-27 2010-03-25 Boyns Mark R Method and apparatus for aggregating and presenting data associated with geographic locations
US20100009662A1 (en) * 2008-06-20 2010-01-14 Microsoft Corporation Delaying interaction with points of interest discovered based on directional device information
US20100008255A1 (en) * 2008-06-20 2010-01-14 Microsoft Corporation Mesh network services for devices supporting dynamic direction information
US20100016022A1 (en) * 2008-07-15 2010-01-21 Sony Ericsson Mobile Communications Ab Methods and Apparatus for Providing Services Information with a Femtocell Wireless Base Station

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8073565B2 (en) * 2000-06-07 2011-12-06 Apple Inc. System and method for alerting a first mobile data processing system nearby a second mobile data processing system
US8966557B2 (en) 2001-01-22 2015-02-24 Sony Computer Entertainment Inc. Delivery of digital content
US20100057571A1 (en) * 2007-05-01 2010-03-04 Sony Corporation Information processing system, portable information terminal and its control method, information providing device and its control method, and program
US8204785B2 (en) * 2007-05-01 2012-06-19 Sony Corporation Information processing system, portable information terminal and its control method, information providing device and its control method, and program
US9483405B2 (en) 2007-09-20 2016-11-01 Sony Interactive Entertainment Inc. Simplified run-time program translation for emulating complex processor pipelines
US8700301B2 (en) 2008-06-19 2014-04-15 Microsoft Corporation Mobile computing devices, architecture and user interfaces based on dynamic direction information
US20090318168A1 (en) * 2008-06-19 2009-12-24 Microsoft Corporation Data synchronization for devices supporting direction-based services
US9200901B2 (en) 2008-06-19 2015-12-01 Microsoft Technology Licensing, Llc Predictive services for devices supporting dynamic direction information
US8700302B2 (en) 2008-06-19 2014-04-15 Microsoft Corporation Mobile computing devices, architecture and user interfaces based on dynamic direction information
US8615257B2 (en) 2008-06-19 2013-12-24 Microsoft Corporation Data synchronization for devices supporting direction-based services
US20090319175A1 (en) * 2008-06-19 2009-12-24 Microsoft Corporation Mobile computing devices, architecture and user interfaces based on dynamic direction information
US8200246B2 (en) 2008-06-19 2012-06-12 Microsoft Corporation Data synchronization for devices supporting direction-based services
US10057724B2 (en) 2008-06-19 2018-08-21 Microsoft Technology Licensing, Llc Predictive services for devices supporting dynamic direction information
US10509477B2 (en) 2008-06-20 2019-12-17 Microsoft Technology Licensing, Llc Data services based on gesture and location information of device
US8868374B2 (en) 2008-06-20 2014-10-21 Microsoft Corporation Data services based on gesture and location information of device
US9703385B2 (en) 2008-06-20 2017-07-11 Microsoft Technology Licensing, Llc Data services based on gesture and location information of device
US8467991B2 (en) 2008-06-20 2013-06-18 Microsoft Corporation Data services based on gesture and location information of device
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
US8260320B2 (en) 2008-11-13 2012-09-04 Apple Inc. Location specific content
US20100185657A1 (en) * 2009-01-12 2010-07-22 Chunyan Wang Method for searching database for recorded location data set and system thereof
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
US9979776B2 (en) 2009-05-01 2018-05-22 Apple Inc. Remotely locating and commanding a mobile device
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8743144B2 (en) * 2009-06-11 2014-06-03 Sony Corporation Mobile terminal, server device, community generation system, display control method, and program
US20100315433A1 (en) * 2009-06-11 2010-12-16 Takeshita Kazutaka Mobile terminal, server device, community generation system, display control method, and program
US9661468B2 (en) 2009-07-07 2017-05-23 Microsoft Technology Licensing, Llc System and method for converting gestures into digital graffiti
US8126987B2 (en) 2009-11-16 2012-02-28 Sony Computer Entertainment Inc. Mediation of content-related services
US10165058B2 (en) 2009-12-08 2018-12-25 Samsung Electronics Co., Ltd. Dynamic local function binding apparatus and method
US20110138016A1 (en) * 2009-12-08 2011-06-09 Samsung Electronics Co., Ltd. Dynamic local function binding apparatus and method
US8843631B2 (en) * 2009-12-08 2014-09-23 Samsung Electronics Co., Ltd. Dynamic local function binding apparatus and method
US8666377B2 (en) * 2010-03-03 2014-03-04 Htc Corporation Method, system and computer-readable medium for synchronizing spot information
US20110217965A1 (en) * 2010-03-03 2011-09-08 Htc Corporation Method, system and computer-readable medium for synchronizing spot information
CN102884815A (en) * 2010-05-12 2013-01-16 瑞典爱立信有限公司 Method, computer program and apparatus for determining an object in sight
US9020753B2 (en) 2010-05-12 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Method, computer program and apparatus for determining an object in sight
WO2011142700A1 (en) 2010-05-12 2011-11-17 Telefonaktiebolaget L M Ericsson (Publ) Method, computer program and apparatus for determining an object in sight
EP2569958A4 (en) * 2010-05-12 2016-03-30 Ericsson Telefon Ab L M Method, computer program and apparatus for determining an object in sight
EP2569958A1 (en) * 2010-05-12 2013-03-20 Telefonaktiebolaget L M Ericsson (PUBL) Method, computer program and apparatus for determining an object in sight
US8433759B2 (en) 2010-05-24 2013-04-30 Sony Computer Entertainment America Llc Direction-conscious information sharing
WO2011149560A1 (en) * 2010-05-24 2011-12-01 Sony Computer Entertainment America Llc Direction-conscious information sharing
EP2410772A1 (en) * 2010-07-20 2012-01-25 Sony Corporation Communication control device, communication control system, communication control method, and program for location-based services
CN102420936A (en) * 2010-07-30 2012-04-18 株式会社泛泰 Apparatus and method for providing road view
EP2413104B1 (en) * 2010-07-30 2014-09-03 Pantech Co., Ltd. Apparatus and method for providing road view
US9234965B2 (en) * 2010-09-17 2016-01-12 Qualcomm Incorporated Indoor positioning using pressure sensors
US20120072110A1 (en) * 2010-09-17 2012-03-22 Atheros Communications, Inc. Indoor positioning using pressure sensors
JP2014511523A (en) * 2011-02-11 2014-05-15 アルカテル−ルーセント Determining active real objects to run software applications
US10372307B2 (en) 2011-02-11 2019-08-06 Alcatel Lucent Determining active real objects for running a software application
WO2012115861A1 (en) * 2011-02-25 2012-08-30 Motorola Mobility Llc Intelligent presentation of advertising with navigation
JP2014146378A (en) * 2011-03-07 2014-08-14 Kba2 Inc System and method for analytic data gathering from image provider at event or geographic location
EP2696560A1 (en) * 2011-04-07 2014-02-12 Clarion Co., Ltd. Wireless communication terminal and operating system
CN103460677A (en) * 2011-04-07 2013-12-18 歌乐株式会社 Wireless communication terminal and operating system
EP2696560A4 (en) * 2011-04-07 2014-10-15 Clarion Co Ltd Wireless communication terminal and operating system
US9094956B2 (en) 2011-04-07 2015-07-28 Clarion Co., Ltd. Wireless communication terminal and operating system
US8521125B2 (en) 2011-05-20 2013-08-27 Motorola Solutions, Inc. Electronic communication systems and methods for real-time location and information coordination
WO2012162012A1 (en) * 2011-05-20 2012-11-29 Motorola Solutions, Inc. Electronic communication systems and methods for real-time location and information coordination
US9304000B2 (en) * 2011-07-27 2016-04-05 Denso Corporation Cooperation system, navigation system, in-vehicle apparatus and portable terminal
WO2013024279A1 (en) * 2011-08-12 2013-02-21 Overlay Media Limited Context-awareness statistics on mobile devices
WO2013024278A1 (en) * 2011-08-12 2013-02-21 Overlay Media Limited Context-awareness on mobile devices
US9514717B2 (en) 2011-09-26 2016-12-06 Nokia Technology Oy Method and apparatus for rendering items in a user interface
US11170741B2 (en) 2012-02-29 2021-11-09 Nokia Technologies Oy Method and apparatus for rendering items in a user interface
EP2820576A4 (en) * 2012-02-29 2015-11-18 Nokia Technologies Oy Method and apparatus for rendering items in a user interface
WO2013128078A1 (en) * 2012-02-29 2013-09-06 Nokia Corporation Method and apparatus for rendering items in a user interface
DE102012208733A1 (en) * 2012-05-24 2013-11-28 Bayerische Motoren Werke Aktiengesellschaft Method for determining location of object e.g. shop by user of vehicle, involves determining direction vector and object position data with respect to predetermined reference point and absolute position in geographic coordinate system
US10452346B2 (en) 2012-06-27 2019-10-22 Sonos, Inc. Portable playback device state variable
US11487500B2 (en) 2012-06-27 2022-11-01 Sonos, Inc. Portable playback device state variable
US11809781B2 (en) 2012-06-27 2023-11-07 Sonos, Inc. Portable playback device state variable
US10120643B2 (en) 2012-06-27 2018-11-06 Sonos, Inc. Portable playback device state variable
US11210053B2 (en) 2012-06-27 2021-12-28 Sonos, Inc. Portable playback device state variable
US9864572B2 (en) 2012-06-27 2018-01-09 Sonos, Inc. Playback configuration based on connection to portable playback device
US20140006587A1 (en) * 2012-06-27 2014-01-02 Mieko Kusano Systems and methods for mobile music zones
US9710222B2 (en) 2012-06-27 2017-07-18 Sonos, Inc. Portable playback device state variable
US9715365B2 (en) * 2012-06-27 2017-07-25 Sonos, Inc. Systems and methods for mobile music zones
US9898244B2 (en) 2012-06-27 2018-02-20 Sonos, Inc. Portable playback device state variable
EP2690407A1 (en) * 2012-07-23 2014-01-29 GN Store Nord A/S A hearing device providing spoken information on selected points of interest
US10455360B2 (en) 2012-10-23 2019-10-22 Qualcomm Incorporated Real-time path suggestion for a location-enabled mobile device
EP2912409B1 (en) * 2012-10-23 2020-04-22 Qualcomm Incorporated Real-time path suggestion for a location-enabled mobile device
US11463840B2 (en) 2012-10-23 2022-10-04 Qualcomm Incorporated Real-time path suggestion for a location-enabled mobile device
US10200818B2 (en) 2012-10-23 2019-02-05 Qualcomm Incorporated Real-time path suggestion for a location-enabled mobile device
EP2920693A1 (en) * 2012-11-16 2015-09-23 Apple Inc. System and method for negotiating control of a shared audio or visual resource
WO2014078551A1 (en) * 2012-11-16 2014-05-22 Apple Inc. System and method for negotiating control of a shared audio or visual resource
US10541885B2 (en) 2012-11-16 2020-01-21 Apple Inc. System and method for negotiating control of a shared audio or visual resource
TWI561420B (en) * 2012-11-16 2016-12-11 Apple Inc System and method for negotiating control of a shared audio or visual resource
US9794134B2 (en) 2012-11-16 2017-10-17 Apple Inc. System and method for negotiating control of a shared audio or visual resource
US10267639B2 (en) 2012-12-04 2019-04-23 Nokia Technologies Oy Method and apparatus for validating potential points of interest using user and device characteristics
US20140258403A1 (en) * 2013-03-11 2014-09-11 Lee Elmore Service tracking display grid system and method
US9109921B1 (en) * 2013-06-19 2015-08-18 Amazon Technologies, Inc. Contextual based navigation element
US20150032367A1 (en) * 2013-07-26 2015-01-29 Here Global B.V. Route Verification from Wireless Networks
US9606218B2 (en) * 2013-07-26 2017-03-28 Here Global B.V. Route verification from wireless networks
US9313265B2 (en) 2014-04-25 2016-04-12 Google Inc. System and method for providing individualized portable asset applications
WO2015164070A1 (en) * 2014-04-25 2015-10-29 Google Inc. System and method for providing individualized portable asset applications
US10227042B2 (en) 2014-05-08 2019-03-12 Conti Temic Microelectronic Gmbh Device and method for providing information data with respect to an object of a vehicle environment contained in a video image stream
DE102014208663A1 (en) * 2014-05-08 2015-11-12 Conti Temic Microelectronic Gmbh DEVICE AND METHOD FOR PROVIDING INFORMATION DATA TO A VEHICLE ENVIRONMENT OBJECT IN A VIDEO IMAGE CURRENT
US10257648B2 (en) * 2014-12-08 2019-04-09 HomeAway.com, Inc. Methods and mobile devices to implement traveler interactions and activity to channelize customized data
US20170195846A1 (en) * 2014-12-08 2017-07-06 HomeAway.com, Inc. Methods and mobile devices to implement traveler interactions and activity to channelize customized data
US9983407B2 (en) 2015-09-11 2018-05-29 Honda Motor Co., Ltd. Managing points of interest
US10366528B2 (en) * 2015-12-08 2019-07-30 Amazon Technologies, Inc. Interactive points of interest for 3D-representations
US20170161937A1 (en) * 2015-12-08 2017-06-08 Amazon Technologies, Inc. Interactive points of interest for 3d-representations
US10586449B2 (en) * 2017-07-17 2020-03-10 Here Global B.V. Method and apparatus for selectively using different types of networks to obtain information regarding one or more traffic signals and intersections
CN110999336A (en) * 2017-07-17 2020-04-10 赫尔环球有限公司 Method and apparatus for selectively using different types of networks to obtain information about one or more traffic signals and intersections
US20190156669A1 (en) * 2017-07-17 2019-05-23 Here Global B.V. Method and apparatus for selectively using different types of networks to obtain information regarding one or more traffic signals and intersections
IT201800007887A1 (en) * 2018-08-06 2020-02-06 Levantech Srl A method for identifying an area of interest and information relating to that area of interest along a path
US11095593B2 (en) 2019-06-17 2021-08-17 Billups, Inc. Verification system for message delivery and processing
US11552917B2 (en) 2019-06-17 2023-01-10 Billups, Inc Verification system for message delivery and processing
EP4221161A1 (en) * 2022-01-31 2023-08-02 Deutsche Telekom AG Sharing of an extended reality on a mobile client device
WO2023160794A1 (en) * 2022-02-24 2023-08-31 Harman Becker Automotive Systems Gmbh Navigation device

Also Published As

Publication number Publication date
US20090319177A1 (en) 2009-12-24
US20120264457A1 (en) 2012-10-18
US10728706B2 (en) 2020-07-28
US8615257B2 (en) 2013-12-24
US20150066365A1 (en) 2015-03-05
US9200901B2 (en) 2015-12-01
US20090318168A1 (en) 2009-12-24
US20180359607A1 (en) 2018-12-13
US10057724B2 (en) 2018-08-21
US20090319178A1 (en) 2009-12-24
US20160057581A1 (en) 2016-02-25
US8200246B2 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
US10728706B2 (en) Predictive services for devices supporting dynamic direction information
US10509477B2 (en) Data services based on gesture and location information of device
US8700302B2 (en) Mobile computing devices, architecture and user interfaces based on dynamic direction information
US20100332324A1 (en) Portal services based on interactions with points of interest discovered via directional device information
US20100228612A1 (en) Device transaction model and services based on directional information of device
US20090319166A1 (en) Mobile computing services based on devices with dynamic direction information
US9661468B2 (en) System and method for converting gestures into digital graffiti
US8769442B2 (en) System and method for allocating digital graffiti objects and canvasses
US20090315776A1 (en) Mobile computing services based on devices with dynamic direction information

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KHOSRAVY, MOE;NOVIK, LEV;REEL/FRAME:022765/0191;SIGNING DATES FROM 20090526 TO 20090531

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034564/0001

Effective date: 20141014

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE