US20090108679A1 - Wireless energy transfer - Google Patents

Wireless energy transfer Download PDF

Info

Publication number
US20090108679A1
US20090108679A1 US11/928,796 US92879607A US2009108679A1 US 20090108679 A1 US20090108679 A1 US 20090108679A1 US 92879607 A US92879607 A US 92879607A US 2009108679 A1 US2009108679 A1 US 2009108679A1
Authority
US
United States
Prior art keywords
electronic device
electrical energy
electromagnetic signals
requesting
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/928,796
Other versions
US8175660B2 (en
Inventor
Gunjan Porwal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
ATI Technologies ULC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATI Technologies ULC filed Critical ATI Technologies ULC
Priority to US11/928,796 priority Critical patent/US8175660B2/en
Assigned to ATI TECHNOLOGIES ULC reassignment ATI TECHNOLOGIES ULC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PORWAL, GUNJAN
Priority to EP08253515.4A priority patent/EP2056426B1/en
Priority to EP20161814.7A priority patent/EP3716440A1/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ATI TECHNOLOGIES ULC
Publication of US20090108679A1 publication Critical patent/US20090108679A1/en
Application granted granted Critical
Publication of US8175660B2 publication Critical patent/US8175660B2/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED CORRECTIVE ASSIGNMENT TO ADD THE LAST TWO ASSIGNORS PREVIOUSLY RECORDED AT REEL: 022240 FRAME: 0873. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ADVANCED MICRO DEVICES, INC., ATI INTERNATIONAL SRL, ATI TECHNOLOGIES ULC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging

Definitions

  • a large number of electronic devices for example mobile phones, laptops, PDAs, cameras, portable players, and similar devices, have rechargeable battery as their primary source of power.
  • the battery gets discharged over a period of time and needs to be recharged.
  • Existing systems recharge the battery by plugging the electronic device to an external power source.
  • a device may be recharged by deriving power from AC mains supply, through a DC adaptor, or through an USB port of a computer, etc.
  • users of the electronic device may not always be present in the immediate proximity of AC mains, or cannot access AC mains at any instant of time. In such a case, recharging the electronic device would not be possible.
  • the method includes selecting a first electronic device amongst one or more other electronic devices by a requesting electronic device. All the electronic devices are capable of storing electrical energy required for their normal functioning.
  • the requesting electronic device when in need of electrical energy can request the first electronic device to transfer electrical energy to the requesting electronic device.
  • Part of electrical energy stored in the first electronic device can be converted into electromagnetic signals which can be transmitted to the requesting electronic device.
  • the requesting electronic device can receive the electromagnetic signals and convert it into electrical energy.
  • the converted electrical energy can be used by the requesting electronic device for charging its battery.
  • FIG. 1 illustrates an exemplary system for wireless energy transfer among electronic devices in an implementation.
  • FIG. 2 illustrates an exemplary electronic device for wireless energy transfer according to an embodiment.
  • FIG. 3 illustrates an exemplary method of transferring energy wirelessly from one electronic device to another electronic device according to an embodiment.
  • Generally portable electronic devices are capable of storing electrical energy in storage devices like storage batteries, and the like.
  • the electrical energy stored in such storage devices get expended over a period of time.
  • an electronic device running short of electrical energy can request other electronic devices to transfer electrical energy.
  • the electronic device upon receiving a request for electrical energy can generate electromagnetic signals by partly using its own stored electrical energy.
  • the generated electromagnetic signals can be transmitted to the requesting electronic device.
  • the requesting electronic device after receiving the electromagnetic signals can convert the electromagnetic signals to a corresponding electrical charge that can be stored in an appropriate storage device.
  • FIG. 1 illustrates an exemplary system 100 for transferring electrical energy wirelessly.
  • the system 100 includes plurality of electronic devices 102 - 1 , 2 , . . . , n.
  • electronic devices 102 - 1 , 2 , . . . , n can be interchangeably referred to as electronic devices 102 .
  • the electronic device 102 can be a mobile phone, laptop, PDA, camera, portable audio/video player, and the like.
  • Such electronic devices 102 can communicate with each other directly, for example through IR or BluetoothTM.
  • Each of the electronic devices 102 additionally includes a power module 104 .
  • the power module 104 is instrumented to allow the transfer of electrical energy wirelessly.
  • the power module 104 can convert electrical energy into electromagnetic signals and vice-versa.
  • the electrical energy stored in an electronic device is usually DC power, which can be converted into AC power with the help of a DC-AC converter.
  • the AC power is converted into electromagnetic signals using an antenna.
  • the power module 104 includes transceiver(s) that sends and receives electromagnetic signals from one electronic device to another.
  • the received electromagnetic signals are converted into electrical energy with the help of an AC-DC converter and a rectenna.
  • the power module 104 can also determine the electric charge or the extent to which the power source, like a battery, can support the functioning of the electronic devices 102 .
  • the power module 104 can decide whether the electronic device needs energy or not. For example, the power module 104 in electronic device 102 - 1 can determine the level of electric charge stored in its battery. If the level of electric charge is less than a threshold value (which may be defined by a user, pre-set or determined based on other factors), the electronic device 102 - 1 (interchangeably referred to as the requesting device 102 - 1 ) can communicate with one or more electronic devices 102 that may be present in the vicinity of the requesting device 102 - 1 .
  • a threshold value which may be defined by a user, pre-set or determined based on other factors
  • the request transmitted by the requesting device 102 - 1 may be received by one or more of the other electronic devices 102 .
  • the electronic devices 102 receiving the power request can either heed or reject the request.
  • electronic devices 102 in the immediate proximity of the requesting device 102 - 1 can accept the power request.
  • far placed electronic devices 102 may reject the request, as it may not be possible to effectively transmit power over a larger distance.
  • any one of the electronic devices 102 can begin with the transmitting of electric charge as transmittable signals.
  • power module 104 - 2 can convert a portion of electric charge stored in the electronic device 102 - 2 into corresponding electromagnetic signals.
  • electrical energy stored in electronic device 102 - 2 is DC power that can be converted into electromagnetic signals that corresponds to AC power using a DC-AC converter.
  • the AC power is converted into electromagnetic signals using an antenna.
  • the signals can be transmitted to the requesting device 102 - 1 with the help transceiver(s) included in the power module 104 - 2 .
  • Transceiver(s) included in the power module 104 - 1 within the requesting device 102 - 1 receives the electromagnetic signals and converts it into electrical energy, which can be used to charge the requesting device 102 - 1 .
  • received electromagnetic signals can be converted into DC power using a AC-DC converter and a rectenna.
  • requesting device 102 - 1 can detect one or more electronic device 102 having compatible parameters with the requesting device 102 - 1 .
  • Compatible parameters may include numerous factors like distance, the frequency at which the requesting device 102 - 1 communicates with other electronic devices 102 , and so on.
  • the frequency may lie in the range of microwave radiations i.e., in the range of 0.3 GHz-30 GHz, ISM radio band, and the like.
  • electronic device 102 - 2 can transfer the electric charge while deriving power from an AC source. Hence the electronic device 102 - 2 can also transmit power while it itself is in a charging mode.
  • the requesting device 102 - 1 can request transfer of electrical energy simultaneously from two or more devices at the same time, or at different times.
  • the requesting device 102 - 1 can request transfer of electrical power from electronic device 102 - 2 , electronic device 102 - 3 , and so on, either at the same time, or one after the other.
  • FIG. 2 shows exemplary components of electronic device 102 .
  • the electronic device 102 includes one or more processor(s) 202 coupled to a memory 204 .
  • Processor(s) 202 includes, for example, microprocessors, microcomputers, microcontrollers, digital signals processors, central processing units, state machines, logic circuitries, and/or any devices that manipulate data based on operational instructions.
  • the processors can be configured to fetch and execute computer-program instructions stored in memory 204 .
  • Such memory 204 includes, for example, one or more volatile memory (e.g., RAM) and non-volatile memory (e.g., ROM, Flash etc.).
  • Memory 204 can also include program modules 206 and program data 208 .
  • Processor(s) 202 fetches and executes computer program instructions from the program modules 206 .
  • program modules 206 can include instructions to perform wireless transfer of energy.
  • Program module(s) 206 includes the power module 104 , a communication module 210 , and other modules 212 for implementing wireless transfer of electrical energy between one or more electronic devices 102 .
  • Other module(s) 212 may include various other modules required for implementing additional functionalities in electronic device 102 . Examples of other modules 212 include, but are not limited to an operating system, application software, etc.
  • Program data 208 includes communication data 214 , power data 216 and other data 218 .
  • the power module 104 in each of electronic devices 102 can determine the amount of electrical charge left in their respective storage devices. For example, if the electrical charge present within the requesting device 102 - 1 is below a threshold value, then requesting device 102 - 1 can seek other electronic devices 102 in its proximity to derive electric charge from them.
  • the communication module 210 can detect one or more electronic devices 102 present in the proximity of the requesting device 102 - 1 . The proximity can be based on a pre-specified range within which the requesting device 102 - 1 can seek and detect other electronic devices 102 . In an implementation, the proximity can be decided on the basis of the frequency at which electronic devices 102 communicate with each other.
  • the proximity is as per BluetoothTM range and specifications.
  • the communication module 210 can also be implemented in the electronic device 102 - 2 .
  • any communication initiated by the requesting device 102 - 1 can be received by a corresponding communication module 210 in the electronic device 102 - 2 .
  • the communication module 210 in the requesting device 102 - 1 generates a list of all the detected electronic devices. Depending on one or more factors (e.g., the compatibility parameters), any one of the electronic devices 102 , say electronic device 102 - 2 can be selected from the generated list.
  • the communication module 210 can also abstract information about the detected electronic devices 102 .
  • the information about the detected electronic devices 102 can pertain to type of device, device proximity, compatibility parameters, and so on. In such implementation, the information can be stored in communication data 214 .
  • the communication module 210 in the requesting device 102 - 1 can transmit a request message to electronic device 102 - 2 , for transferring electrical energy.
  • the electronic device 102 - 2 or the communication module 210 in the electronic device 102 - 2 can receive the request message. Upon receiving such a request, the electronic device 102 - 2 can reject or accept the request. For example, electronic device 102 - 2 may reject the request for transfer of electrical energy if its own electrical charge is just sufficient for its own operation (as determined, for example by power module 104 - 2 ). It should be appreciated that the acceptance or rejection can be based on any number of factors such as low battery, range limitation, compatibility issues, or a combination of them. If the electronic device 102 - 2 accepts the request, a message communicating the acceptance can be transmitted to the requesting device 102 - 1 . Similarly, a message communicating a rejection can be communicated to the requesting device 102 - 1 , allowing it to seek other devices that may be capable of transmitting power.
  • the power module 104 - 1 in the requesting device 102 - 1 can initiate the process of wireless energy transfer.
  • the power module 104 - 2 in the electronic device 102 - 2 determines the amount of electrical energy stored and can also evaluate the amount of electrical charge that can be transmitted to the requesting device 102 - 1 .
  • the power module 104 - 2 depending upon the amount of electric charge remaining in electronic device 102 - 2 , regulates the conversion of some part of its stored electrical energy into electromagnetic signals. For example, if 80 percent of electric charge is remaining, electronic device 102 - 2 may transfer 40 percent to the requesting device 102 - 1 .
  • the converted electrical energy can be transmitted from the electronic device 102 - 2 to the requesting device 102 - 1 .
  • transceiver(s) included in the power module 104 - 2 in electronic device 102 - 2 can transmit the electromagnetic signals from electronic device 102 - 2 to the requesting device 102 - 1 .
  • the electromagnetic signals can be transmitted at a particular transmission frequency to requesting device 102 - 1 .
  • the electromagnetic signals transmitted by the electronic device 102 - 2 can be received by the requesting device 102 - 1 with the help of transceiver(s) included the in power module 104 - 1 .
  • the power module 104 - 1 can receive the electromagnetic signals transmitted by the electronic device 102 - 2 at a particular reception frequency.
  • the power module 104 - 1 converts the electromagnetic signals into a corresponding electrical charge that can be stored in the battery of the requesting device 102 - 1 .
  • the manner in which the electromagnetic signals can be converted to electrical energy can be accomplished by methods or techniques that are known in the art. For example, in requesting device 102 - 1 , a signal converter can convert received electromagnetic signals into electrical energy.
  • the received electromagnetic signals correspond to AC power that can be converted into DC power using an AC-DC converter.
  • both DC-AC and AC-DC conversion can be combined together in the signal converter included in power module 104 .
  • the electric charge once stored can be utilized by the requesting device 102 - 1 at its convenience or as per mandates defined by a user.
  • the power module 104 can also perform various processing on the electrical charge stored or the electromagnetic signals that are to be transmitted. Examples of such processing include but are not limited to amplification, rectification, and so on.
  • Computer executable instructions can include routines, programs, objects, components, data structures, procedures, modules, functions, and the like that perform particular functions or implement particular abstract data types.
  • FIG. 3 illustrating an exemplary method 300 for wireless energy transfer, is described with reference to the system 100 .
  • the order in which the method is described is not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement the method, or an alternate method.
  • one or more electronic devices present in the vicinity of the requesting device can be selected.
  • the communication module 210 in the requesting device 102 - 1 detects one or more electronic devices 102 present within its proximity.
  • the proximity can be defined though a pre-specified range or it may depend on other factors like frequency at which requesting device 102 - 1 communicates with other electronic devices 102 , and so on.
  • the frequency may lie in the range of microwave radiations i.e. in the range of 0.3 GHz-30 GHz, ISM radio band, and the like.
  • the requesting device 102 - 1 selects at least one electronic device from the list of electronic devices 102 within the proximity of the requesting device 102 - 1 .
  • the selected electronic device say electronic device 102 - 2 , can then communicate an acceptance for transferring electrical energy responsive to the requesting device 102 - 1 requesting for charging.
  • the amount of electrical energy stored in the electronic device can be determined.
  • the amount of electric charge stored in the electronic device 102 - 2 can be determined by the power module 104 - 2 .
  • the power module 104 - 2 can decide the amount of electrical energy to be transferred to the requesting device 102 - 1 .
  • a part of electrical energy stored in the electronic device can be converted into electromagnetic signals.
  • the power module 104 - 2 can convert electrical energy stored in the electronic device 102 - 2 into corresponding electromagnetic signals with the help of a signal converter and an antenna.
  • the power module 104 - 2 converts a part of the electric charge stored in electronic device 102 - 2 , depending upon the amount of electrical energy stored.
  • the electromagnetic signals can be transmitted from one of the electronic device to the requesting device.
  • the converted electromagnetic signals from the electronic device 102 - 2 can be transmitted to the requesting device 102 - 1 by transceiver(s) included in the power module 104 .
  • the transmission of the electromagnetic signals can occur at a particular transmission frequency.
  • the transmission frequency can be selected from the range of microwave frequencies in the electromagnetic spectrum.
  • the electromagnetic signals are received by the requesting device 102 - 1 with the help of transceiver(s) included in the power module 104 - 1 .
  • the electromagnetic signals can be received at a particular reception frequency.
  • strength of the electromagnetic signals as received by the requesting device 102 - 1 can be enhanced by amplifying and rectifying the electromagnetic signals.
  • the electromagnetic signals received from one of the electronic devices can be converted into electrical energy.
  • the power module 104 - 1 converts the electromagnetic signals from electronic device 102 - 2 into corresponding electrical energy with the help of a signal converter and a rectenna.
  • the electrical energy so obtained can be used to charge the battery of the requesting device 102 - 1 .
  • the requesting device 102 - 1 can further be a source of electrical energy for one or more other electronic devices 102 .

Abstract

Method for wireless energy transfer is disclosed. According to an embodiment, the method includes transferring electrical energy from one electronic device to another electronic device with the help of electromagnetic waves. An electronic device that requires electrical energy can get energy transferred from one or more other electronic devices present in its vicinity. The electrical energy being transferred can be used to charge the battery of the electronic device.

Description

    BACKGROUND
  • A large number of electronic devices, for example mobile phones, laptops, PDAs, cameras, portable players, and similar devices, have rechargeable battery as their primary source of power. In such electronic devices, the battery gets discharged over a period of time and needs to be recharged. Existing systems recharge the battery by plugging the electronic device to an external power source. For example, a device may be recharged by deriving power from AC mains supply, through a DC adaptor, or through an USB port of a computer, etc. However, users of the electronic device may not always be present in the immediate proximity of AC mains, or cannot access AC mains at any instant of time. In such a case, recharging the electronic device would not be possible.
  • SUMMARY
  • This summary is provided to introduce systems and methods for transferring electrical energy from one electronic device to another electronic device, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
  • In one embodiment, the method includes selecting a first electronic device amongst one or more other electronic devices by a requesting electronic device. All the electronic devices are capable of storing electrical energy required for their normal functioning. The requesting electronic device when in need of electrical energy can request the first electronic device to transfer electrical energy to the requesting electronic device. Part of electrical energy stored in the first electronic device can be converted into electromagnetic signals which can be transmitted to the requesting electronic device. The requesting electronic device can receive the electromagnetic signals and convert it into electrical energy. The converted electrical energy can be used by the requesting electronic device for charging its battery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference number in different figures indicates similar or identical items.
  • FIG. 1 illustrates an exemplary system for wireless energy transfer among electronic devices in an implementation.
  • FIG. 2 illustrates an exemplary electronic device for wireless energy transfer according to an embodiment.
  • FIG. 3 illustrates an exemplary method of transferring energy wirelessly from one electronic device to another electronic device according to an embodiment.
  • DETAILED DESCRIPTION
  • Methods and systems for transferring electrical energy wirelessly from one electronic device to another electronic device are described. Generally portable electronic devices are capable of storing electrical energy in storage devices like storage batteries, and the like. The electrical energy stored in such storage devices get expended over a period of time. In such cases, an electronic device running short of electrical energy can request other electronic devices to transfer electrical energy. To this end, the electronic device upon receiving a request for electrical energy can generate electromagnetic signals by partly using its own stored electrical energy. The generated electromagnetic signals can be transmitted to the requesting electronic device. The requesting electronic device after receiving the electromagnetic signals, can convert the electromagnetic signals to a corresponding electrical charge that can be stored in an appropriate storage device.
  • The following disclosure describes systems and methods for wireless transfer of electrical energy. While aspects of described systems and methods for transferring electrical energy can be implemented in any number of different computing systems, environments, and/or configurations, embodiments for wireless energy transfer are described in the context of the following exemplary system(s) and method(s).
  • FIG. 1 illustrates an exemplary system 100 for transferring electrical energy wirelessly. The system 100 includes plurality of electronic devices 102-1, 2, . . . , n. For the purposes of this description, electronic devices 102-1, 2, . . . , n can be interchangeably referred to as electronic devices 102. The electronic device 102 can be a mobile phone, laptop, PDA, camera, portable audio/video player, and the like. Such electronic devices 102 can communicate with each other directly, for example through IR or Bluetooth™.
  • Each of the electronic devices 102 additionally includes a power module 104. The power module 104 is instrumented to allow the transfer of electrical energy wirelessly. In an implementation, the power module 104 can convert electrical energy into electromagnetic signals and vice-versa. The electrical energy stored in an electronic device is usually DC power, which can be converted into AC power with the help of a DC-AC converter. The AC power is converted into electromagnetic signals using an antenna. The power module 104 includes transceiver(s) that sends and receives electromagnetic signals from one electronic device to another. The received electromagnetic signals are converted into electrical energy with the help of an AC-DC converter and a rectenna. The power module 104 can also determine the electric charge or the extent to which the power source, like a battery, can support the functioning of the electronic devices 102. Depending on the level of the electric charge stored, the power module 104 can decide whether the electronic device needs energy or not. For example, the power module 104 in electronic device 102-1 can determine the level of electric charge stored in its battery. If the level of electric charge is less than a threshold value (which may be defined by a user, pre-set or determined based on other factors), the electronic device 102-1 (interchangeably referred to as the requesting device 102-1) can communicate with one or more electronic devices 102 that may be present in the vicinity of the requesting device 102-1.
  • The request transmitted by the requesting device 102-1 may be received by one or more of the other electronic devices 102. The electronic devices 102 receiving the power request can either heed or reject the request. For example, electronic devices 102 in the immediate proximity of the requesting device 102-1 can accept the power request. Similarly far placed electronic devices 102 may reject the request, as it may not be possible to effectively transmit power over a larger distance.
  • Responsive to a request from the requesting device 102-1, any one of the electronic devices 102, say electronic device 102-2 can begin with the transmitting of electric charge as transmittable signals. For example, power module 104-2 can convert a portion of electric charge stored in the electronic device 102-2 into corresponding electromagnetic signals. In an embodiment, electrical energy stored in electronic device 102-2 is DC power that can be converted into electromagnetic signals that corresponds to AC power using a DC-AC converter. The AC power is converted into electromagnetic signals using an antenna. The signals can be transmitted to the requesting device 102-1 with the help transceiver(s) included in the power module 104-2. Transceiver(s) included in the power module 104-1, within the requesting device 102-1 receives the electromagnetic signals and converts it into electrical energy, which can be used to charge the requesting device 102-1. In an embodiment, at electronic device 102-1, received electromagnetic signals can be converted into DC power using a AC-DC converter and a rectenna.
  • In one implementation, requesting device 102-1 can detect one or more electronic device 102 having compatible parameters with the requesting device 102-1. Compatible parameters may include numerous factors like distance, the frequency at which the requesting device 102-1 communicates with other electronic devices 102, and so on. For example, the frequency may lie in the range of microwave radiations i.e., in the range of 0.3 GHz-30 GHz, ISM radio band, and the like.
  • In one implementation, electronic device 102-2 can transfer the electric charge while deriving power from an AC source. Hence the electronic device 102-2 can also transmit power while it itself is in a charging mode.
  • In another implementation, the requesting device 102-1 can request transfer of electrical energy simultaneously from two or more devices at the same time, or at different times. For example, the requesting device 102-1 can request transfer of electrical power from electronic device 102-2, electronic device 102-3, and so on, either at the same time, or one after the other.
  • FIG. 2 shows exemplary components of electronic device 102. The electronic device 102 includes one or more processor(s) 202 coupled to a memory 204. Processor(s) 202 includes, for example, microprocessors, microcomputers, microcontrollers, digital signals processors, central processing units, state machines, logic circuitries, and/or any devices that manipulate data based on operational instructions. The processors can be configured to fetch and execute computer-program instructions stored in memory 204. Such memory 204 includes, for example, one or more volatile memory (e.g., RAM) and non-volatile memory (e.g., ROM, Flash etc.).
  • Memory 204 can also include program modules 206 and program data 208. Processor(s) 202 fetches and executes computer program instructions from the program modules 206. For example, program modules 206 can include instructions to perform wireless transfer of energy.
  • Program module(s) 206 includes the power module 104, a communication module 210, and other modules 212 for implementing wireless transfer of electrical energy between one or more electronic devices 102. Other module(s) 212 may include various other modules required for implementing additional functionalities in electronic device 102. Examples of other modules 212 include, but are not limited to an operating system, application software, etc. Program data 208 includes communication data 214, power data 216 and other data 218.
  • As specified previously, the power module 104 in each of electronic devices 102 can determine the amount of electrical charge left in their respective storage devices. For example, if the electrical charge present within the requesting device 102-1 is below a threshold value, then requesting device 102-1 can seek other electronic devices 102 in its proximity to derive electric charge from them. In one implementation, the communication module 210 can detect one or more electronic devices 102 present in the proximity of the requesting device 102-1. The proximity can be based on a pre-specified range within which the requesting device 102-1 can seek and detect other electronic devices 102. In an implementation, the proximity can be decided on the basis of the frequency at which electronic devices 102 communicate with each other. For example, if Bluetooth™ is used for communication between two or more electronic devices, the proximity is as per Bluetooth™ range and specifications. As illustrated, the communication module 210 can also be implemented in the electronic device 102-2. For example, any communication initiated by the requesting device 102-1 can be received by a corresponding communication module 210 in the electronic device 102-2.
  • In another implementation, the communication module 210 in the requesting device 102-1 generates a list of all the detected electronic devices. Depending on one or more factors (e.g., the compatibility parameters), any one of the electronic devices 102, say electronic device 102-2 can be selected from the generated list. The communication module 210 can also abstract information about the detected electronic devices 102. The information about the detected electronic devices 102 can pertain to type of device, device proximity, compatibility parameters, and so on. In such implementation, the information can be stored in communication data 214. After selecting a desired electronic device, say electronic device 102-2, the communication module 210 in the requesting device 102-1 can transmit a request message to electronic device 102-2, for transferring electrical energy. The electronic device 102-2 or the communication module 210 in the electronic device 102-2 can receive the request message. Upon receiving such a request, the electronic device 102-2 can reject or accept the request. For example, electronic device 102-2 may reject the request for transfer of electrical energy if its own electrical charge is just sufficient for its own operation (as determined, for example by power module 104-2). It should be appreciated that the acceptance or rejection can be based on any number of factors such as low battery, range limitation, compatibility issues, or a combination of them. If the electronic device 102-2 accepts the request, a message communicating the acceptance can be transmitted to the requesting device 102-1. Similarly, a message communicating a rejection can be communicated to the requesting device 102-1, allowing it to seek other devices that may be capable of transmitting power.
  • On receiving an acceptance from the electronic device 102-2, the power module 104-1 in the requesting device 102-1 can initiate the process of wireless energy transfer. The power module 104-2 in the electronic device 102-2 determines the amount of electrical energy stored and can also evaluate the amount of electrical charge that can be transmitted to the requesting device 102-1. The power module 104-2, depending upon the amount of electric charge remaining in electronic device 102-2, regulates the conversion of some part of its stored electrical energy into electromagnetic signals. For example, if 80 percent of electric charge is remaining, electronic device 102-2 may transfer 40 percent to the requesting device 102-1.
  • The converted electrical energy, now in the form of electromagnetic signals, can be transmitted from the electronic device 102-2 to the requesting device 102-1. For example, transceiver(s) included in the power module 104-2 in electronic device 102-2, can transmit the electromagnetic signals from electronic device 102-2 to the requesting device 102-1. In one implementation, the electromagnetic signals can be transmitted at a particular transmission frequency to requesting device 102-1.
  • The electromagnetic signals transmitted by the electronic device 102-2 can be received by the requesting device 102-1 with the help of transceiver(s) included the in power module 104-1. The power module 104-1 can receive the electromagnetic signals transmitted by the electronic device 102-2 at a particular reception frequency. The power module 104-1 converts the electromagnetic signals into a corresponding electrical charge that can be stored in the battery of the requesting device 102-1. The manner in which the electromagnetic signals can be converted to electrical energy can be accomplished by methods or techniques that are known in the art. For example, in requesting device 102-1, a signal converter can convert received electromagnetic signals into electrical energy. In the signal converter, the received electromagnetic signals correspond to AC power that can be converted into DC power using an AC-DC converter. In an implementation, both DC-AC and AC-DC conversion can be combined together in the signal converter included in power module 104. The electric charge once stored can be utilized by the requesting device 102-1 at its convenience or as per mandates defined by a user. In an implementation, the power module 104 can also perform various processing on the electrical charge stored or the electromagnetic signals that are to be transmitted. Examples of such processing include but are not limited to amplification, rectification, and so on.
  • It would be appreciated that the present description is in relation to a requesting device 102-1 and an electronic device 102-2. It would be understood that the same description can also be extended for a plurality of electronic devices 102. Wireless transfer of electrical power can hence be implemented amongst a plurality of devices, each of which can communicate with each other for the transfer of electrical energy.
  • Methods for wireless transfer of electrical energy between electronic devices can be described in the general context of computer executable instructions. Generally, computer executable instructions can include routines, programs, objects, components, data structures, procedures, modules, functions, and the like that perform particular functions or implement particular abstract data types.
  • FIG. 3, illustrating an exemplary method 300 for wireless energy transfer, is described with reference to the system 100. The order in which the method is described is not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement the method, or an alternate method.
  • At block 302, one or more electronic devices present in the vicinity of the requesting device can be selected. In an implementation, the communication module 210 in the requesting device 102-1 detects one or more electronic devices 102 present within its proximity. The proximity can be defined though a pre-specified range or it may depend on other factors like frequency at which requesting device 102-1 communicates with other electronic devices 102, and so on. In an implementation, the frequency may lie in the range of microwave radiations i.e. in the range of 0.3 GHz-30 GHz, ISM radio band, and the like. The requesting device 102-1 then selects at least one electronic device from the list of electronic devices 102 within the proximity of the requesting device 102-1. The selected electronic device, say electronic device 102-2, can then communicate an acceptance for transferring electrical energy responsive to the requesting device 102-1 requesting for charging.
  • At block 304, the amount of electrical energy stored in the electronic device can be determined. In one implementation, the amount of electric charge stored in the electronic device 102-2 can be determined by the power module 104-2. Depending on the level of the electric charge stored, the power module 104-2 can decide the amount of electrical energy to be transferred to the requesting device 102-1.
  • At block 306, a part of electrical energy stored in the electronic device can be converted into electromagnetic signals. In an implementation, the power module 104-2 can convert electrical energy stored in the electronic device 102-2 into corresponding electromagnetic signals with the help of a signal converter and an antenna. In another implementation, the power module 104-2 converts a part of the electric charge stored in electronic device 102-2, depending upon the amount of electrical energy stored.
  • At block 308, the electromagnetic signals can be transmitted from one of the electronic device to the requesting device. In one implementation, the converted electromagnetic signals from the electronic device 102-2 can be transmitted to the requesting device 102-1 by transceiver(s) included in the power module 104. The transmission of the electromagnetic signals can occur at a particular transmission frequency. For example, the transmission frequency can be selected from the range of microwave frequencies in the electromagnetic spectrum.
  • At block 310, the electromagnetic signals are received by the requesting device 102-1 with the help of transceiver(s) included in the power module 104-1. In an implementation, the electromagnetic signals can be received at a particular reception frequency. In another implementation, strength of the electromagnetic signals as received by the requesting device 102-1 can be enhanced by amplifying and rectifying the electromagnetic signals.
  • At block 310, the electromagnetic signals received from one of the electronic devices can be converted into electrical energy. In an implementation, the power module 104-1 converts the electromagnetic signals from electronic device 102-2 into corresponding electrical energy with the help of a signal converter and a rectenna. The electrical energy so obtained can be used to charge the battery of the requesting device 102-1. It may be appreciated that the requesting device 102-1 can further be a source of electrical energy for one or more other electronic devices 102.
  • Although embodiments of wireless energy transfer have been described in language specific to structural features and/or methods, it is to be understood that the appended claims are not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as exemplary implementations of wireless energy transfer.

Claims (22)

1. A method of transferring electrical energy from a transmitting electronic device, the method comprising:
receiving a request for electrical energy from a requesting electronic device;
responsive to the request, converting a part of electrical energy stored in the transmitting electronic device into electromagnetic signals; and
transmitting the electromagnetic signals to the requesting electronic device.
2. The method of claim 1, wherein the converting a part of electrical energy comprises determining the amount of electrical energy stored in the transmitting electronic device.
3. The method of claim 1, wherein the transmitting the electromagnetic signals comprises determining a transmission frequency.
4. A method of receiving electrical energy at a requesting electronic device, the method comprising:
sending a request for electrical energy to one or more electronic devices;
selecting a transmitting electronic device from the one or more electronic devices having compatible parameters with the requesting electronic device;
receiving electromagnetic signals from the transmitting electronic device; and
converting the electromagnetic signals into electrical energy at the requesting electronic device.
5. The method of claim 4, wherein the receiving electromagnetic signals comprises determining a reception frequency.
6. The method of claim 4, wherein the converting the electromagnetic signals comprises amplifying and rectifying the electromagnetic signals.
7. A system for transferring electrical energy from a transmitting electronic device, the system comprising:
a communication module configured to receive a request for electrical energy from a requesting electronic device having compatible parameters with the transmitting electronic device; and
a power module configured to:
convert a part of electrical energy stored in the transmitting electronic device into electromagnetic signals; and
transmit the electromagnetic signals to the requesting electronic device.
8. The system of claim 7, wherein the power module determines a transmission frequency.
9. The system of claim 7, wherein the power module further determines an amount of electrical energy stored in the transmitting electronic device.
10. A system for receiving power at a requesting electronic device, the system comprising:
a plurality of electronic devices present within a pre-specified range of the requesting electronic device;
a communication module configured to send a request for electrical energy to one or more electronic devices having compatible parameters with the requesting electronic device; and
a power module configured to:
receive electromagnetic signals at the requesting electronic device; and
convert the electromagnetic signals into electrical energy at the requesting electronic device.
11. The system of claim 10, wherein the plurality of electronic devices is selected from a group consisting of cell phones, laptops, PDAs, cameras, and portable audio/video players.
12. The system of claim 10, wherein the power module determines a reception frequency.
13. The system of claim 10, wherein the power module amplifies and rectifies the received electromagnetic signals.
14. A transmitting electronic device transferring electrical energy, the transmitting electronic device comprising:
a processor;
a memory coupled to processor, said memory including one or more processor executable instructions;
a communication module configured to receive a request for electrical energy from a requesting electronic device having compatible parameters with the transmitting electronic device; and
a power module configured to:
convert a part of electrical energy stored in the transmitting electronic device into electromagnetic signals; and
transmit the electromagnetic signals to the requesting electronic device.
15. The transmitting electronic device of claim 14 is selected from a group consisting of a cell phone, laptop, PDA, camera, and portable audio/video player.
16. The transmitting electronic device of claim 14, wherein the power module determines a transmission frequency.
17. The transmitting electronic device of claim 14, wherein the power module further determines an amount of electrical energy stored in the transmitting electronic device.
18. A requesting electronic device receiving electrical energy, the requesting electronic device comprising:
a processor;
a memory coupled to processor, said memory including one or more processor executable instructions;
a communication module configured to send a request to one or more electronic devices having compatible parameters with the requesting electronic device to transfer electrical energy; and
a power module configured to:
receive electromagnetic signals from a transmitting electronic device; and
convert the electromagnetic signals into electrical energy at the requesting electronic device.
19. The requesting electronic device of claim 18 is selected from a group consisting of a cell phone, laptop, PDA, camera, and portable audio/video player.
20. The requesting electronic device of claim 18, wherein the power module determines a reception frequency.
21. The requesting electronic device of claim 18, wherein the power module further determines an amount of electrical energy stored in the requesting electronic device.
22. The requesting electronic device of claim 18, wherein the power module amplifies and rectifies the received electromagnetic signals.
US11/928,796 2007-10-30 2007-10-30 Wireless energy transfer Active 2030-10-09 US8175660B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/928,796 US8175660B2 (en) 2007-10-30 2007-10-30 Wireless energy transfer
EP08253515.4A EP2056426B1 (en) 2007-10-30 2008-10-29 Wireless energy transfer
EP20161814.7A EP3716440A1 (en) 2007-10-30 2008-10-29 Wireless energy transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/928,796 US8175660B2 (en) 2007-10-30 2007-10-30 Wireless energy transfer

Publications (2)

Publication Number Publication Date
US20090108679A1 true US20090108679A1 (en) 2009-04-30
US8175660B2 US8175660B2 (en) 2012-05-08

Family

ID=40260749

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/928,796 Active 2030-10-09 US8175660B2 (en) 2007-10-30 2007-10-30 Wireless energy transfer

Country Status (2)

Country Link
US (1) US8175660B2 (en)
EP (2) EP3716440A1 (en)

Cited By (306)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090195333A1 (en) * 2005-07-12 2009-08-06 John D Joannopoulos Wireless non-radiative energy transfer
US20090224856A1 (en) * 2005-07-12 2009-09-10 Aristeidis Karalis Wireless energy transfer
US20090284083A1 (en) * 2008-05-14 2009-11-19 Aristeidis Karalis Wireless energy transfer, including interference enhancement
US20100109445A1 (en) * 2008-09-27 2010-05-06 Kurs Andre B Wireless energy transfer systems
US20100148589A1 (en) * 2008-10-01 2010-06-17 Hamam Rafif E Efficient near-field wireless energy transfer using adiabatic system variations
US20100164297A1 (en) * 2008-09-27 2010-07-01 Kurs Andre B Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US20100164298A1 (en) * 2008-09-27 2010-07-01 Aristeidis Karalis Wireless energy transfer using magnetic materials to shape field and reduce loss
US20100171368A1 (en) * 2008-09-27 2010-07-08 Schatz David A Wireless energy transfer with frequency hopping
US20100181845A1 (en) * 2008-09-27 2010-07-22 Ron Fiorello Temperature compensation in a wireless transfer system
US20100201203A1 (en) * 2008-09-27 2010-08-12 Schatz David A Wireless energy transfer with feedback control for lighting applications
US20100219694A1 (en) * 2008-09-27 2010-09-02 Kurs Andre B Wireless energy transfer in lossy environments
US20100259108A1 (en) * 2008-09-27 2010-10-14 Giler Eric R Wireless energy transfer using repeater resonators
US20100308939A1 (en) * 2008-09-27 2010-12-09 Kurs Andre B Integrated resonator-shield structures
US20110043047A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer using field shaping to reduce loss
US20110175812A1 (en) * 2010-01-20 2011-07-21 Kye Systems Corp. Radio-frequency mouse
US20110193416A1 (en) * 2008-09-27 2011-08-11 Campanella Andrew J Tunable wireless energy transfer systems
US20110218014A1 (en) * 2008-09-11 2011-09-08 Jaber Abu-Qahouq System and method for three mode wireless energy harvesting
WO2012041355A1 (en) 2010-10-01 2012-04-05 Nec Europe Ltd. Method for colaborative energy transfer in a wireless network and corresponding wireless network
CN102412856A (en) * 2010-09-21 2012-04-11 上海科斗电子科技有限公司 Wireless sensor system
US20130026981A1 (en) * 2011-07-28 2013-01-31 Broadcom Corporation Dual mode wireless power
US20130057077A1 (en) * 2011-09-03 2013-03-07 Ariel Inventions Llc Transferring power to a mobile device
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US20130154558A1 (en) * 2011-12-15 2013-06-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting wireless power
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US20130214735A1 (en) * 2012-02-21 2013-08-22 Samsung Electronics Co., Ltd. Wireless charging apparatus and method
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US20140070624A1 (en) * 2012-09-07 2014-03-13 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving wireless power
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US20140319925A1 (en) * 2011-11-10 2014-10-30 Lg Innotek Co., Ltd. Wireless power transmitter, wireless power receiver, wireless power transmission method and wireless power reception method
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933589B2 (en) 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US20150102680A1 (en) * 2013-09-05 2015-04-16 Paolo Menegoli Wireless Power Transmission in Portable Communication Devices
US20150115881A1 (en) * 2013-10-25 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Wireless power transceiver and portable terminal having the same
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US20150271673A1 (en) * 2014-03-21 2015-09-24 Intel Corporation Wireless power transmitting devices, methods for signaling access information for a wireless communication network and method for authorizing a wireless power receiving device
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US20150326025A1 (en) * 2014-05-07 2015-11-12 Energous Corporation System and Method for Controlling Communication Between Wireless Power Transmitter Managers
US20150365135A1 (en) * 2014-06-11 2015-12-17 Enovate Medical, Llc Authentication for wireless transfers
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9272630B2 (en) 2011-05-27 2016-03-01 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving wireless power
US20160070322A1 (en) * 2012-05-18 2016-03-10 Dell Products, Lp System and Method for Providing Wireless Power Feedback in a Wireless Power Delivery System
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US20160149440A1 (en) * 2013-07-17 2016-05-26 Koninklijke Philips N.V. Wireless inductive power transfer
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US20160197490A1 (en) * 2015-01-05 2016-07-07 Toshiba Tec Kabushiki Kaisha Information processing apparatus, peripheral device and non-contact power supply system
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9450449B1 (en) 2012-07-06 2016-09-20 Energous Corporation Antenna arrangement for pocket-forming
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9806537B2 (en) 2011-12-15 2017-10-31 Samsung Electronics Co., Ltd Apparatus and method for determining whether a power receiver is removed from the apparatus
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9882395B1 (en) * 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9882394B1 (en) 2014-07-21 2018-01-30 Energous Corporation Systems and methods for using servers to generate charging schedules for wireless power transmission systems
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9923386B1 (en) * 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9977452B2 (en) 2014-03-07 2018-05-22 Board Of Trustees Of The University Of Alabama Multi-input or multi-output energy system architectures and control methods
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US20180317176A1 (en) * 2010-03-12 2018-11-01 Sunrise Micro Devices, Inc. Power efficient communications
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
WO2020061660A1 (en) * 2018-09-27 2020-04-02 Oliveira Luiz Improvement to mobile devices and applications for donating energy by induction
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10742242B1 (en) * 2019-06-05 2020-08-11 Silicon Laboratories Inc. Apparatus for improving the effective performance of a power source and associated methods
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11159050B2 (en) * 2012-10-19 2021-10-26 Samsung Electronics Co., Ltd. Wireless power transmitters and receivers, and method for permitting a wireless power receiver by a wireless power transmitter
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US11316385B2 (en) * 2018-11-27 2022-04-26 International Business Machines Corporation Wireless energy transfer
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
WO2023192777A1 (en) * 2022-03-28 2023-10-05 Qualcomm Incorporated Charging probability sharing and charging user equipment (ue) behavior
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
US11958370B2 (en) 2021-08-31 2024-04-16 Witricity Corporation Wireless power system modules

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156553A1 (en) * 2008-06-25 2009-12-30 Nokia Corporation Power saving method and apparatus
SG194994A1 (en) 2011-06-21 2013-12-30 Intel Corp Apparatus, systems and methods for wireless charging for pc platforms and peripherals
WO2013109032A1 (en) * 2012-01-17 2013-07-25 Samsung Electronics Co., Ltd. Wireless power transmitter, wireless power receiver, and control methods thereof
US9432480B2 (en) 2013-08-01 2016-08-30 Google Inc. Magnetic induction network device
KR102195109B1 (en) * 2013-11-20 2020-12-24 삼성전자주식회사 Apparatus and method for for wireless charge
SG11201700790XA (en) 2014-08-03 2017-02-27 Pogotec Inc Wearable camera systems and apparatus and method for attaching camera systems or other electronic devices to wearable articles
US9635222B2 (en) 2014-08-03 2017-04-25 PogoTec, Inc. Wearable camera systems and apparatus for aligning an eyewear camera
US10811908B2 (en) 2014-09-25 2020-10-20 Supply, Inc. System and method for wireless power reception
CN107251364A (en) 2014-12-23 2017-10-13 波戈技术有限公司 wireless camera system and method
US10110018B2 (en) 2014-12-23 2018-10-23 Intel Corporation Wireless power repeating
US10340749B2 (en) 2015-03-04 2019-07-02 Lg Electronics Inc. Wireless power transmitter and receiver
US20160352133A1 (en) 2015-05-26 2016-12-01 Intel Corporation Wireless power transmitting coil disposed at an input device
US10481417B2 (en) 2015-06-10 2019-11-19 PogoTec, Inc. Magnetic attachment mechanism for electronic wearable device
CN107924071A (en) 2015-06-10 2018-04-17 波戈技术有限公司 Glasses with the track for electronics wearable device
CA3041583A1 (en) 2015-10-29 2017-05-04 PogoTec, Inc. Hearing aid adapted for wireless power reception
US11558538B2 (en) 2016-03-18 2023-01-17 Opkix, Inc. Portable camera system
EP3539285A4 (en) 2016-11-08 2020-09-02 Pogotec, Inc. A smart case for electronic wearable device
US10424973B1 (en) 2018-03-08 2019-09-24 Supply, Inc. Method and system for wireless power delivery
US10798665B2 (en) 2017-06-06 2020-10-06 Supply, Inc. Method and system for wireless power delivery
CN110730992B (en) 2017-06-06 2021-08-27 供应公司 Method and system for wireless power transfer
US11178625B2 (en) 2017-06-06 2021-11-16 Supply, Inc. Method and system for wireless power delivery
US11300857B2 (en) 2018-11-13 2022-04-12 Opkix, Inc. Wearable mounts for portable camera
WO2020113096A1 (en) 2018-11-28 2020-06-04 Supply, Inc. System and method for wireless power delivery
WO2020113046A1 (en) 2018-11-30 2020-06-04 Supply, Inc. Methods and systems for multi-objective optimization and/or wireless power delivery
US11101847B1 (en) * 2020-09-09 2021-08-24 International Business Machines Corporation Power transfer among devices according to a common workflow
US11611242B2 (en) 2021-04-14 2023-03-21 Reach Power, Inc. System and method for wireless power networking

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114834A (en) * 1997-05-09 2000-09-05 Parise; Ronald J. Remote charging system for a vehicle
US6127799A (en) * 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
US6184651B1 (en) * 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
US20080014897A1 (en) * 2006-01-18 2008-01-17 Cook Nigel P Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US7383084B2 (en) * 2002-10-31 2008-06-03 Transpharma Medical Ltd. Transdermal delivery system for dried particulate or lyophilized medications
US7443057B2 (en) * 2004-11-29 2008-10-28 Patrick Nunally Remote power charging of electronic devices
US20090039828A1 (en) * 2007-08-08 2009-02-12 Daniel Benjamin Jakubowski Wireless charging of electronic devices
US7671736B2 (en) * 2006-06-23 2010-03-02 Securaplane Technologies Inc. Wireless electromagnetic parasitic power transfer
US20100225270A1 (en) * 2009-03-08 2010-09-09 Qualcomm Incorporated Wireless power transfer for chargeable devices
US7868586B2 (en) * 2007-10-31 2011-01-11 Intermec Ip Corp. System, devices, and method for selectively wirelessly energizing passive wireless data communications devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068991B2 (en) * 1997-05-09 2006-06-27 Parise Ronald J Remote power recharge for electronic equipment
CA2275041C (en) * 1999-06-17 2008-01-22 Vtech Communications, Ltd. Method and apparatus of extending useful life of a cordless telephone during a power outage condition
US7349689B2 (en) * 2003-07-01 2008-03-25 Microsoft Corporation Communications device processor peripheral
JP2006229583A (en) * 2005-02-17 2006-08-31 Eastman Kodak Co Communication system and digital camera and dock apparatus
FR2883428B1 (en) * 2005-03-18 2008-03-14 Michel Burri METHOD FOR RECHARGING A BATTERY OR BATTERY OF AN ELECTRONIC EQUIPMENT USING A CHARGER AND ELECTRONIC EQUIPMENT SUITABLE FOR SUCH A METHOD
US20070021140A1 (en) * 2005-07-22 2007-01-25 Keyes Marion A Iv Wireless power transmission systems and methods
KR101617503B1 (en) * 2006-01-18 2016-05-18 퀄컴 인코포레이티드 Method and apparatus for delivering energy to an electrical or electronic device via a wireless link

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114834A (en) * 1997-05-09 2000-09-05 Parise; Ronald J. Remote charging system for a vehicle
US6127799A (en) * 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
US6184651B1 (en) * 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
US7383084B2 (en) * 2002-10-31 2008-06-03 Transpharma Medical Ltd. Transdermal delivery system for dried particulate or lyophilized medications
US7443057B2 (en) * 2004-11-29 2008-10-28 Patrick Nunally Remote power charging of electronic devices
US20080014897A1 (en) * 2006-01-18 2008-01-17 Cook Nigel P Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US7671736B2 (en) * 2006-06-23 2010-03-02 Securaplane Technologies Inc. Wireless electromagnetic parasitic power transfer
US20090039828A1 (en) * 2007-08-08 2009-02-12 Daniel Benjamin Jakubowski Wireless charging of electronic devices
US7868586B2 (en) * 2007-10-31 2011-01-11 Intermec Ip Corp. System, devices, and method for selectively wirelessly energizing passive wireless data communications devices
US20100225270A1 (en) * 2009-03-08 2010-09-09 Qualcomm Incorporated Wireless power transfer for chargeable devices

Cited By (566)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110025131A1 (en) * 2005-07-12 2011-02-03 Aristeidis Karalis Packaging and details of a wireless power device
US10666091B2 (en) 2005-07-12 2020-05-26 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20090224856A1 (en) * 2005-07-12 2009-09-10 Aristeidis Karalis Wireless energy transfer
US20090267710A1 (en) * 2005-07-12 2009-10-29 Joannopoulos John D Wireless non-radiative energy transfer
US20090267709A1 (en) * 2005-07-12 2009-10-29 Joannopoulos John D Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US20100096934A1 (en) * 2005-07-12 2010-04-22 Joannopoulos John D Wireless energy transfer with high-q similar resonant frequency resonators
US20100102641A1 (en) * 2005-07-12 2010-04-29 Joannopoulos John D Wireless energy transfer across variable distances
US20100102639A1 (en) * 2005-07-12 2010-04-29 Joannopoulos John D Wireless non-radiative energy transfer
US20100102640A1 (en) * 2005-07-12 2010-04-29 Joannopoulos John D Wireless energy transfer to a moving device between high-q resonators
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20100117455A1 (en) * 2005-07-12 2010-05-13 Joannopoulos John D Wireless energy transfer using coupled resonators
US20100123353A1 (en) * 2005-07-12 2010-05-20 Joannopoulos John D Wireless energy transfer with high-q from more than one source
US20100123354A1 (en) * 2005-07-12 2010-05-20 Joannopoulos John D Wireless energy transfer with high-q devices at variable distances
US20100123355A1 (en) * 2005-07-12 2010-05-20 Joannopoulos John D Wireless energy transfer with high-q sub-wavelength resonators
US20100127575A1 (en) * 2005-07-12 2010-05-27 Joannopoulos John D Wireless energy transfer with high-q to more than one device
US20100127573A1 (en) * 2005-07-12 2010-05-27 Joannopoulos John D Wireless energy transfer over a distance at high efficiency
US20100127574A1 (en) * 2005-07-12 2010-05-27 Joannopoulos John D Wireless energy transfer with high-q at high efficiency
US20100133920A1 (en) * 2005-07-12 2010-06-03 Joannopoulos John D Wireless energy transfer across a distance to a moving device
US20100133919A1 (en) * 2005-07-12 2010-06-03 Joannopoulos John D Wireless energy transfer across variable distances with high-q capacitively-loaded conducting-wire loops
US20100133918A1 (en) * 2005-07-12 2010-06-03 Joannopoulos John D Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US8760007B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer with high-Q to more than one device
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US20110043046A1 (en) * 2005-07-12 2011-02-24 Joannopoulos John D Wireless energy transfer with high-q capacitively loaded conducting loops
US8400021B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q sub-wavelength resonators
US20100207458A1 (en) * 2005-07-12 2010-08-19 Joannopoulos John D Wireless energy transfer over a distance with devices at variable distances
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20100237708A1 (en) * 2005-07-12 2010-09-23 Aristeidis Karalis Transmitters and receivers for wireless energy transfer
US20100237707A1 (en) * 2005-07-12 2010-09-23 Aristeidis Karalis Increasing the q factor of a resonator
US20100253152A1 (en) * 2005-07-12 2010-10-07 Aristeidis Karalis Long range low frequency resonator
US11685271B2 (en) 2005-07-12 2023-06-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20100264745A1 (en) * 2005-07-12 2010-10-21 Aristeidis Karalis Resonators for wireless power applications
US20100277005A1 (en) * 2005-07-12 2010-11-04 Aristeidis Karalis Wireless powering and charging station
US8400022B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q similar resonant frequency resonators
US20100327660A1 (en) * 2005-07-12 2010-12-30 Aristeidis Karalis Resonators and their coupling characteristics for wireless power transfer via magnetic coupling
US20100327661A1 (en) * 2005-07-12 2010-12-30 Aristeidis Karalis Packaging and details of a wireless power device
US20110012431A1 (en) * 2005-07-12 2011-01-20 Aristeidis Karalis Resonators for wireless power transfer
US20110018361A1 (en) * 2005-07-12 2011-01-27 Aristeidis Karalis Tuning and gain control in electro-magnetic power systems
US11685270B2 (en) 2005-07-12 2023-06-27 Mit Wireless energy transfer
US20090195332A1 (en) * 2005-07-12 2009-08-06 John D Joannopoulos Wireless non-radiative energy transfer
US20100187911A1 (en) * 2005-07-12 2010-07-29 Joannopoulos John D Wireless energy transfer over distances to a moving device
US20110074218A1 (en) * 2005-07-12 2011-03-31 Aristedis Karalis Wireless energy transfer
US20110074347A1 (en) * 2005-07-12 2011-03-31 Aristeidis Karalis Wireless energy transfer
US20110089895A1 (en) * 2005-07-12 2011-04-21 Aristeidis Karalis Wireless energy transfer
US20110140544A1 (en) * 2005-07-12 2011-06-16 Aristeidis Karalis Adaptive wireless power transfer apparatus and method thereof
US20110148219A1 (en) * 2005-07-12 2011-06-23 Aristeidis Karalis Short range efficient wireless power transfer
US20110162895A1 (en) * 2005-07-12 2011-07-07 Aristeidis Karalis Noncontact electric power receiving device, noncontact electric power transmitting device, noncontact electric power feeding system, and electrically powered vehicle
US8400019B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q from more than one source
US20110181122A1 (en) * 2005-07-12 2011-07-28 Aristeidis Karalis Wirelessly powered speaker
US8400018B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q at high efficiency
US20110193419A1 (en) * 2005-07-12 2011-08-11 Aristeidis Karalis Wireless energy transfer
US8400023B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q capacitively loaded conducting loops
US8022576B2 (en) 2005-07-12 2011-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20110227530A1 (en) * 2005-07-12 2011-09-22 Aristeidis Karalis Wireless power transmission for portable wireless power charging
US20110227528A1 (en) * 2005-07-12 2011-09-22 Aristeidis Karalis Adaptive matching, tuning, and power transfer of wireless power
US8400020B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q devices at variable distances
US8076800B2 (en) 2005-07-12 2011-12-13 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8400024B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer across variable distances
US8084889B2 (en) 2005-07-12 2011-12-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8097983B2 (en) 2005-07-12 2012-01-17 Massachusetts Institute Of Technology Wireless energy transfer
US8766485B2 (en) 2005-07-12 2014-07-01 Massachusetts Institute Of Technology Wireless energy transfer over distances to a moving device
US8395282B2 (en) 2005-07-12 2013-03-12 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US20090195333A1 (en) * 2005-07-12 2009-08-06 John D Joannopoulos Wireless non-radiative energy transfer
US8395283B2 (en) 2005-07-12 2013-03-12 Massachusetts Institute Of Technology Wireless energy transfer over a distance at high efficiency
US8791599B2 (en) 2005-07-12 2014-07-29 Massachusetts Institute Of Technology Wireless energy transfer to a moving device between high-Q resonators
US8772971B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across variable distances with high-Q capacitively-loaded conducting-wire loops
US8772972B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across a distance to a moving device
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8076801B2 (en) 2008-05-14 2011-12-13 Massachusetts Institute Of Technology Wireless energy transfer, including interference enhancement
US20090284083A1 (en) * 2008-05-14 2009-11-19 Aristeidis Karalis Wireless energy transfer, including interference enhancement
US9318921B2 (en) * 2008-09-11 2016-04-19 The Board Of Trustees Of The University Of Alabama System and method for three mode wireless energy harvesting
US20110218014A1 (en) * 2008-09-11 2011-09-08 Jaber Abu-Qahouq System and method for three mode wireless energy harvesting
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US8461719B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer systems
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8106539B2 (en) 2008-09-27 2012-01-31 Witricity Corporation Wireless energy transfer for refrigerator application
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8035255B2 (en) 2008-09-27 2011-10-11 Witricity Corporation Wireless energy transfer using planar capacitively loaded conducting loop resonators
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US20100109445A1 (en) * 2008-09-27 2010-05-06 Kurs Andre B Wireless energy transfer systems
US20110193416A1 (en) * 2008-09-27 2011-08-11 Campanella Andrew J Tunable wireless energy transfer systems
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US20110043047A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer using field shaping to reduce loss
US20100308939A1 (en) * 2008-09-27 2010-12-09 Kurs Andre B Integrated resonator-shield structures
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US20100259108A1 (en) * 2008-09-27 2010-10-14 Giler Eric R Wireless energy transfer using repeater resonators
US20100219694A1 (en) * 2008-09-27 2010-09-02 Kurs Andre B Wireless energy transfer in lossy environments
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US20100201203A1 (en) * 2008-09-27 2010-08-12 Schatz David A Wireless energy transfer with feedback control for lighting applications
US20100181843A1 (en) * 2008-09-27 2010-07-22 Schatz David A Wireless energy transfer for refrigerator application
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US20100181845A1 (en) * 2008-09-27 2010-07-22 Ron Fiorello Temperature compensation in a wireless transfer system
US20100171368A1 (en) * 2008-09-27 2010-07-08 Schatz David A Wireless energy transfer with frequency hopping
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US20100164298A1 (en) * 2008-09-27 2010-07-01 Aristeidis Karalis Wireless energy transfer using magnetic materials to shape field and reduce loss
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US20100164297A1 (en) * 2008-09-27 2010-07-01 Kurs Andre B Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US20100148589A1 (en) * 2008-10-01 2010-06-17 Hamam Rafif E Efficient near-field wireless energy transfer using adiabatic system variations
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US20110175812A1 (en) * 2010-01-20 2011-07-21 Kye Systems Corp. Radio-frequency mouse
US20180317176A1 (en) * 2010-03-12 2018-11-01 Sunrise Micro Devices, Inc. Power efficient communications
US10470132B2 (en) * 2010-03-12 2019-11-05 Sunrise Micro Devices, Inc. Power efficient communications
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
CN102412856A (en) * 2010-09-21 2012-04-11 上海科斗电子科技有限公司 Wireless sensor system
US20130214615A1 (en) * 2010-10-01 2013-08-22 Nec Europe Ltd. Method for colaborative energy transfer in a wireless network and corresponding wireless network
WO2012041355A1 (en) 2010-10-01 2012-04-05 Nec Europe Ltd. Method for colaborative energy transfer in a wireless network and corresponding wireless network
US10277079B2 (en) 2011-05-27 2019-04-30 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving wireless power
US9272630B2 (en) 2011-05-27 2016-03-01 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving wireless power
US11040631B2 (en) 2011-05-27 2021-06-22 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving wireless power
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US20130026981A1 (en) * 2011-07-28 2013-01-31 Broadcom Corporation Dual mode wireless power
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US20180109140A1 (en) * 2011-09-03 2018-04-19 Leigh M. Rothschild Transferring power to a mobile device
US10454305B2 (en) * 2011-09-03 2019-10-22 SRR Patent Holdings, LLC, a Wyoming Company Transferring power to a mobile device
US9448603B2 (en) * 2011-09-03 2016-09-20 Leigh M. Rothschild Transferring power to a mobile device
US20130057077A1 (en) * 2011-09-03 2013-03-07 Ariel Inventions Llc Transferring power to a mobile device
US9871415B2 (en) * 2011-09-03 2018-01-16 Ariel Inventions, Llc Transferring power to a mobile device
US20160359367A1 (en) * 2011-09-03 2016-12-08 Ariel Inventions, Llc Transferring power to a mobile device
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US9728980B2 (en) 2011-11-10 2017-08-08 Lg Innotek Co., Ltd. Wireless power transmitter, wireless power receiver, wireless power transmission method and wireless power reception method
US10110074B2 (en) 2011-11-10 2018-10-23 Lg Innotek Co., Ltd. Wireless power transmitter, wireless power receiver, wireless power transmission method and wireless power reception method
US9225177B2 (en) 2011-11-10 2015-12-29 Lg Innotek Co., Ltd. Wireless power receiver for receiving power from a wireless power transmitter using a power signal through a resonance frequency band
US9197070B2 (en) 2011-11-10 2015-11-24 Lg Innotek Co., Ltd. Wireless power transmitter using a resonance coil via a resonance frequency band and corresponding method
US10340751B2 (en) 2011-11-10 2019-07-02 Lg Innotek Co., Ltd. Wireless power reception method of a wireless power receiver in which first demanded power of the wireless power receiver is adjusted within a first available power of the wireless power transmitter
US9124309B2 (en) * 2011-11-10 2015-09-01 Lg Innotek Co., Ltd. Wireless power transmitter using a resonance coil via a resonance frequency band and corresponding method
US20140319925A1 (en) * 2011-11-10 2014-10-30 Lg Innotek Co., Ltd. Wireless power transmitter, wireless power receiver, wireless power transmission method and wireless power reception method
US11121585B2 (en) 2011-11-10 2021-09-14 Lg Innotek Co., Ltd. Wireless power reception method of a wireless power receiver in which first demanded power of the wireless power receiver is adjusted within a first available power of the wireless power tansmitter
US10312696B2 (en) 2011-12-15 2019-06-04 Samsung Electronics Co., Ltd Method and apparatus for transmitting wireless power
US9806537B2 (en) 2011-12-15 2017-10-31 Samsung Electronics Co., Ltd Apparatus and method for determining whether a power receiver is removed from the apparatus
US10958080B2 (en) 2011-12-15 2021-03-23 Samsung Electronics Co.. Ltd. Method and apparatus for transmitting wireless power
US20180006465A1 (en) * 2011-12-15 2018-01-04 Samsung Electronics Co., Ltd. Apparatus and method for transmitting wireless power
US10700531B2 (en) 2011-12-15 2020-06-30 Samsung Electronics Co., Ltd Method and apparatus for transmitting wireless power
US10931144B2 (en) 2011-12-15 2021-02-23 Samsung Electronics Co., Ltd Apparatus and method for transmitting wireless power
AU2012353120B2 (en) * 2011-12-15 2017-03-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting wireless power
KR101900013B1 (en) 2011-12-15 2018-09-18 삼성전자주식회사 Wireless power transmitter, wireless power receiver and method for controlling each thereof
US9425626B2 (en) * 2011-12-15 2016-08-23 Samsung Electronics Co., Ltd Apparatus and method for applying wireless power based on detection of a wireless power receiver
US10355494B2 (en) 2011-12-15 2019-07-16 Samsung Electronics Co., Ltd Apparatus and method for determining whether a power receiver is removed from the apparatus
US9711969B2 (en) * 2011-12-15 2017-07-18 Samsung Electronics Co., Ltd Method and apparatus for transmitting wireless power to multiple wireless power receivers
US10554051B2 (en) * 2011-12-15 2020-02-04 Samsung Electronics Co., Ltd. Apparatus and method for transmitting wireless power
US10554053B2 (en) 2011-12-15 2020-02-04 Samsung Electronics Co., Ltd Apparatus and method for transmitting wireless power
US20130154558A1 (en) * 2011-12-15 2013-06-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting wireless power
US20130154557A1 (en) * 2011-12-15 2013-06-20 Samsung Electronics Co., Ltd. Apparatus and method for transmitting wireless power
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US8933589B2 (en) 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
US9634495B2 (en) 2012-02-07 2017-04-25 Duracell U.S. Operations, Inc. Wireless power transfer using separately tunable resonators
US20130214735A1 (en) * 2012-02-21 2013-08-22 Samsung Electronics Co., Ltd. Wireless charging apparatus and method
EP2817866A4 (en) * 2012-02-21 2015-10-28 Samsung Electronics Co Ltd Wireless charging apparatus and method
KR101902795B1 (en) * 2012-02-21 2018-11-14 삼성전자주식회사 Method for wireless charging and apparatus for the same
US10067546B2 (en) * 2012-05-18 2018-09-04 Dell Products, Lp System and method for providing wireless power feedback in a wireless power delivery system
US20160070322A1 (en) * 2012-05-18 2016-03-10 Dell Products, Lp System and Method for Providing Wireless Power Feedback in a Wireless Power Delivery System
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US10298024B2 (en) 2012-07-06 2019-05-21 Energous Corporation Wireless power transmitters for selecting antenna sets for transmitting wireless power based on a receiver's location, and methods of use thereof
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9450449B1 (en) 2012-07-06 2016-09-20 Energous Corporation Antenna arrangement for pocket-forming
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9923386B1 (en) * 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US20140070624A1 (en) * 2012-09-07 2014-03-13 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving wireless power
US9881733B2 (en) * 2012-09-07 2018-01-30 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving wireless power
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US11159050B2 (en) * 2012-10-19 2021-10-26 Samsung Electronics Co., Ltd. Wireless power transmitters and receivers, and method for permitting a wireless power receiver by a wireless power transmitter
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9941705B2 (en) 2013-05-10 2018-04-10 Energous Corporation Wireless sound charging of clothing and smart fabrics
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US10291294B2 (en) 2013-06-03 2019-05-14 Energous Corporation Wireless power transmitter that selectively activates antenna elements for performing wireless power transmission
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US11722177B2 (en) 2013-06-03 2023-08-08 Energous Corporation Wireless power receivers that are externally attachable to electronic devices
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10396588B2 (en) 2013-07-01 2019-08-27 Energous Corporation Receiver for wireless power reception having a backup battery
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10305315B2 (en) 2013-07-11 2019-05-28 Energous Corporation Systems and methods for wireless charging using a cordless transceiver
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10523058B2 (en) 2013-07-11 2019-12-31 Energous Corporation Wireless charging transmitters that use sensor data to adjust transmission of power waves
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10615646B2 (en) * 2013-07-17 2020-04-07 Koninklijke Philips N.V. Wireless inductive power transfer
US20160149440A1 (en) * 2013-07-17 2016-05-26 Koninklijke Philips N.V. Wireless inductive power transfer
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10498144B2 (en) 2013-08-06 2019-12-03 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices in response to commands received at a wireless power transmitter
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9525311B2 (en) * 2013-09-05 2016-12-20 Nirvanalog Inc. Wireless power transmission in portable communication devices
US20150102680A1 (en) * 2013-09-05 2015-04-16 Paolo Menegoli Wireless Power Transmission in Portable Communication Devices
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US20150115881A1 (en) * 2013-10-25 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Wireless power transceiver and portable terminal having the same
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9977452B2 (en) 2014-03-07 2018-05-22 Board Of Trustees Of The University Of Alabama Multi-input or multi-output energy system architectures and control methods
US9615254B2 (en) * 2014-03-21 2017-04-04 Intel Corporation Wireless power transmitting devices, methods for signaling access information for a wireless communication network and method for authorizing a wireless power receiving device
US20150271673A1 (en) * 2014-03-21 2015-09-24 Intel Corporation Wireless power transmitting devices, methods for signaling access information for a wireless communication network and method for authorizing a wireless power receiving device
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US10516301B2 (en) 2014-05-01 2019-12-24 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10014728B1 (en) 2014-05-07 2018-07-03 Energous Corporation Wireless power receiver having a charger system for enhanced power delivery
US20150326025A1 (en) * 2014-05-07 2015-11-12 Energous Corporation System and Method for Controlling Communication Between Wireless Power Transmitter Managers
US10298133B2 (en) 2014-05-07 2019-05-21 Energous Corporation Synchronous rectifier design for wireless power receiver
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US11233425B2 (en) 2014-05-07 2022-01-25 Energous Corporation Wireless power receiver having an antenna assembly and charger for enhanced power delivery
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10396604B2 (en) 2014-05-07 2019-08-27 Energous Corporation Systems and methods for operating a plurality of antennas of a wireless power transmitter
US10186911B2 (en) 2014-05-07 2019-01-22 Energous Corporation Boost converter and controller for increasing voltage received from wireless power transmission waves
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9847679B2 (en) * 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9882430B1 (en) * 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9882395B1 (en) * 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US20150365135A1 (en) * 2014-06-11 2015-12-17 Enovate Medical, Llc Authentication for wireless transfers
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10554052B2 (en) 2014-07-14 2020-02-04 Energous Corporation Systems and methods for determining when to transmit power waves to a wireless power receiver
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9882394B1 (en) 2014-07-21 2018-01-30 Energous Corporation Systems and methods for using servers to generate charging schedules for wireless power transmission systems
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10490346B2 (en) 2014-07-21 2019-11-26 Energous Corporation Antenna structures having planar inverted F-antenna that surrounds an artificial magnetic conductor cell
US9899844B1 (en) 2014-08-21 2018-02-20 Energous Corporation Systems and methods for configuring operational conditions for a plurality of wireless power transmitters at a system configuration interface
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10790674B2 (en) 2014-08-21 2020-09-29 Energous Corporation User-configured operational parameters for wireless power transmission control
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
EP3040805B1 (en) * 2015-01-05 2019-07-03 Toshiba TEC Kabushiki Kaisha Information processing apparatus, peripheral device and non-contact power supply system
US20160197490A1 (en) * 2015-01-05 2016-07-07 Toshiba Tec Kabushiki Kaisha Information processing apparatus, peripheral device and non-contact power supply system
JP2016127719A (en) * 2015-01-05 2016-07-11 東芝テック株式会社 Information processor, peripheral unit and non-contact power supply system
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US11670970B2 (en) 2015-09-15 2023-06-06 Energous Corporation Detection of object location and displacement to cause wireless-power transmission adjustments within a transmission field
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US11056929B2 (en) 2015-09-16 2021-07-06 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US11777328B2 (en) 2015-09-16 2023-10-03 Energous Corporation Systems and methods for determining when to wirelessly transmit power to a location within a transmission field based on predicted specific absorption rate values at the location
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10483768B2 (en) 2015-09-16 2019-11-19 Energous Corporation Systems and methods of object detection using one or more sensors in wireless power charging systems
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US10177594B2 (en) 2015-10-28 2019-01-08 Energous Corporation Radiating metamaterial antenna for wireless charging
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10594165B2 (en) 2015-11-02 2020-03-17 Energous Corporation Stamped three-dimensional antenna
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10511196B2 (en) 2015-11-02 2019-12-17 Energous Corporation Slot antenna with orthogonally positioned slot segments for receiving electromagnetic waves having different polarizations
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10491029B2 (en) 2015-12-24 2019-11-26 Energous Corporation Antenna with electromagnetic band gap ground plane and dipole antennas for wireless power transfer
US10186892B2 (en) 2015-12-24 2019-01-22 Energous Corporation Receiver device with antennas positioned in gaps
US10116162B2 (en) 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US11114885B2 (en) 2015-12-24 2021-09-07 Energous Corporation Transmitter and receiver structures for near-field wireless power charging
US10447093B2 (en) 2015-12-24 2019-10-15 Energous Corporation Near-field antenna for wireless power transmission with four coplanar antenna elements that each follows a respective meandering pattern
US11689045B2 (en) 2015-12-24 2023-06-27 Energous Corporation Near-held wireless power transmission techniques
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
US11451096B2 (en) 2015-12-24 2022-09-20 Energous Corporation Near-field wireless-power-transmission system that includes first and second dipole antenna elements that are switchably coupled to a power amplifier and an impedance-adjusting component
US10879740B2 (en) 2015-12-24 2020-12-29 Energous Corporation Electronic device with antenna elements that follow meandering patterns for receiving wireless power from a near-field antenna
US10277054B2 (en) 2015-12-24 2019-04-30 Energous Corporation Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10218207B2 (en) 2015-12-24 2019-02-26 Energous Corporation Receiver chip for routing a wireless signal for wireless power charging or data reception
US10958095B2 (en) 2015-12-24 2021-03-23 Energous Corporation Near-field wireless power transmission techniques for a wireless-power receiver
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10516289B2 (en) 2015-12-24 2019-12-24 Energous Corportion Unit cell of a wireless power transmitter for wireless power charging
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10141771B1 (en) 2015-12-24 2018-11-27 Energous Corporation Near field transmitters with contact points for wireless power charging
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US11777342B2 (en) 2016-11-03 2023-10-03 Energous Corporation Wireless power receiver with a transistor rectifier
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10355534B2 (en) 2016-12-12 2019-07-16 Energous Corporation Integrated circuit for managing wireless power transmitting devices
US11594902B2 (en) 2016-12-12 2023-02-28 Energous Corporation Circuit for managing multi-band operations of a wireless power transmitting device
US10840743B2 (en) 2016-12-12 2020-11-17 Energous Corporation Circuit for managing wireless power transmitting devices
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US10476312B2 (en) 2016-12-12 2019-11-12 Energous Corporation Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered to a receiver
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US11063476B2 (en) 2017-01-24 2021-07-13 Energous Corporation Microstrip antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11245191B2 (en) 2017-05-12 2022-02-08 Energous Corporation Fabrication of near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11637456B2 (en) 2017-05-12 2023-04-25 Energous Corporation Near-field antennas for accumulating radio frequency energy at different respective segments included in one or more channels of a conductive plate
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11218795B2 (en) 2017-06-23 2022-01-04 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10714984B2 (en) 2017-10-10 2020-07-14 Energous Corporation Systems, methods, and devices for using a battery as an antenna for receiving wirelessly delivered power from radio frequency power waves
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11710987B2 (en) 2018-02-02 2023-07-25 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11699847B2 (en) 2018-06-25 2023-07-11 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
WO2020061660A1 (en) * 2018-09-27 2020-04-02 Oliveira Luiz Improvement to mobile devices and applications for donating energy by induction
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11316385B2 (en) * 2018-11-27 2022-04-26 International Business Machines Corporation Wireless energy transfer
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US10742242B1 (en) * 2019-06-05 2020-08-11 Silicon Laboratories Inc. Apparatus for improving the effective performance of a power source and associated methods
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11715980B2 (en) 2019-09-20 2023-08-01 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11799328B2 (en) 2019-09-20 2023-10-24 Energous Corporation Systems and methods of protecting wireless power receivers using surge protection provided by a rectifier, a depletion mode switch, and a coupling mechanism having multiple coupling locations
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11411437B2 (en) 2019-12-31 2022-08-09 Energous Corporation System for wirelessly transmitting energy without using beam-forming control
US11817719B2 (en) 2019-12-31 2023-11-14 Energous Corporation Systems and methods for controlling and managing operation of one or more power amplifiers to optimize the performance of one or more antennas
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11958370B2 (en) 2021-08-31 2024-04-16 Witricity Corporation Wireless power system modules
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
WO2023192777A1 (en) * 2022-03-28 2023-10-05 Qualcomm Incorporated Charging probability sharing and charging user equipment (ue) behavior

Also Published As

Publication number Publication date
US8175660B2 (en) 2012-05-08
EP2056426B1 (en) 2020-03-11
EP2056426A3 (en) 2012-10-10
EP2056426A2 (en) 2009-05-06
EP3716440A1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
US8175660B2 (en) Wireless energy transfer
US10396588B2 (en) Receiver for wireless power reception having a backup battery
US10886784B2 (en) Wireless power receiver, and method for performing communication with wireless power transmitter when the wireless power receiver is powered off
US11277037B2 (en) Method for wireless charging and electronic device thereof
US10547192B2 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
US10425130B2 (en) Wireless power transmitter and receiver, and method for transmitting emergency information in a wireless charging network
US10651671B2 (en) Wireless power charging system
CN104620471B (en) Exclude the wireless power transmitter of the wireless power receiver of interconnection and the method for controlling it
US9722434B2 (en) Wireless power transfer system, control method of wireless power transfer system, wireless power transmitting apparatus, control method of wireless power transmitting apparatus, and storage medium
JP4171758B2 (en) Apparatus and method for wirelessly sharing power supply by induction method
US20150001949A1 (en) Hybrid charging method for wireless power transmission based on pocket-forming
JP2019083683A (en) Wireless power transmission control method in resonance type wireless power transmission system, wireless power transmission apparatus using the same and wireless power receiver using the same
WO2022199231A1 (en) Wireless keyboard
US20140376646A1 (en) Hybrid wi-fi and power router transmitter
KR20140023409A (en) Wireless charging system and method of cotnrolligng the same
JP2013055879A (en) Wireless power transmission device using multiple antenna and control method thereof
JP5855968B2 (en) Mobile communication terminal, communication terminal system, and method for controlling charging by a non-contact charger
JP2008148520A (en) Portable device
CN102984312A (en) Cell phone mobile terminal
CN105827023A (en) Wireless charging method between terminals and terminals
US8260370B2 (en) Method and apparatus for powering a wireless peripheral
KR101404013B1 (en) Mobile apparatus including wireless power transmission apparatus and wireless charging system
KR101311436B1 (en) Clouding recharging system by micro wave network of wireless electric power
WO2022199671A1 (en) Charging method and apparatus, and electronic device and storage medium
CN202998204U (en) Mobile phone, bluetooth earphone and mobile terminal of mobile phone

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATI TECHNOLOGIES ULC, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PORWAL, GUNJAN;REEL/FRAME:020530/0843

Effective date: 20071227

AS Assignment

Owner name: QUALCOMM INCORPORATED,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATI TECHNOLOGIES ULC;REEL/FRAME:022240/0873

Effective date: 20090119

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATI TECHNOLOGIES ULC;REEL/FRAME:022240/0873

Effective date: 20090119

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO ADD THE LAST TWO ASSIGNORS PREVIOUSLY RECORDED AT REEL: 022240 FRAME: 0873. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:ADVANCED MICRO DEVICES, INC.;ATI TECHNOLOGIES ULC;ATI INTERNATIONAL SRL;REEL/FRAME:038427/0685

Effective date: 20090119

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12