US20080275499A1 - Non-Pneumatic Tourniquet Device - Google Patents

Non-Pneumatic Tourniquet Device Download PDF

Info

Publication number
US20080275499A1
US20080275499A1 US12/114,737 US11473708A US2008275499A1 US 20080275499 A1 US20080275499 A1 US 20080275499A1 US 11473708 A US11473708 A US 11473708A US 2008275499 A1 US2008275499 A1 US 2008275499A1
Authority
US
United States
Prior art keywords
frame
membrane
opening
peripheral edge
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/114,737
Inventor
Ted J. Brackett
William J. Green
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Precision Medical Devices LLC
Original Assignee
Brackett Ted J
Green William J
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brackett Ted J, Green William J filed Critical Brackett Ted J
Priority to US12/114,737 priority Critical patent/US20080275499A1/en
Priority to US29/317,784 priority patent/USD625824S1/en
Publication of US20080275499A1 publication Critical patent/US20080275499A1/en
Priority to US29/346,791 priority patent/USD642275S1/en
Assigned to PRECISION MEDICAL DEVICES, LLC reassignment PRECISION MEDICAL DEVICES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRACKETT, TED J., GREEN, WILLIAM J.
Priority to US12/897,770 priority patent/US9131943B2/en
Priority to US29/405,373 priority patent/USD679013S1/en
Priority to US29/419,191 priority patent/USD693009S1/en
Priority to US29/419,192 priority patent/USD684694S1/en
Priority to US29/419,190 priority patent/USD685095S1/en
Priority to US29/419,189 priority patent/USD685094S1/en
Priority to US29/419,195 priority patent/USD684697S1/en
Priority to US29/419,193 priority patent/USD684695S1/en
Priority to US29/419,194 priority patent/USD684696S1/en
Priority to US14/855,375 priority patent/US10945741B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/132Tourniquets
    • A61B17/1322Tourniquets comprising a flexible encircling member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/132Tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0042Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping
    • A61B2017/00438Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping connectable to a finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/037Automatic limiting or abutting means, e.g. for safety with a frangible part, e.g. by reduced diameter

Definitions

  • This invention relates to a non-pneumatic tourniquet and medical device designed for quick, easy application to an injured digit (finger or toe).
  • the general consensus for the necessary requirements include ease of application and removal, universal use, comfort, easily seen (not likely to be left in place leading to digital necrosis), and most importantly, the ability to provide a bloodless environment with maximal visualization of the necessary structures.
  • the methods that do not first exsanguinate the digit or appendage commonly experience this problematic persistent oozing, and may include the Penrose drain and pneumatic tourniquets.
  • the techniques that do exsanguinate the digit first include the “cut glove” technique and the Marmed Tourni-quot device. Each of these techniques do not compare to utility of the “T-Ring” device when considering ease of application, universality of use, and safety and ease of removal.
  • the “cut glove” and the Tourni-quot product are similar to a rubber ring or donut, but this rubber ring style product has many inherent advantages.
  • One major disadvantage is when the rubber ring is applied to an injured digit, the user must roll the ring up the digit and over and through the injured area. During this process, the rubber ring device not only may increase the damage to the injured area, but also may catch any traumatic skin flaps or lacerations. This rubber ring structure does not allow for increasing the diameter of the rubber ring apparatus.
  • the present invention or “T-Ring” device has several advantages over current devices used as tourniquets for finger and toe procedures.
  • the disclosed invention has both unique methods of application, which allows for exsanguination (the action or process of draining or losing blood); applying tourniquet pressure to a digit; and multiple ways for easy removal of the apparatus. This unique method of application and removal provide additional utility, safety and ease of use as compared to current devices available to health care providers.
  • the “T-Ring” device has been designed to meet all of the requirements of the “ideal” digital tourniquet. Many devices have been used in emergency departments and in the operating suites, and the applicant believes that none provides the effectiveness, safety and efficiency demonstrated by the applicant's “T-Ring” device.
  • An apparatus for improving an operating field on an appendage or digit of a patient comprising: a preferably rigid or firm frame mated to a flexible outer layer or flexible membrane.
  • the frame has a frame surface, a peripheral edge, a first end, a second end, and a centrally disposed opening; the frame surface having at least one aperture along the peripheral edge of the frame; each end of the frame having a tab, which outwardly extends past the peripheral edge of the frame.
  • the frame can further have at least one groove or break point, which is oriented in between the first and the second end.
  • the at least one groove or break point is located under the flexible layer or membrane; at a first position, the groove or break point is solid and not broken.
  • the user will apply pressure around the groove or break point to separate the frame; the device is not broken into separate pieces due to the flexible membrane covering. In the second position, the user is able to stretch apart the device further than in the first position.
  • the flexible membrane has a first membrane portion, which covers the frame (partially or entirely), and a second membrane portion, which forms a web with a centrally disposed membrane opening; and the web is able to slidably engage an appendage of a patient.
  • the frame surface can have at least one aperture, which is oriented along the peripheral edge of the frame and passes completely through the frame, and the flexible membrane can also pass and be secured through the at least one aperture of the frame.
  • the present invention introduces such refinements.
  • the present invention has several aspects or facets that can be used independently, although they are preferably employed together to optimize their benefits. All of the foregoing operational principles and advantages of the present invention will be more fully appreciated upon consideration of the following detailed description, with reference to the appended drawings.
  • FIG. 1 is a perspective view of one preferred embodiment of the invention.
  • FIG. 2 is a view of a first side of one preferred embodiment of the invention.
  • FIG. 3 is a view of a third side of one preferred embodiment of the invention.
  • FIG. 4 is a view of a fifth side of one preferred embodiment of the invention.
  • FIG. 5 is a perspective view of another preferred embodiment with cut out sections of the outer flexible or membrane layer. These cut out portions can be on both sides or on one side of the device.
  • FIG. 6 is a perspective view of the inner frame of one preferred embodiment of the invention.
  • FIG. 7 shows the apparatus engaging a human finger; note how the flexible layer or membrane effectively grasps the digit.
  • the “T-Ring” device is a non-pneumatic tourniquet device designed for quick, easy application to the involved digit (finger or toe) or other appendage of the patient.
  • an apparatus 10 for improving an operating field for medical procedures comprising a substantially rigid frame 15 with a flexible membrane covering 20 , which can be a full or partial covering of the frame.
  • the apparatus 10 has a substantially rigid and circular shaped frame 15 with a peripheral outer edge 30 and surface 50 .
  • This frame has a first end 35 and a second end 40 .
  • This invention allows for other geometric or arbitrary frame shapes.
  • the frame further has a centrally disposed opening 45 . Note that this opening should be large enough to accommodate the digit or body part of the patient and to provide enough room around the digit or body part to allow flexion of the membrane or flexible layer part and for removal of the apparatus.
  • the frame further has at least one frame surface 50 .
  • the frame surface has at least one aperture or opening, which is oriented along the peripheral edge of the frame and passes partially or completely through the frame.
  • FIG. 6 shows multiple openings 55 or grasping points or apertures around the circumference or peripheral edge of the frame. These multiple openings, apertures or grasping points act as anchor sites for parts of the flexible membrane to grasp and to interconnect with the frame.
  • the openings act as female parts for the flexible layer or membrane, which can act as a male part.
  • FIG. 6 shows the aperture or opening as being parallel to the centrally disposed opening; however, other embodiments may have these openings placed at an angle to the centrally disposed opening or to have internal structures to maximize the gripping or grasping interaction of the flexible membrane to the frame.
  • FIG. 1-7 show embodiments with the frame having a first tab 60 and a second tab 65 at the opposite ends of the frame body. Other embodiments may allow for more than two tabs, which are strategically located around the frame body to further assist the physician in removing or utilizing the T-Ring apparatus.
  • the first and the second tabs can also have at least one boss 70 , bump, protrusion or resistance and grasping structure on the tab surface. These resistance points on the surface of the tab help the user grasp the apparatus. These tabs outwardly extend past the peripheral edge of the frame.
  • the tabs may also be grooved or a convex shape to readily accept a user's finger.
  • the frame can also have at least one break point 75 , scoring, groove or indentation, which is oriented in between the first and the second end.
  • FIG. 7 shows two break points or scores, which are located between the first and the second end; each break point is oppositely opposed to one another. This break point allows the user to easily snap the frame (from a first unsnapped position to a second snapped position) so that the user can expand the apparatus further beyond the non-snapped frame diameter, especially over any repaired area of the patient's finger or digit.
  • break points are not critical to the basic function of this device (i.e., exsanguination), but these break point structures do provide an additional level of function not disclosed by the prior art.
  • a flexible layer or membrane 20 which covers the frame and substantially covers the frame opening.
  • This flexible layer or membrane has a membrane opening 80 , which is centrally located in the device.
  • the material used for the flexible membrane can be thermoplastic elastomer (TPE) or other types of rubbers, plastics or flexible materials.
  • TPE thermoplastic elastomer
  • This flexible layer can completely or partially cover the inner frame and/or tabs.
  • FIG. 1 the outermost area of flexible layer or membrane grabs and conforms to the shape of the inner frame; FIG. 1 version shows that the tabs are not covered by the membrane.
  • This membrane has a first or outer portion and a second or inner portion. Looking at the device from the side, the first or outer portion is a higher elevation than the second or inner portion.
  • the second or inner portion of flexible layer or membrane is no longer conforming to the shape of an internal structure and becomes a web.
  • This second or inner membrane portion can be described as a means located within the inner frame of the device for grasping or grabbing the patient's finger, digit or appendage.
  • this web or inner portion of the flexible layer or membrane lacks any internal structures, ribs or components. It is preferred that the terminal end or edge of the web or inner portion of the membrane be flexible enough or take advantage of the flexible nature of the membrane to best grasp or grab the patient's digit or appendage during use. Different flexible materials (with different durometer) can be used to customize the efficiency of the device for the particular use. However, as noted below, other possible embodiments allow for the addition of blade or gripping structures on the inner surface of the membrane opening 80 .
  • this membrane can also pass through the at least one aperture/openings through the frame; and the web also has a centrally disposed membrane opening 80 .
  • This membrane opening should be parallel with the frame opening.
  • the size of the membrane opening 80 should be large enough to accommodate the patient's digit or body part and to provide resistance in order to effectively provide pressure to the digit as the apparatus is slid into place or for effective exsanguination of the body part or digit.
  • the inner part of the flexible layer or membrane grabs and grips the finger and applies an external pressure or a compression to the blood vessels in the patient's appendage.
  • the process to manufacture the preferred embodiment is to injection mold a single frame piece (including without limitation a hard plastic outer ring). Then, the single frame piece is “over-molded” with the flexible material (including without limitation thermoplastic elastomer or TPE); the frame is encapsulated except the two tabs.
  • the flexible material including without limitation thermoplastic elastomer or TPE
  • Other embodiments allow for multiple frame pieces, but for cost savings, it is preferable to injection mold a single frame piece.
  • the outer ring frame has at least one or preferably an array of holes or apertures that pass partially or completely through the frame body to help anchor the flexible material to the frame and to provide the taught “trampoline” effect of the flexible layer or membrane.
  • Other embodiments allow the holes or apertures to have additional internal structures such as footings to further improve the gripping effect of the flexible material within the frame.
  • a most basic version of this invention can also employ a flexible but at the same time firm plastic or rubber-style ring.
  • This type of ring would not require a separate internal frame.
  • the invention or the “T-Ring” device can also comprise a central thin, flexible rubber disc surrounded by a hardened outer plastic ring.
  • the outer ring is made of two identical halves which, when sealed together (heat stamped or glued, for example), enclose and anchor the central rubber or plastic disc.
  • the central rubber disc is made with a “hole” in its center, which allows the “T-Ring” apparatus to be placed over a finger or toe. This hole or opening is smaller than the diameter of the involved digit, so that pressure will be applied to the digit as the ring is slid into place.
  • the health care provider will grip the “T-Ring” device or apparatus by its outer hardened ring or frame and slide the apparatus up the finger or toe to its base on the hand or foot.
  • the outer ring “drags” the inner section or membrane with it, effectively exsanguinating the digit as the “T-Ring” apparatus is placed on the digit. See FIG. 7 .
  • the central rubber disc or membrane is flexible and is suspended from the outer ring and lags behind it during application, the inner hole is effectively pulled up and over any protrusions on the digit.
  • This central flexible disc structure or membrane further allows the “T-Ring” device to slide over lacerations, avulsions and, more importantly, traumatic skin flaps. Once in place, the “T-Ring” device or apparatus applies enough pressure to maintain hemostasis, and thus, this invention provides a bloodless operating field.
  • the “T-Ring” device allows for differing sizes or diameters of the central rubber hole or opening. There is a standard sized hole or opening, which will be utilized on the majority of patients. There will also be versions of the invention with smaller central holes or openings in the cases that increased pressure is necessary to achieve hemostasis, and rings with larger holes in the case where there may be an unusually large flap or irregularity that must be accommodated by the “T-Ring”. Note that this invention capitalizes on the difference in flexibility and resistance between the outer ring and the inner flexible ring.
  • the outer plastic ring can have an approximate outer diameter of 3.5 cm and inner diameter of 2.5 to 3.0 cm; there will be varying sizes, smaller for pediatric patients and larger for patients with larger digits.
  • the outer ring can be approximately 0.5 to 1.0 cm in width and 0.5 to 1.0 cm in thickness; note that thickness includes the two plastic “halves” and the central rubber disc (as noted in some versions in the provisional application). This preferred size range provides ease of handling for the health care provider, nicely separates the digits to maximize visualization and the functional work area, and provides a comfortable fit for the patient. These measurements and dimensions are for example only and are not intended to be limiting.
  • the outer ring will be scored at the 3 o'clock and 9 o'clock positions or orientations (with reference to the numbers on a clock); these scoring or notches allow the outer ring to be easily “snapped” in two pieces when the procedure is completed.
  • the user holds ring in the 12 o'clock and 6 o'clock positions and flexes the ring forwards or backwards until the outer ring frame has snapped.
  • the central hole may be enlarged by pulling on the opposing halves of the outer ring.
  • This will allow the “T-Ring” device to be removed from the digit without the rubber material from the central disc coming into contact with the repaired portion of the digit; this structure allows for a safe and efficient removal.
  • This invention allows for the ring apparatus to be easily removed from the finger in the same fashion that it was placed on the finger; this “snap” option provides an additional margin of safety with more complex injuries or procedures.
  • outer ring may have grasp or hold points or tabs so that the user may more easily grab the apparatus at positions approximately ninety degrees from the score or notches in the outer ring.
  • T BAND embodiment Another embodiment of the invention employs two separate portions or tabs that are interconnected with a flexible membrane with a centrally disposed opening. Unlike the previous embodiments with uniformly closed frame or ring, other embodiments employ completely separate tabs or portions. There will not be break points since the first and the second pieces of the frame are already separate. There can be at least two pieces, but other embodiments allow for three or four pieces, which are all connected to a centrally disposed flexible membrane with an opening for the digit or body part. 2.
  • Two part outer ring Other embodiments may employ a first half and a second half of the outer ring.
  • first and second rings can mirror one another in shape and dimension.
  • the first and outer rings have a first or outer circumference and a second or inner circumference.
  • first and second rings can be made from O-Rings or other commonly used circular washers or rings.
  • the material can be plastic, paper or a composite material.
  • the middle or third layer of the apparatus is composed of a flexible material, including but not limited to rubber, plastic, or latex; there is an opening in the center of this third layer to allow a finger or toe to enter and to pass through this apparatus.
  • This material should be flexible enough to allow placement of the apparatus around an appendage (finger or toe), but it should be strong enough to maintain pressure at a specific location and to allow for exsanguination of the appendage.
  • Construction of the apparatus involves sandwiching the third layer of a flexible plastic material or web between two similarly shaped first and second layers (such as O-rings). An opening or hole is placed in the middle of the third layer, and score points or notches are placed at the opposite ends of the apparatus on both the first and second layers.
  • first and second layers such as O-rings
  • Raised Ridges in Flexible Membrane Other embodiments employ raised rubber ridges, which can be molded in a rifle or other types of patterns. These ridges can help the user to screw or to rotate said apparatus on the patient's body part or digit. Other versions can have a thickening rib or support vertebra in the inner flexible membrane to provide more stability during use. 5. Lighting. Other embodiments may allow for at least one or multiple small light emitting diode (LED) lights to be placed on the peripheral edge of the frame or the tabs. The tabs can also hold a small battery, which are connected to the LED lights. 6.
  • LED small light emitting diode
  • Additional Grasping Points or Bosses on the Inner Surface of the Frame can have boss structures or grasping points on the inner surface of the frame to help the flexible membrane to grasp and to interconnect with the frame.
  • Other embodiments can have a lip or a shelf structure or groove, which is molded down the center of the inner surface of the frame, to allow the flexible membrane to more firmly interact and to affix.
  • Inner Blades or Gripping Points on the inner surface of the flexible membrane Other embodiments can have “blades” or gripping points on the inner surface of the flexible membrane opening to better grip and “squeegee” fluid or exsanguinate the patient's digit or body part. 8.
  • Bladders of Antiseptic or Disinfectant or other medical substances in apparatus can have plastic bladders of topical antiseptic or disinfectant, which are located in the frame tabs or even the flexible membrane areas and are sent through tiny holes in the ends of the bladder and are applied to the patient's digit or body part while sliding over. These bladders can be placed in the tabs, and by squeezing the tabs and breaking the bladders, the contents can be released.
  • Cone shaped flexible membrane Other embodiments can have cone shaped flexible membrane, which are concave shaped to exaggerate the clinging effect of the apparatus on the digit. The concave shape of the molded flexible material/web can more easily accept the wounded digit. 10.
  • Customizing the durometer of the flexible membrane for the particular use may alter the flexibility and the tension characteristics of the flexible membrane material to customize the apparatus for a particular kind of purpose, digit or body part. Also, this apparatus can be specifically customized for particular types of tissues or nerves by altering the tension and thickness of the flexible membrane material and also the hole/opening size. 11. Holes added to the outer elastic layer. As shown in FIG. 5 , at least one hole 85 is added to the elastic material layer, which covers the inner frame, in order to reduce the material thickness in front of each of the score points; this at least one hole should be placed both on the front and the rear side of the apparatus.
  • two score points (3 and 9 o'clock positions) on each side; as a result, there will be a total of 4 holes in this outer elastic material layer. These holes will add in the rings elasticity during the removal process. Note that the holes do not need to completely extend to the surface of the inner frame. Other embodiments will extend all the way to the inner frame. 12.
  • Two-piece inner frame with an outer elastic layer Another possible embodiment employs using a two-piece inner frame with a flexible outer layer. Instead of using a single internal frame with score points at the 3 and 9 o'clock positions; the inner ring structure would be split or made into two relatively evenly proportioned pieces. These two parts would form an oval shape.
  • the parts A and B would be joined using a male/female connection apparatus at the meeting junction of the two parts.
  • the meeting section allows one half of the frame to be hollowed out (female half), while the other half (male half) would have a portion that is smaller than the rest of the frame and would insert inside or engage the female part.
  • These parts A and B would be molded separately and inserted together during manufacturing. This two piece unit allows a first (closed position) and a second (open position).
  • the elastic TPE material would be integrated over the two piece frame in a fashion similar to the current T-Ring prototype.
  • the over-molded TPE material would effectively hold the two halves A and B together. This modification would allow the inner ring to be stretched open wider by grasping the tab on each half, pulling apart the apparatus to further increase the inner hole or area (which surrounds the patient's digit); and relaxing the tension on the device, which allows the ring to return to its original size.
  • This embodiment would allow the user to increase the ring size as needed in order to pull over larger digits (thumbs, big toes) and also to increase the size of the central hole when removing the ring so that the T-Ring device does not contact the digit when removed.
  • This embodiment would further eliminate the need to snap the inner frame apparatus at the score points to remove the ring device, and would maintain the integrity of the ring device when the central hole needed to be enlarged.
  • the T-Ring device could be stretched apart and then allowed to relax (as often as needed) to accomplish putting this surgical apparatus on and taking it off the patient's digit.
  • the “T-Ring” device has been developed to provide a bloodless operating field for emergent and non-emergent medical procedures. It is designed to temporarily restrict blood flow so that the treating health care professional may accomplish a procedure with maximum visibility in the field, which is usually only possible after obtaining adequate hemostasis of the area involved.
  • the primary indication for the “T-Ring” device will be its use in procedures involving the fingers and thumbs, it also may be used with the same effect in procedures involving the digits of the lower extremities.
  • the primary indications for use of the “T-Ring” device would be exploration and repair of acute finger and toe injuries and to provide a bloodless operating field in elective finger and toe procedures.
  • the invention can be applied to many potential uses, including but not limited to: wound repair (soft tissue skin avulsion or laceration), wound exploration and repair (injuries of the hands/feet involving tendons, bones or joint), foreign body exploration and elective procedures of the fingers and toes.
  • This invention also is intended for temporary use in situations where a typical medical environment is not available such as in the wilderness or a military battlefield situation.
  • a plastic bag or wrapper to “T-Ring” apparatus
  • the user in the field, work place, or any non-medical facility can quickly treat a finger or toe wound until proper medical personnel can be reached.
  • the “T-Ring” apparatus can be used in conjunction with plastic wrap or a plastic bag to help contain the wound and to keep the wound together. Further, the plastic bag or wrapper can also help to move the apparatus on and off the finger or toe.
  • This T-Ring device can be used for veterinary applications and for different size animal appendages. This embodiment would include larger and varied dimensions of the preferred embodiments described within this application.

Abstract

This invention presents a non-pneumatic tourniquet device designed for quick, easy application to an injured digit, such as a finger or a toe. One preferred embodiment comprises an inner frame that is surrounded by a flexible layer or membrane and allows for an opening for the insertion of the injured digit through the device. This easy to use apparatus temporarily checks the bleeding or blood flow by applying an external pressure or a compression to the blood vessels in an appendage and also allows for exsanguination of the injured area.

Description

  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/915,665, filed on May 2, 2007, and Ser. No. 61/046,404, filed on Apr. 18, 2008; both provisional applications are incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a non-pneumatic tourniquet and medical device designed for quick, easy application to an injured digit (finger or toe). There is an apparatus for (1) temporarily checking the bleeding or blood flow by applying an external pressure or a compression to the blood vessels in an appendage (finger, toe, etc.) and for (2) providing exsanguination of the appendage and for (3) providing multiple ways for removing said apparatus without disturbing the surgically repaired area.
  • 2. Description of Related Art
  • There have been numerous articles written over the past several years by plastic surgeons, orthopedic surgeons, dermatologists, emergency physicians, podiatrists and hand specialists detailing the requirements of an effective digital tourniquet. There have been many methods proposed, but there are none without some inherent deficiency or inefficiency.
  • The general consensus for the necessary requirements include ease of application and removal, universal use, comfort, easily seen (not likely to be left in place leading to digital necrosis), and most importantly, the ability to provide a bloodless environment with maximal visualization of the necessary structures.
  • It has been demonstrated that to achieve a truly bloodless field, free from “oozing” into the wound of venous blood trapped in the digit when the tourniquet is applied; one needs to exsanguinate the digit prior to application of the tourniquet.
  • The methods that do not first exsanguinate the digit or appendage commonly experience this problematic persistent oozing, and may include the Penrose drain and pneumatic tourniquets. The techniques that do exsanguinate the digit first include the “cut glove” technique and the Marmed Tourni-quot device. Each of these techniques do not compare to utility of the “T-Ring” device when considering ease of application, universality of use, and safety and ease of removal.
  • The “cut glove” and the Tourni-quot product are similar to a rubber ring or donut, but this rubber ring style product has many inherent advantages. One major disadvantage is when the rubber ring is applied to an injured digit, the user must roll the ring up the digit and over and through the injured area. During this process, the rubber ring device not only may increase the damage to the injured area, but also may catch any traumatic skin flaps or lacerations. This rubber ring structure does not allow for increasing the diameter of the rubber ring apparatus.
  • In addition, it is recommended that all current devices that are rolled onto the finger need to be cut off, which requires additional sterile instruments and have the potential to injure the digit during the removal process. From the preceding descriptions, it is apparent that the devices currently being used have significant disadvantages. Thus, important aspects of the technology used in the field of invention remain amenable to useful refinement.
  • SUMMARY OF THE INVENTION
  • The present invention or “T-Ring” device has several advantages over current devices used as tourniquets for finger and toe procedures. The disclosed invention has both unique methods of application, which allows for exsanguination (the action or process of draining or losing blood); applying tourniquet pressure to a digit; and multiple ways for easy removal of the apparatus. This unique method of application and removal provide additional utility, safety and ease of use as compared to current devices available to health care providers.
  • The “T-Ring” device has been designed to meet all of the requirements of the “ideal” digital tourniquet. Many devices have been used in emergency departments and in the operating suites, and the applicant believes that none provides the effectiveness, safety and efficiency demonstrated by the applicant's “T-Ring” device.
  • An apparatus for improving an operating field on an appendage or digit of a patient comprising: a preferably rigid or firm frame mated to a flexible outer layer or flexible membrane. The frame has a frame surface, a peripheral edge, a first end, a second end, and a centrally disposed opening; the frame surface having at least one aperture along the peripheral edge of the frame; each end of the frame having a tab, which outwardly extends past the peripheral edge of the frame. The frame can further have at least one groove or break point, which is oriented in between the first and the second end. The at least one groove or break point is located under the flexible layer or membrane; at a first position, the groove or break point is solid and not broken. At a second position, the user will apply pressure around the groove or break point to separate the frame; the device is not broken into separate pieces due to the flexible membrane covering. In the second position, the user is able to stretch apart the device further than in the first position.
  • The flexible membrane has a first membrane portion, which covers the frame (partially or entirely), and a second membrane portion, which forms a web with a centrally disposed membrane opening; and the web is able to slidably engage an appendage of a patient. The frame surface can have at least one aperture, which is oriented along the peripheral edge of the frame and passes completely through the frame, and the flexible membrane can also pass and be secured through the at least one aperture of the frame.
  • The present invention introduces such refinements. In its preferred embodiments, the present invention has several aspects or facets that can be used independently, although they are preferably employed together to optimize their benefits. All of the foregoing operational principles and advantages of the present invention will be more fully appreciated upon consideration of the following detailed description, with reference to the appended drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of one preferred embodiment of the invention.
  • FIG. 2 is a view of a first side of one preferred embodiment of the invention.
  • FIG. 3 is a view of a third side of one preferred embodiment of the invention.
  • FIG. 4 is a view of a fifth side of one preferred embodiment of the invention.
  • FIG. 5 is a perspective view of another preferred embodiment with cut out sections of the outer flexible or membrane layer. These cut out portions can be on both sides or on one side of the device.
  • FIG. 6 is a perspective view of the inner frame of one preferred embodiment of the invention.
  • FIG. 7 shows the apparatus engaging a human finger; note how the flexible layer or membrane effectively grasps the digit.
  • PARTS LIST
    • 10 apparatus
    • 15 frame
    • 20 membrane or flexible layer
    • 30 peripheral or outer frame edge
    • 35 first end of frame
    • 40 second end of frame
    • 45 opening within frame
    • 50 frame surface
    • 55 openings or grasping points on peripheral edge of frame
    • 60 first tab
    • 65 second tab
    • 70 boss on tab
    • 75 break points or grooves on frame
    • 80 membrane or flexible layer opening
    • 85 cut outs on membrane
    DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The “T-Ring” device is a non-pneumatic tourniquet device designed for quick, easy application to the involved digit (finger or toe) or other appendage of the patient. There is an apparatus 10 for improving an operating field for medical procedures comprising a substantially rigid frame 15 with a flexible membrane covering 20, which can be a full or partial covering of the frame.
  • Frame:
  • As shown in FIG. 6, the apparatus 10 has a substantially rigid and circular shaped frame 15 with a peripheral outer edge 30 and surface 50. This frame has a first end 35 and a second end 40. This invention allows for other geometric or arbitrary frame shapes.
  • The frame further has a centrally disposed opening 45. Note that this opening should be large enough to accommodate the digit or body part of the patient and to provide enough room around the digit or body part to allow flexion of the membrane or flexible layer part and for removal of the apparatus.
  • The frame further has at least one frame surface 50. The frame surface has at least one aperture or opening, which is oriented along the peripheral edge of the frame and passes partially or completely through the frame. FIG. 6 shows multiple openings 55 or grasping points or apertures around the circumference or peripheral edge of the frame. These multiple openings, apertures or grasping points act as anchor sites for parts of the flexible membrane to grasp and to interconnect with the frame. The openings act as female parts for the flexible layer or membrane, which can act as a male part.
  • FIG. 6 shows the aperture or opening as being parallel to the centrally disposed opening; however, other embodiments may have these openings placed at an angle to the centrally disposed opening or to have internal structures to maximize the gripping or grasping interaction of the flexible membrane to the frame.
  • Grasping Points or Tabs:
  • FIG. 1-7 show embodiments with the frame having a first tab 60 and a second tab 65 at the opposite ends of the frame body. Other embodiments may allow for more than two tabs, which are strategically located around the frame body to further assist the physician in removing or utilizing the T-Ring apparatus.
  • The first and the second tabs can also have at least one boss 70, bump, protrusion or resistance and grasping structure on the tab surface. These resistance points on the surface of the tab help the user grasp the apparatus. These tabs outwardly extend past the peripheral edge of the frame. The tabs may also be grooved or a convex shape to readily accept a user's finger.
  • Break Points or Grooves:
  • The frame can also have at least one break point 75, scoring, groove or indentation, which is oriented in between the first and the second end. FIG. 7 shows two break points or scores, which are located between the first and the second end; each break point is oppositely opposed to one another. This break point allows the user to easily snap the frame (from a first unsnapped position to a second snapped position) so that the user can expand the apparatus further beyond the non-snapped frame diameter, especially over any repaired area of the patient's finger or digit.
  • These break points are not critical to the basic function of this device (i.e., exsanguination), but these break point structures do provide an additional level of function not disclosed by the prior art.
  • Flexible Layer or Membrane:
  • As shown in FIG. 1-5, there is a flexible layer or membrane 20, which covers the frame and substantially covers the frame opening. This flexible layer or membrane has a membrane opening 80, which is centrally located in the device. The material used for the flexible membrane can be thermoplastic elastomer (TPE) or other types of rubbers, plastics or flexible materials. This flexible layer can completely or partially cover the inner frame and/or tabs.
  • As shown in FIG. 1, the outermost area of flexible layer or membrane grabs and conforms to the shape of the inner frame; FIG. 1 version shows that the tabs are not covered by the membrane. This membrane has a first or outer portion and a second or inner portion. Looking at the device from the side, the first or outer portion is a higher elevation than the second or inner portion.
  • As one leaves the first or outer portion of the membrane, the second or inner portion of flexible layer or membrane is no longer conforming to the shape of an internal structure and becomes a web. This second or inner membrane portion can be described as a means located within the inner frame of the device for grasping or grabbing the patient's finger, digit or appendage.
  • In FIG. 1, this web or inner portion of the flexible layer or membrane lacks any internal structures, ribs or components. It is preferred that the terminal end or edge of the web or inner portion of the membrane be flexible enough or take advantage of the flexible nature of the membrane to best grasp or grab the patient's digit or appendage during use. Different flexible materials (with different durometer) can be used to customize the efficiency of the device for the particular use. However, as noted below, other possible embodiments allow for the addition of blade or gripping structures on the inner surface of the membrane opening 80.
  • In addition, this membrane can also pass through the at least one aperture/openings through the frame; and the web also has a centrally disposed membrane opening 80. This membrane opening should be parallel with the frame opening.
  • The size of the membrane opening 80 should be large enough to accommodate the patient's digit or body part and to provide resistance in order to effectively provide pressure to the digit as the apparatus is slid into place or for effective exsanguination of the body part or digit. In FIG. 7, the inner part of the flexible layer or membrane grabs and grips the finger and applies an external pressure or a compression to the blood vessels in the patient's appendage.
  • Manufacturing Process for One Preferred Embodiment:
  • For one preferred embodiment, the process to manufacture the preferred embodiment is to injection mold a single frame piece (including without limitation a hard plastic outer ring). Then, the single frame piece is “over-molded” with the flexible material (including without limitation thermoplastic elastomer or TPE); the frame is encapsulated except the two tabs. Other embodiments allow for multiple frame pieces, but for cost savings, it is preferable to injection mold a single frame piece.
  • Note that the outer ring frame has at least one or preferably an array of holes or apertures that pass partially or completely through the frame body to help anchor the flexible material to the frame and to provide the taught “trampoline” effect of the flexible layer or membrane. Other embodiments allow the holes or apertures to have additional internal structures such as footings to further improve the gripping effect of the flexible material within the frame.
  • A most basic version of this invention can also employ a flexible but at the same time firm plastic or rubber-style ring. This type of ring would not require a separate internal frame. In another possible embodiment, the invention or the “T-Ring” device can also comprise a central thin, flexible rubber disc surrounded by a hardened outer plastic ring. The outer ring is made of two identical halves which, when sealed together (heat stamped or glued, for example), enclose and anchor the central rubber or plastic disc.
  • The central rubber disc is made with a “hole” in its center, which allows the “T-Ring” apparatus to be placed over a finger or toe. This hole or opening is smaller than the diameter of the involved digit, so that pressure will be applied to the digit as the ring is slid into place. Other embodiments envision the outer ring to be a single piece unit that houses or contains or holds the center rubber disc.
  • How the apparatus works: The health care provider will grip the “T-Ring” device or apparatus by its outer hardened ring or frame and slide the apparatus up the finger or toe to its base on the hand or foot. The outer ring “drags” the inner section or membrane with it, effectively exsanguinating the digit as the “T-Ring” apparatus is placed on the digit. See FIG. 7.
  • Since the central rubber disc or membrane is flexible and is suspended from the outer ring and lags behind it during application, the inner hole is effectively pulled up and over any protrusions on the digit. This central flexible disc structure or membrane further allows the “T-Ring” device to slide over lacerations, avulsions and, more importantly, traumatic skin flaps. Once in place, the “T-Ring” device or apparatus applies enough pressure to maintain hemostasis, and thus, this invention provides a bloodless operating field.
  • The “T-Ring” device allows for differing sizes or diameters of the central rubber hole or opening. There is a standard sized hole or opening, which will be utilized on the majority of patients. There will also be versions of the invention with smaller central holes or openings in the cases that increased pressure is necessary to achieve hemostasis, and rings with larger holes in the case where there may be an unusually large flap or irregularity that must be accommodated by the “T-Ring”. Note that this invention capitalizes on the difference in flexibility and resistance between the outer ring and the inner flexible ring.
  • Specifications: In one preferred embodiment, the outer plastic ring can have an approximate outer diameter of 3.5 cm and inner diameter of 2.5 to 3.0 cm; there will be varying sizes, smaller for pediatric patients and larger for patients with larger digits.
  • The outer ring can be approximately 0.5 to 1.0 cm in width and 0.5 to 1.0 cm in thickness; note that thickness includes the two plastic “halves” and the central rubber disc (as noted in some versions in the provisional application). This preferred size range provides ease of handling for the health care provider, nicely separates the digits to maximize visualization and the functional work area, and provides a comfortable fit for the patient. These measurements and dimensions are for example only and are not intended to be limiting.
  • Scoring or Notches on the Outer Ring Structure
  • The outer ring will be scored at the 3 o'clock and 9 o'clock positions or orientations (with reference to the numbers on a clock); these scoring or notches allow the outer ring to be easily “snapped” in two pieces when the procedure is completed. To break the apparatus at the score points, the user holds ring in the 12 o'clock and 6 o'clock positions and flexes the ring forwards or backwards until the outer ring frame has snapped.
  • Once the outer ring has been “snapped”, the central hole may be enlarged by pulling on the opposing halves of the outer ring. This will allow the “T-Ring” device to be removed from the digit without the rubber material from the central disc coming into contact with the repaired portion of the digit; this structure allows for a safe and efficient removal. This invention allows for the ring apparatus to be easily removed from the finger in the same fashion that it was placed on the finger; this “snap” option provides an additional margin of safety with more complex injuries or procedures.
  • Other embodiments allow for the outer ring to have grasp or hold points or tabs so that the user may more easily grab the apparatus at positions approximately ninety degrees from the score or notches in the outer ring.
  • Other Possible Embodiments
  • 1. T BAND embodiment. Another embodiment of the invention employs two separate portions or tabs that are interconnected with a flexible membrane with a centrally disposed opening. Unlike the previous embodiments with uniformly closed frame or ring, other embodiments employ completely separate tabs or portions. There will not be break points since the first and the second pieces of the frame are already separate. There can be at least two pieces, but other embodiments allow for three or four pieces, which are all connected to a centrally disposed flexible membrane with an opening for the digit or body part.
    2. Two part outer ring. Other embodiments may employ a first half and a second half of the outer ring. These two halves of the outer ring can be connected via a spring or other elastic cord or rope so to enable the user to take the apparatus from a closed or first position to a second or extended position. The connecting spring or elastic cord or rope between the outer ring halves enable the user to move from the first position to the second position and back to the first position.
    3. “O-Ring” version. In another embodiment, regarding the outer ring, the first and second rings can mirror one another in shape and dimension. The first and outer rings have a first or outer circumference and a second or inner circumference. There are score marks or indentations placed on opposite sides of the ring; these score points or notches enable the user to separate first and second rings separately into two relatively similar sized halves when the apparatus is stretched open and being removed from a finger or digit. The first and second rings can be made from O-Rings or other commonly used circular washers or rings. The material can be plastic, paper or a composite material.
  • The middle or third layer of the apparatus is composed of a flexible material, including but not limited to rubber, plastic, or latex; there is an opening in the center of this third layer to allow a finger or toe to enter and to pass through this apparatus. This material should be flexible enough to allow placement of the apparatus around an appendage (finger or toe), but it should be strong enough to maintain pressure at a specific location and to allow for exsanguination of the appendage.
  • Construction of the apparatus involves sandwiching the third layer of a flexible plastic material or web between two similarly shaped first and second layers (such as O-rings). An opening or hole is placed in the middle of the third layer, and score points or notches are placed at the opposite ends of the apparatus on both the first and second layers.
  • 4. Raised Ridges in Flexible Membrane. Other embodiments employ raised rubber ridges, which can be molded in a rifle or other types of patterns. These ridges can help the user to screw or to rotate said apparatus on the patient's body part or digit. Other versions can have a thickening rib or support vertebra in the inner flexible membrane to provide more stability during use.
    5. Lighting. Other embodiments may allow for at least one or multiple small light emitting diode (LED) lights to be placed on the peripheral edge of the frame or the tabs. The tabs can also hold a small battery, which are connected to the LED lights.
    6. Additional Grasping Points or Bosses on the Inner Surface of the Frame: Other embodiments can have boss structures or grasping points on the inner surface of the frame to help the flexible membrane to grasp and to interconnect with the frame. Other embodiments can have a lip or a shelf structure or groove, which is molded down the center of the inner surface of the frame, to allow the flexible membrane to more firmly interact and to affix.
    7. Inner Blades or Gripping Points on the inner surface of the flexible membrane. Other embodiments can have “blades” or gripping points on the inner surface of the flexible membrane opening to better grip and “squeegee” fluid or exsanguinate the patient's digit or body part.
    8. Bladders of Antiseptic or Disinfectant or other medical substances in apparatus: Other embodiments can have plastic bladders of topical antiseptic or disinfectant, which are located in the frame tabs or even the flexible membrane areas and are sent through tiny holes in the ends of the bladder and are applied to the patient's digit or body part while sliding over. These bladders can be placed in the tabs, and by squeezing the tabs and breaking the bladders, the contents can be released.
    9. Cone shaped flexible membrane: Other embodiments can have cone shaped flexible membrane, which are concave shaped to exaggerate the clinging effect of the apparatus on the digit. The concave shape of the molded flexible material/web can more easily accept the wounded digit.
    10. Customizing the durometer of the flexible membrane for the particular use. Other embodiments may alter the flexibility and the tension characteristics of the flexible membrane material to customize the apparatus for a particular kind of purpose, digit or body part. Also, this apparatus can be specifically customized for particular types of tissues or nerves by altering the tension and thickness of the flexible membrane material and also the hole/opening size.
    11. Holes added to the outer elastic layer. As shown in FIG. 5, at least one hole 85 is added to the elastic material layer, which covers the inner frame, in order to reduce the material thickness in front of each of the score points; this at least one hole should be placed both on the front and the rear side of the apparatus. In one preferred embodiment, there are two score points (3 and 9 o'clock positions) on each side; as a result, there will be a total of 4 holes in this outer elastic material layer. These holes will add in the rings elasticity during the removal process. Note that the holes do not need to completely extend to the surface of the inner frame. Other embodiments will extend all the way to the inner frame.
    12. Two-piece inner frame with an outer elastic layer. Another possible embodiment employs using a two-piece inner frame with a flexible outer layer. Instead of using a single internal frame with score points at the 3 and 9 o'clock positions; the inner ring structure would be split or made into two relatively evenly proportioned pieces. These two parts would form an oval shape.
  • The parts A and B would be joined using a male/female connection apparatus at the meeting junction of the two parts. The meeting section allows one half of the frame to be hollowed out (female half), while the other half (male half) would have a portion that is smaller than the rest of the frame and would insert inside or engage the female part. These parts A and B would be molded separately and inserted together during manufacturing. This two piece unit allows a first (closed position) and a second (open position).
  • Once together, the elastic TPE material would be integrated over the two piece frame in a fashion similar to the current T-Ring prototype. The over-molded TPE material would effectively hold the two halves A and B together. This modification would allow the inner ring to be stretched open wider by grasping the tab on each half, pulling apart the apparatus to further increase the inner hole or area (which surrounds the patient's digit); and relaxing the tension on the device, which allows the ring to return to its original size.
  • This embodiment would allow the user to increase the ring size as needed in order to pull over larger digits (thumbs, big toes) and also to increase the size of the central hole when removing the ring so that the T-Ring device does not contact the digit when removed.
  • This embodiment would further eliminate the need to snap the inner frame apparatus at the score points to remove the ring device, and would maintain the integrity of the ring device when the central hole needed to be enlarged. The T-Ring device could be stretched apart and then allowed to relax (as often as needed) to accomplish putting this surgical apparatus on and taking it off the patient's digit.
  • Potential Uses
  • The “T-Ring” device has been developed to provide a bloodless operating field for emergent and non-emergent medical procedures. It is designed to temporarily restrict blood flow so that the treating health care professional may accomplish a procedure with maximum visibility in the field, which is usually only possible after obtaining adequate hemostasis of the area involved.
  • While the primary indication for the “T-Ring” device will be its use in procedures involving the fingers and thumbs, it also may be used with the same effect in procedures involving the digits of the lower extremities. The primary indications for use of the “T-Ring” device would be exploration and repair of acute finger and toe injuries and to provide a bloodless operating field in elective finger and toe procedures. The invention can be applied to many potential uses, including but not limited to: wound repair (soft tissue skin avulsion or laceration), wound exploration and repair (injuries of the hands/feet involving tendons, bones or joint), foreign body exploration and elective procedures of the fingers and toes.
  • This invention also is intended for temporary use in situations where a typical medical environment is not available such as in the wilderness or a military battlefield situation. With the addition of a plastic bag or wrapper to “T-Ring” apparatus, the user in the field, work place, or any non-medical facility can quickly treat a finger or toe wound until proper medical personnel can be reached. The “T-Ring” apparatus can be used in conjunction with plastic wrap or a plastic bag to help contain the wound and to keep the wound together. Further, the plastic bag or wrapper can also help to move the apparatus on and off the finger or toe.
  • This T-Ring device can be used for veterinary applications and for different size animal appendages. This embodiment would include larger and varied dimensions of the preferred embodiments described within this application.
  • While the invention as described above in connection with preferred embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
  • Any element in a claim that does not explicitly state “means for” performing a specific function, or “step for” performing a specific function, is not be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Sec. 112, Paragraph 6. In particular, the use of “step of” in the claims herein is not intended to invoke the provisions of 35 U.S.C. Sec. 112, Paragraph 6.

Claims (10)

1. An apparatus for improving an operating field for medical procedures comprising, a frame and a flexible membrane;
the frame has a frame surface, a peripheral edge, a first end, a second end, and a centrally disposed opening; the frame surface having at least one aperture along the peripheral edge of the frame;
the first end of the frame having a first tab; the second end of the frame having a second tab; the first and the second tabs outwardly extend past the peripheral edge of the frame;
the frame having at least one groove, which is oriented in between the first and the second end;
the flexible membrane having a first membrane portion and a second membrane portion;
the first membrane portion covers the frame, except for the first and the second tabs;
the second membrane portion forms a web with a centrally disposed membrane opening;
and the web is able to slidably engage an appendage of a patient.
2. The apparatus of claim 1 wherein the first and the second tabs have at least one boss; the flexible membrane having at least one hole located approximately near the at least one frame groove.
3. An apparatus for improving an operating field for medical procedures comprising, a frame with a peripheral edge and a first end and a second end;
the frame further having a centrally disposed opening;
the frame having a frame surface;
the frame surface having at least one aperture, which is oriented along the peripheral edge of the frame and passes completely through the frame;
the first end of the frame having a first tab;
the second end of the frame having a second tab;
the first and the second tabs outwardly extend past the peripheral edge of the frame;
the frame having at least one groove, which is oriented in between the first and the second end;
a flexible membrane covers the frame and substantially covers the frame opening and passes through the at least one aperture through the frame; and the membrane having a centrally disposed membrane opening, which is able to slidably engage an appendage of a patient.
4. The apparatus of claim 3 wherein the first and the second tabs have at least one boss.
5. An apparatus for improving an operating field for medical procedures comprising, a frame with a peripheral edge and a first end and a second end;
the frame further having a centrally disposed opening;
the frame having a frame surface;
the frame surface having at least one aperture, which is oriented along the peripheral edge of the frame;
the frame having at least one break point, which is oriented in between the first and the second end;
a flexible membrane covers the frame and substantially covers the frame opening and passes through the at least one aperture through the frame;
and the membrane having a centrally disposed membrane opening.
6. The apparatus of claim 5 wherein the first end of the frame has a first tab;
the second end of the frame has a second tab;
the first and the second tabs have at least one boss; and
the first and the second tabs outwardly extend past the peripheral edge of the frame.
7. The apparatus of claim 6 wherein the frame has at least one light emitting diode, which is connected to a battery.
8. The apparatus of claim 6 wherein the frame has at least one bladder for holding antiseptic material.
9. The apparatus of claim 6 wherein the frame surface has at least one frame boss.
10. The apparatus of claim 6 wherein the flexible membrane has at least one integral support rib.
US12/114,737 2007-05-02 2008-05-02 Non-Pneumatic Tourniquet Device Abandoned US20080275499A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
US12/114,737 US20080275499A1 (en) 2007-05-02 2008-05-02 Non-Pneumatic Tourniquet Device
US29/317,784 USD625824S1 (en) 2008-04-18 2008-05-06 Non-pneumatic tourniquet device
US29/346,791 USD642275S1 (en) 2008-05-02 2009-11-05 Non-pneumatic tourniquet device
US12/897,770 US9131943B2 (en) 2007-05-02 2010-10-04 Non-pneumatic tourniquet device
US29/405,373 USD679013S1 (en) 2008-05-02 2011-11-01 Non-pneumatic tourniquet device
US29/419,189 USD685094S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US29/419,190 USD685095S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US29/419,191 USD693009S1 (en) 2008-04-18 2012-04-25 Non-pneumatic tourniquet device
US29/419,192 USD684694S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US29/419,195 USD684697S1 (en) 2008-05-02 2012-04-26 Non-pneumatic tourniquet device
US29/419,193 USD684695S1 (en) 2008-05-02 2012-04-26 Non-pneumatic tourniquet device
US29/419,194 USD684696S1 (en) 2008-05-02 2012-04-26 Non-pneumatic tourniquet device
US14/855,375 US10945741B2 (en) 2007-05-02 2015-09-15 Non-pneumatic tourniquet device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US91566507P 2007-05-02 2007-05-02
US4640408P 2008-04-18 2008-04-18
US12/114,737 US20080275499A1 (en) 2007-05-02 2008-05-02 Non-Pneumatic Tourniquet Device

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2008/062583 Continuation-In-Part WO2008137808A1 (en) 2007-05-02 2008-05-02 Non-pneumatic tourniquet device
US12/897,770 Continuation-In-Part US9131943B2 (en) 2007-05-02 2010-10-04 Non-pneumatic tourniquet device

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US29/317,784 Continuation USD625824S1 (en) 2008-04-18 2008-05-06 Non-pneumatic tourniquet device
US29/346,791 Continuation-In-Part USD642275S1 (en) 2007-05-02 2009-11-05 Non-pneumatic tourniquet device
US12/897,770 Continuation-In-Part US9131943B2 (en) 2007-05-02 2010-10-04 Non-pneumatic tourniquet device
US29/405,373 Continuation-In-Part USD679013S1 (en) 2008-05-02 2011-11-01 Non-pneumatic tourniquet device

Publications (1)

Publication Number Publication Date
US20080275499A1 true US20080275499A1 (en) 2008-11-06

Family

ID=39940118

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/114,737 Abandoned US20080275499A1 (en) 2007-05-02 2008-05-02 Non-Pneumatic Tourniquet Device
US12/897,770 Active 2031-02-09 US9131943B2 (en) 2007-05-02 2010-10-04 Non-pneumatic tourniquet device
US29/419,192 Active USD684694S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US29/419,190 Active USD685095S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US29/419,189 Active USD685094S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US14/855,375 Active US10945741B2 (en) 2007-05-02 2015-09-15 Non-pneumatic tourniquet device

Family Applications After (5)

Application Number Title Priority Date Filing Date
US12/897,770 Active 2031-02-09 US9131943B2 (en) 2007-05-02 2010-10-04 Non-pneumatic tourniquet device
US29/419,192 Active USD684694S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US29/419,190 Active USD685095S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US29/419,189 Active USD685094S1 (en) 2007-05-02 2012-04-25 Non-pneumatic tourniquet device
US14/855,375 Active US10945741B2 (en) 2007-05-02 2015-09-15 Non-pneumatic tourniquet device

Country Status (9)

Country Link
US (6) US20080275499A1 (en)
EP (1) EP2146642B1 (en)
JP (1) JP4982608B2 (en)
KR (1) KR101544695B1 (en)
CN (1) CN101808584B (en)
CA (1) CA2686218C (en)
MX (1) MX2009011791A (en)
WO (1) WO2008137808A1 (en)
ZA (1) ZA200908383B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130330581A1 (en) * 2012-06-07 2013-12-12 Robert Bosch Gmbh Secondary battery
US20160074044A1 (en) * 2007-05-02 2016-03-17 William J. Green Non-Pneumatic Tourniquet Device
USD770631S1 (en) 2014-05-27 2016-11-01 Precision Medical Devices, Llc Device to close wounds
USD823466S1 (en) 2016-08-03 2018-07-17 Mar-Med Co. Tourniquet
EP3518794A4 (en) * 2016-09-29 2020-04-15 Mar-Med Co. Non-pneumatic surgical tourniquet
US11185338B2 (en) 2019-08-26 2021-11-30 Covidien Lp Compression cuff

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370324B2 (en) * 2008-11-05 2016-06-21 Fresenius Medical Care Holdings, Inc. Hemodialysis patient data acquisition, management and analysis system
US9314365B2 (en) 2009-07-14 2016-04-19 B. Braun Medical Sas Ostomy port gas release mechanism
US8743354B2 (en) 2010-09-07 2014-06-03 Fresenius Medical Care Holdings, Inc. Shrouded sensor clip assembly and blood chamber for an optical blood monitoring system
US9194792B2 (en) 2010-09-07 2015-11-24 Fresenius Medical Care Holdings, Inc. Blood chamber for an optical blood monitoring system
US9173988B2 (en) 2010-11-17 2015-11-03 Fresenius Medical Care Holdings, Inc. Sensor clip assembly for an optical monitoring system
JP6059150B2 (en) 2010-11-17 2017-01-11 フレセニウス メディカル ケア ホールディングス インコーポレーテッド Sensor clip assembly for optical monitoring systems
USD725261S1 (en) 2012-02-24 2015-03-24 Fresenius Medical Care Holdings, Inc. Blood flow chamber
JP2015515905A (en) 2012-05-10 2015-06-04 スティマティックス ジーアイ リミテッド Surgery instruments
US11291579B2 (en) 2013-05-09 2022-04-05 B. Braun Medical Sas Gas filter and release for ostomy appliance
USD783814S1 (en) * 2013-12-09 2017-04-11 B. Braun Medical Sas Adapter for flatus release
USD796029S1 (en) 2013-12-09 2017-08-29 B. Braun Medical Sas Colostomy appliance
KR101515548B1 (en) * 2013-12-27 2015-05-04 김고운 Scarf for cooking easy to stop the bleeding
USD735342S1 (en) 2014-10-09 2015-07-28 Hologic, Inc. Medical console
US9976174B2 (en) 2015-03-24 2018-05-22 Illumina Cambridge Limited Methods, carrier assemblies, and systems for imaging samples for biological or chemical analysis
USD799031S1 (en) 2015-09-09 2017-10-03 Fresenius Medical Care Holdings, Inc. Blood flow chamber with directional arrow
GB2552548A (en) * 2016-07-29 2018-01-31 Univ Central Lancashire Tourniquet device
USD922375S1 (en) * 2018-03-19 2021-06-15 T-Mobile Usa, Inc. Wearable watch type device
JP1625994S (en) * 2018-04-20 2019-03-04
JP1625995S (en) * 2018-04-20 2019-03-04
USD1012280S1 (en) 2018-11-30 2024-01-23 B. Braun Medical Sas Ostomy device assembly
AU2022264073A1 (en) * 2021-04-30 2023-11-16 Noble House Group Pty. Ltd. Tourniquet clip and tourniquet
JP1705915S (en) * 2021-07-09 2022-01-25
JP1705916S (en) * 2021-07-09 2022-01-25

Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2333237A (en) * 1942-06-17 1943-11-02 William B Erekson Surgical device
US3504675A (en) * 1965-12-10 1970-04-07 William A Bishop Jr Disposable surgical tourniquet
US3570495A (en) * 1966-04-19 1971-03-16 Frank O Wright Pneumatic tourniquet
US3675657A (en) * 1969-07-14 1972-07-11 Clebel Inc L Ange Gardien Co R Tourniquet
US3705580A (en) * 1971-07-19 1972-12-12 Oscar Gauthier Device for medical use
US4173978A (en) * 1977-07-07 1979-11-13 Brown James B Self contained antiseptic applicator swab
US4177813A (en) * 1978-01-09 1979-12-11 Med General, Inc. Vessel occluder
US4228792A (en) * 1977-09-23 1980-10-21 Rhys Davies N C Exsanguinating device for displacing blood from a limb by compression
US4256094A (en) * 1979-06-18 1981-03-17 Kapp John P Arterial pressure control system
US4321929A (en) * 1979-10-12 1982-03-30 Lemelson Jerome H Tourniquet
USD272186S (en) * 1981-05-21 1984-01-10 Peck Russell E Tourniquet and pressure applying device
US4455548A (en) * 1981-01-26 1984-06-19 Burnett Dorothy K Call system and methods and apparatus for operating same
US4637794A (en) * 1985-10-03 1987-01-20 Gray Robert R Pulse combustion drying apparatus for particulate materials
US4911162A (en) * 1988-09-02 1990-03-27 Wolff Stephen H Tourniquet
USD322854S (en) * 1988-12-09 1991-12-31 Campbell John M Finger tap releasable tourniquet
USD331972S (en) * 1990-08-15 1992-12-22 Tam Sai Y Automatic latex tube tourniquet
US5181522A (en) * 1987-04-03 1993-01-26 Abatis Medical Technologies Limited Tourniquet for sensing and regulation of applied pressure
USD333066S (en) * 1991-09-23 1993-02-09 Concept 8, Inc. Drinking cup
US5304188A (en) * 1993-01-26 1994-04-19 Marogil Joseph B Surgical clamp and method
US5304202A (en) * 1993-03-18 1994-04-19 Stahl Daniel A Method and apparatus for enabling intravenous therapy when cardiac output is less than usually necessary
US5607448A (en) * 1995-05-10 1997-03-04 Daniel A. Stahl Rolling tourniquet
US5628329A (en) * 1995-07-26 1997-05-13 Boyd B. Bennett Methods and apparatus for obtaining and maintaining penile erection
US5706805A (en) * 1993-08-12 1998-01-13 Trustees Of Dartmouth College Apparatus and methodology for determining oxygen tension in biological systems
US5741295A (en) * 1991-09-30 1998-04-21 James A. McEwen Overlapping tourniquet cuff system
US5797933A (en) * 1996-07-16 1998-08-25 Heartport, Inc. Coronary shunt and method of use
US5873813A (en) * 1998-02-05 1999-02-23 B.S.W. Partnership Method and apparatus for producing and maintaining a penile erection
US5997469A (en) * 1998-02-21 1999-12-07 Northcutt; Michael E. Sexual aid device
US6019767A (en) * 1990-07-16 2000-02-01 Arthrotek Tibial guide
US6110187A (en) * 1995-02-24 2000-08-29 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US6189538B1 (en) * 1995-11-20 2001-02-20 Patricia E. Thorpe Tourniquet and method of using
US6234980B1 (en) * 1999-08-27 2001-05-22 Medcare Medical Group, Inc. Needlestick first response kit and method of using same
US6254604B1 (en) * 1990-07-16 2001-07-03 Arthrotek, Inc. Tibial guide
US6319194B1 (en) * 2000-01-31 2001-11-20 Lynn G. Wulf Penis erection stabilizer using two connected flexible latex rings
US6454097B1 (en) * 2000-05-09 2002-09-24 Juan Carlos Aceves Blanco Prioritized first aid kit
US20030009087A1 (en) * 2001-06-27 2003-01-09 Eastman Kodak Company Sensor glove for physiological parameter measurement
US6569083B1 (en) * 1996-10-03 2003-05-27 Leon B. Kassman Male, hermaphroditic, and female condoms exerting lateral pressure on the penis and the vagina
US6605103B2 (en) * 1999-03-29 2003-08-12 Instrumed, Inc. System and method for controlling pressure in a surgical tourniquet
US6613038B2 (en) * 1993-02-04 2003-09-02 Bonutti 2003 Trust-A Method of using expandable cannula
US6682547B2 (en) * 2001-08-14 2004-01-27 Mcewen James Allen Tourniquet cuff with identification apparatus
US6824511B1 (en) * 1999-06-23 2004-11-30 Canica Design Inc. Surgical fixation and retraction system
US6833011B2 (en) * 2001-10-12 2004-12-21 Touchstone Research Laboratory, Ltd. Activated, coal-based carbon foam
US6843253B2 (en) * 2002-12-11 2005-01-18 C&L Medical Supply Corporation Urinary-control device
US20050027218A1 (en) * 2002-12-31 2005-02-03 Marius Filtvedt Device for applying a pulsating pressure to a local region of the body and applications thereof
US20050049631A1 (en) * 2003-08-28 2005-03-03 Michael Carter-Smith Acupressure device
US20050143689A1 (en) * 2003-08-17 2005-06-30 Ramsey Maynard Iii Internal compression tourniquet catheter system and method for wound track navigation and hemorrhage control
US6916289B2 (en) * 1998-06-07 2005-07-12 Itamar Medical Ltd. Pressure applicator devices particularly useful for non-invasive detection of medical conditions
US20050267518A1 (en) * 2004-04-07 2005-12-01 Tiax, Llc Tourniquet and method of using same
US20050283191A1 (en) * 2004-05-17 2005-12-22 Fontayne Diego Y Surgical stapling system
US20060004302A1 (en) * 2003-06-12 2006-01-05 University Of Utah Research Foundation Apparatus, systems and methods for diagnosing carpal tunnel syndrome
US20060089668A1 (en) * 2004-10-21 2006-04-27 Piper Medical, Inc. Disposable digital tourniquets and related methods of providing occlusion pressures to a single digit during surgical procedures
US20070055107A1 (en) * 2003-04-25 2007-03-08 Tyco Healthcare Group Lp Surgical hand access apparatus
US20080103366A1 (en) * 2006-10-26 2008-05-01 Endoscopic Technologies, Inc. Atraumatic tissue retraction device
US20080119801A1 (en) * 2006-11-21 2008-05-22 Moore Mark R Apparatus and method for deploying a surgical preparation
US7582102B2 (en) * 2003-10-10 2009-09-01 Pyng Medical Corp. Mechanical advantage tourniquet
USD625824S1 (en) * 2008-04-18 2010-10-19 Precision Medical Devices, Llc Non-pneumatic tourniquet device
US7819800B2 (en) * 2006-12-15 2010-10-26 Ethicon Endo-Surgery, Inc. Fully automated iris seal for hand assisted laparoscopic surgical procedures
USD642275S1 (en) * 2008-05-02 2011-07-26 Precision Medical Devices, Llc Non-pneumatic tourniquet device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640408A (en) 1983-01-10 1987-02-03 Doboy Packaging Machinery, Inc. Feeder with automatic zoned product timing correction
JPS59183216U (en) * 1983-05-24 1984-12-06 銀川 高光 multipurpose ring
AU2002360196B2 (en) * 2001-12-13 2009-04-09 Oneg Hakarmel Device and method for excluding blood out of a limb
US20080275499A1 (en) * 2007-05-02 2008-11-06 Brackett Ted J Non-Pneumatic Tourniquet Device

Patent Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2333237A (en) * 1942-06-17 1943-11-02 William B Erekson Surgical device
US3504675A (en) * 1965-12-10 1970-04-07 William A Bishop Jr Disposable surgical tourniquet
US3570495A (en) * 1966-04-19 1971-03-16 Frank O Wright Pneumatic tourniquet
US3675657A (en) * 1969-07-14 1972-07-11 Clebel Inc L Ange Gardien Co R Tourniquet
US3705580A (en) * 1971-07-19 1972-12-12 Oscar Gauthier Device for medical use
US4173978A (en) * 1977-07-07 1979-11-13 Brown James B Self contained antiseptic applicator swab
US4228792A (en) * 1977-09-23 1980-10-21 Rhys Davies N C Exsanguinating device for displacing blood from a limb by compression
US4177813A (en) * 1978-01-09 1979-12-11 Med General, Inc. Vessel occluder
US4256094A (en) * 1979-06-18 1981-03-17 Kapp John P Arterial pressure control system
US4321929A (en) * 1979-10-12 1982-03-30 Lemelson Jerome H Tourniquet
US4455548A (en) * 1981-01-26 1984-06-19 Burnett Dorothy K Call system and methods and apparatus for operating same
USD272186S (en) * 1981-05-21 1984-01-10 Peck Russell E Tourniquet and pressure applying device
US4637794A (en) * 1985-10-03 1987-01-20 Gray Robert R Pulse combustion drying apparatus for particulate materials
US5181522A (en) * 1987-04-03 1993-01-26 Abatis Medical Technologies Limited Tourniquet for sensing and regulation of applied pressure
US4911162A (en) * 1988-09-02 1990-03-27 Wolff Stephen H Tourniquet
USD322854S (en) * 1988-12-09 1991-12-31 Campbell John M Finger tap releasable tourniquet
US6019767A (en) * 1990-07-16 2000-02-01 Arthrotek Tibial guide
US6254604B1 (en) * 1990-07-16 2001-07-03 Arthrotek, Inc. Tibial guide
US6254605B1 (en) * 1990-07-16 2001-07-03 Stephen M. Howell Tibial guide
USD331972S (en) * 1990-08-15 1992-12-22 Tam Sai Y Automatic latex tube tourniquet
USD333066S (en) * 1991-09-23 1993-02-09 Concept 8, Inc. Drinking cup
US5741295A (en) * 1991-09-30 1998-04-21 James A. McEwen Overlapping tourniquet cuff system
US5304188A (en) * 1993-01-26 1994-04-19 Marogil Joseph B Surgical clamp and method
US6613038B2 (en) * 1993-02-04 2003-09-02 Bonutti 2003 Trust-A Method of using expandable cannula
US5304202A (en) * 1993-03-18 1994-04-19 Stahl Daniel A Method and apparatus for enabling intravenous therapy when cardiac output is less than usually necessary
US5706805A (en) * 1993-08-12 1998-01-13 Trustees Of Dartmouth College Apparatus and methodology for determining oxygen tension in biological systems
US6110187A (en) * 1995-02-24 2000-08-29 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US6183486B1 (en) * 1995-02-24 2001-02-06 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US20010001825A1 (en) * 1995-02-24 2001-05-24 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US5607448A (en) * 1995-05-10 1997-03-04 Daniel A. Stahl Rolling tourniquet
US5628329A (en) * 1995-07-26 1997-05-13 Boyd B. Bennett Methods and apparatus for obtaining and maintaining penile erection
US6189538B1 (en) * 1995-11-20 2001-02-20 Patricia E. Thorpe Tourniquet and method of using
US5797933A (en) * 1996-07-16 1998-08-25 Heartport, Inc. Coronary shunt and method of use
US6569083B1 (en) * 1996-10-03 2003-05-27 Leon B. Kassman Male, hermaphroditic, and female condoms exerting lateral pressure on the penis and the vagina
US5873813A (en) * 1998-02-05 1999-02-23 B.S.W. Partnership Method and apparatus for producing and maintaining a penile erection
US5997469A (en) * 1998-02-21 1999-12-07 Northcutt; Michael E. Sexual aid device
US6916289B2 (en) * 1998-06-07 2005-07-12 Itamar Medical Ltd. Pressure applicator devices particularly useful for non-invasive detection of medical conditions
US6605103B2 (en) * 1999-03-29 2003-08-12 Instrumed, Inc. System and method for controlling pressure in a surgical tourniquet
US6824511B1 (en) * 1999-06-23 2004-11-30 Canica Design Inc. Surgical fixation and retraction system
US6234980B1 (en) * 1999-08-27 2001-05-22 Medcare Medical Group, Inc. Needlestick first response kit and method of using same
US6319194B1 (en) * 2000-01-31 2001-11-20 Lynn G. Wulf Penis erection stabilizer using two connected flexible latex rings
US6454097B1 (en) * 2000-05-09 2002-09-24 Juan Carlos Aceves Blanco Prioritized first aid kit
US20030009087A1 (en) * 2001-06-27 2003-01-09 Eastman Kodak Company Sensor glove for physiological parameter measurement
US6682547B2 (en) * 2001-08-14 2004-01-27 Mcewen James Allen Tourniquet cuff with identification apparatus
US6833011B2 (en) * 2001-10-12 2004-12-21 Touchstone Research Laboratory, Ltd. Activated, coal-based carbon foam
US6843253B2 (en) * 2002-12-11 2005-01-18 C&L Medical Supply Corporation Urinary-control device
US20050027218A1 (en) * 2002-12-31 2005-02-03 Marius Filtvedt Device for applying a pulsating pressure to a local region of the body and applications thereof
US20070055107A1 (en) * 2003-04-25 2007-03-08 Tyco Healthcare Group Lp Surgical hand access apparatus
US20060004302A1 (en) * 2003-06-12 2006-01-05 University Of Utah Research Foundation Apparatus, systems and methods for diagnosing carpal tunnel syndrome
US20050143689A1 (en) * 2003-08-17 2005-06-30 Ramsey Maynard Iii Internal compression tourniquet catheter system and method for wound track navigation and hemorrhage control
US20070073335A1 (en) * 2003-08-28 2007-03-29 Michael Carter-Smith Acupressure device
US20050049631A1 (en) * 2003-08-28 2005-03-03 Michael Carter-Smith Acupressure device
US7582102B2 (en) * 2003-10-10 2009-09-01 Pyng Medical Corp. Mechanical advantage tourniquet
US20050267518A1 (en) * 2004-04-07 2005-12-01 Tiax, Llc Tourniquet and method of using same
US20050283191A1 (en) * 2004-05-17 2005-12-22 Fontayne Diego Y Surgical stapling system
US20060089668A1 (en) * 2004-10-21 2006-04-27 Piper Medical, Inc. Disposable digital tourniquets and related methods of providing occlusion pressures to a single digit during surgical procedures
US20080103366A1 (en) * 2006-10-26 2008-05-01 Endoscopic Technologies, Inc. Atraumatic tissue retraction device
US20080119801A1 (en) * 2006-11-21 2008-05-22 Moore Mark R Apparatus and method for deploying a surgical preparation
US7819800B2 (en) * 2006-12-15 2010-10-26 Ethicon Endo-Surgery, Inc. Fully automated iris seal for hand assisted laparoscopic surgical procedures
USD625824S1 (en) * 2008-04-18 2010-10-19 Precision Medical Devices, Llc Non-pneumatic tourniquet device
USD642275S1 (en) * 2008-05-02 2011-07-26 Precision Medical Devices, Llc Non-pneumatic tourniquet device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160074044A1 (en) * 2007-05-02 2016-03-17 William J. Green Non-Pneumatic Tourniquet Device
US10945741B2 (en) * 2007-05-02 2021-03-16 Precision Medical Devices, Llc Non-pneumatic tourniquet device
US20130330581A1 (en) * 2012-06-07 2013-12-12 Robert Bosch Gmbh Secondary battery
USD770631S1 (en) 2014-05-27 2016-11-01 Precision Medical Devices, Llc Device to close wounds
USD823466S1 (en) 2016-08-03 2018-07-17 Mar-Med Co. Tourniquet
EP3518794A4 (en) * 2016-09-29 2020-04-15 Mar-Med Co. Non-pneumatic surgical tourniquet
US11504134B2 (en) * 2016-09-29 2022-11-22 Mar-Med Inc. Non-pneumatic surgical tourniquet
US11185338B2 (en) 2019-08-26 2021-11-30 Covidien Lp Compression cuff

Also Published As

Publication number Publication date
USD685095S1 (en) 2013-06-25
ZA200908383B (en) 2011-02-23
CA2686218A1 (en) 2008-11-13
CN101808584A (en) 2010-08-18
USD685094S1 (en) 2013-06-25
KR101544695B1 (en) 2015-08-17
JP4982608B2 (en) 2012-07-25
JP2010525902A (en) 2010-07-29
US9131943B2 (en) 2015-09-15
CN101808584B (en) 2012-12-19
KR20100019987A (en) 2010-02-19
EP2146642A4 (en) 2011-08-17
US10945741B2 (en) 2021-03-16
MX2009011791A (en) 2010-04-30
US20160074044A1 (en) 2016-03-17
US20200367908A9 (en) 2020-11-26
CA2686218C (en) 2017-08-22
EP2146642A1 (en) 2010-01-27
US20110022077A1 (en) 2011-01-27
USD684694S1 (en) 2013-06-18
EP2146642B1 (en) 2018-09-26
WO2008137808A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
CA2686218C (en) Non-pneumatic tourniquet device
US5072720A (en) Vaginal speculum
US6126671A (en) Grasping devices and articles
US20100217307A1 (en) Disposable digital tourniquets and related methods of providing occlusion pressures to a single digit during surgical procedures
EP1358851B1 (en) Haemostatic device for an open blood vessel
JP6375363B2 (en) Wound or skin treatment device with variable edge geometry
US10213210B2 (en) Vessel closure system
KR20140121247A (en) Brace for medical treatment having hemostasis function
WO2013071692A1 (en) Disposable circumcision anastomat
AU2009243446B2 (en) Non-pneumatic tourniquet device
AU2010333067B2 (en) Dorsal forearm plate
Gavriely Surgical tourniquets in orthopaedics
AU2016312872A1 (en) A kit and therapeutic pressure assembly with patches for applying pressure to a limb or other body part
US20220338879A1 (en) Non-pneumatic digital tourniquet
JPH01308560A (en) Surgical bandage
GB2584084A (en) Tissue splayer
JP7002079B2 (en) Surgical drape
CN208610933U (en) A kind of acne removal tool of fingerstall type
CN220046204U (en) Postoperative waterproof bag
KR200468799Y1 (en) Binding apparatus for styptic band
US20240082063A1 (en) Wound closure treatment system
WO2010102333A2 (en) Multi-functional covering sleeve for finger or toe

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRECISION MEDICAL DEVICES, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRACKETT, TED J.;GREEN, WILLIAM J.;REEL/FRAME:023576/0080;SIGNING DATES FROM 20091120 TO 20091125

Owner name: PRECISION MEDICAL DEVICES, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRACKETT, TED J.;GREEN, WILLIAM J.;SIGNING DATES FROM 20091120 TO 20091125;REEL/FRAME:023576/0080

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION