US20080025701A1 - Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus - Google Patents

Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus Download PDF

Info

Publication number
US20080025701A1
US20080025701A1 US11/898,455 US89845507A US2008025701A1 US 20080025701 A1 US20080025701 A1 US 20080025701A1 US 89845507 A US89845507 A US 89845507A US 2008025701 A1 US2008025701 A1 US 2008025701A1
Authority
US
United States
Prior art keywords
image signal
recording
still image
dynamic image
reproduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/898,455
Inventor
Osamu Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10145819A external-priority patent/JPH11341425A/en
Priority claimed from JP10145818A external-priority patent/JPH11341418A/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to US11/898,455 priority Critical patent/US20080025701A1/en
Publication of US20080025701A1 publication Critical patent/US20080025701A1/en
Priority to US13/479,659 priority patent/US9973673B2/en
Priority to US15/951,294 priority patent/US20180249057A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • H04N5/772Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera the recording apparatus and the television camera being placed in the same enclosure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/84Television signal recording using optical recording
    • H04N5/85Television signal recording using optical recording on discs or drums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/806Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal
    • H04N9/8063Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal using time division multiplex of the PCM audio and PCM video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
    • H04N9/8227Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal the additional signal being at least another television signal

Definitions

  • the present invention relates to an image signal recording/reproduction apparatus, a method of image signal recording/reproduction and an image signal recording apparatus.
  • Examples of recording media employed to record images in movie cameras in the prior art include magnetic tape.
  • the drive of an imaging unit constituted of a CCD or the like starts and, after sequentially performing an operation to wind the magnetic tape onto a cylinder, an operation to set the cylinder in a steady-rotating state and an operation to advance the loaded magnetic tape to a position where recording is enabled (hereafter, these operations are collectively referred to as the preparatory operations), the camera enters a state in which recording on the magnetic tape is enabled.
  • This problem is dealt with in movie cameras in the prior art by providing a standby state in which recording of an image signal can be started any time with the tape wound at the cylinder and the cylinder in the steady-rotating state.
  • the recording operation cannot be started promptly for the following reason. Namely, when switching from the reproduction operation to the recording operation, the operating mode at the movie camera must be switched from the reproduction operation mode to the recording operation mode by temporarily stopping the tape. When the recording operation at the movie camera is then started, the preparatory operations described earlier are performed again before the actual recording operation starts. Thus, a significant length of time must elapse before the recording start, which may cause the user to miss recording the desired scene.
  • An object of the present invention is to provide an image signal recording/reproduction apparatus, a method of image signal recording/reproduction and an image signal recording apparatus that allow recording of a dynamic image signal, a still image signal, an audio signal or the like to start promptly.
  • the present invention comprises an imaging apparatus that captures an image of a subject to be taken, a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by the imaging apparatus, an operation apparatus that is operated to start recording of the dynamic image signal or the still image signal generated by the generating apparatus, a recording apparatus that records the dynamic image signal or the still image signal in a recording medium through mechanical drive, a reproduction apparatus that reproduces the dynamic image signal or the still image signal recorded in the recording medium through mechanical drive and a control apparatus that implements control whereby a dynamic image signal or a still image signal is recorded in a recording medium by the recording apparatus by sustaining the mechanical drive if the operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by the reproduction apparatus.
  • the control apparatus interrupts the reproduction operation.
  • the recording medium may be a magneto-optical disk, and the mechanical drive mentioned above may contain the rotational drive of the magneto-optical disk.
  • the present invention is further provided with a temporary storage device that temporarily stores a dynamic image signal or a still image signal until recording of the dynamic image signal or the still image signal in the recording medium by the recording apparatus is enabled.
  • the present invention is provided with a control apparatus that updates the contents of the temporary storage device when the temporary storage device becomes full.
  • the control apparatus alternately implements reproduction of the dynamic image signal or the still image signal performed by the reproduction apparatus and recording of the dynamic image signal or the still image signal performed by the recording apparatus through time sharing.
  • control apparatus may simultaneously implement reproduction of the dynamic image signal or the still image signal performed by the reproduction apparatus and recording of the dynamic image signal or the still image signal performed by the recording apparatus if the operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by the reproduction apparatus.
  • the present invention is further provided with a stop operation apparatus that is operated to stop recording a dynamic image signal or a still image signal generated by the generating apparatus, and the control apparatus stops recording in the recording medium of a dynamic image signal or a still image signal newly generated by the generating apparatus after the stop operation apparatus has been operated in response to the operation of the stop operation apparatus and then, in succession, implements the recording of a dynamic image signal or still image signal stored at the temporary storage device in the recording medium.
  • a dynamic image signal or a still image signal may be recorded so that during a reproduction operation, a dynamic image signal or a still image signal recorded in the recording medium after the stop operation apparatus has been operated is reproduced prior to reproduction of the dynamic image signal or still image signal recorded in the recording medium before the stop operation apparatus has been operated.
  • the present invention also provides a method of image signal recording/reproduction that is adopted in an image signal recording/reproduction apparatus comprising an imaging apparatus that captures an image of a subject to be taken, a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by the imaging apparatus, an operation apparatus that is operated to start recording of the dynamic image signal or the still image signal generated by the generating apparatus, a recording apparatus that records the dynamic image signal or the still image signal generated by the generating apparatus in a recording medium through mechanical drive and a reproduction apparatus that reproduces the dynamic image signal or the still image signal recorded in the recording medium through mechanical drive.
  • This method of image signal recording/reproduction includes a step in which the mechanical drive is sustained if the operation apparatus is operated while a dynamic image signal or a still image signal is being reproduced by the reproduction apparatus and a step in which the dynamic image signal or the still image signal is recorded in the recording medium by the recording apparatus.
  • the present invention comprises an imaging apparatus that captures an image of a subject to be taken, a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by the imaging apparatus, a display apparatus that displays information, a first instruction device provided superimposed on the display apparatus that issues an instruction to start recording of the dynamic image, signal or the still image signal generated by the generating apparatus and a second instruction device provided at a position that is different from the position at which the first instruction device is installed, which issues an instruction to start recording of the dynamic image signal or the still image signal generated by the generating apparatus.
  • a recording start may be instructed by the second instruction device regardless of whether or not a recording start can be instructed by the first instruction device.
  • the generating apparatus is capable of generating a dynamic image signal and a still image signal
  • the second instruction device is provided with a third instruction device that issues an instruction to start recording the dynamic image signal and a fourth instruction device that issues an instruction to start recording the still image signal.
  • the third instruction device issues an instruction to start recording in a state in which an instruction to start recording cannot be issued by the first instruction device
  • the still image signal is first recorded and then recording of the dynamic image signal is performed in succession.
  • the first instruction device issues an instruction to start recording either the dynamic image signal or the still image signal
  • the second instruction device issues an instruction to start recording an image signal other than the image signal the recording start for which has been instructed by the first instruction device.
  • FIG. 1 is a perspective illustrating an example of the external structure of a movie camera adopting the present invention
  • FIG. 2 illustrates a structural example in which a selector switch 11 is provided at the main unit 1 in FIG. 1 ;
  • FIG. 3 is a block diagram illustrating an example of the electrical structure of the movie camera in FIG. 1 ;
  • FIG. 4 is a flowchart illustrating the operation in which normal recording processing is performed
  • FIG. 5 is a flowchart continuing from FIG. 4 ;
  • FIG. 6 illustrates an example of the initial image display
  • FIG. 7 illustrates an example of the camera window display
  • FIG. 8 is a flowchart illustrating detection processing in which the state of the magneto-optical recording medium 28 is detected
  • FIG. 9 illustrates an example of the disk window display
  • FIG. 10 is a flowchart illustrating an example of forced-end processing
  • FIG. 11 is a flowchart illustrating an example of first dynamic image signal pre-emptive (or quick start) recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 12 is a flowchart illustrating an example of second dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 13 is a flowchart illustrating an example of third dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 14 is a flowchart illustrating an example of forth dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 15 is a flowchart illustrating an example of dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button is operated during a reproduction operation;
  • FIG. 16 is a flowchart illustrating another example of dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button is operated during a reproduction operation;
  • FIG. 17 is a flowchart illustrating an example of still image signal pre-emptive recording processing that is executed if the still image recording button 7 is operated when the disk window is not active;
  • FIG. 18 is a block diagram illustrating another structural example of the movie camera in FIG. 3 ;
  • FIG. 19 is a flowchart illustrating an example of dynamic image signal pre-emptive recording processing executed in the movie camera in FIG. 18 .
  • FIG. 1 is a perspective illustrating an example of the external structure of a movie camera adopting the present invention.
  • a liquid crystal display unit 4 A is provided at the front surface of a main unit 1 .
  • a touch-panel 4 B is provided on the screen of the liquid crystal display unit 4 A.
  • the touch-panel 4 B outputs a position signal that corresponds to a position specified through a user touch operation.
  • the touch-panel 4 B is constituted of a transparent material such as glass or resin. The user can view through the touch-panel 4 B an image displayed on the liquid crystal display unit 4 A which is provided under the touch-panel 4 B.
  • a power switch (main switch) 5 a dynamic image recording button 6 which is operated to start dynamic image recording and a zoom button 8 which is operated to change the focal length for the taking lens are provided.
  • a still image recording button 7 which is operated to start still image recording is provided.
  • a slot 9 is provided at a side surface (the right side surface in FIG. 1 ) of the main unit 1 .
  • a camera unit 2 is rotatably mounted at the main unit 1 .
  • the camera unit 2 is capable of performing photographing at any angle position over the 360 range.
  • the user can perform photographing at various camera angles while monitoring the subject displayed on the liquid crystal display unit 4 A.
  • a selector switch 11 that achieves selection between a state in which the dynamic image recording button 6 can be operated and a state in which it cannot be operated may be provided at the main unit 1 , as illustrated in FIG. 2 .
  • operation of the dynamic image recording button 6 is enabled (i.e., the operation is accepted).
  • operation of the dynamic image recording button 6 is disabled (not accepted). This prevents the photographer from inadvertently operating the dynamic image recording button 6 .
  • FIG. 3 is a block diagram illustrating an example of an electrical structure of the movie camera in FIG. 1 .
  • a lens drive unit 20 which is controlled by a signal processing unit 23 drives a taking lens 3 to achieve focus adjustment, zoom adjustment and the like.
  • An imaging device 21 performs photoelectric conversion of a subject image which is formed via the taking lens 3 and outputs an image signal (electrical signal) to an A/D conversion unit 22 .
  • the A/D conversion unit 22 converts the analog image signal provided by the imaging device 21 to a digital image signal.
  • the signal processing unit 23 implements control of exposure at the imaging device 21 (including control of the aperture at the taking lens 3 and control of the gain used to amplify the image signal output by the imaging device 21 .
  • the signal processing unit 23 performs processing such as white balance correction and gamma control on an image signal provided by the A/D conversion unit 22 and outputs the processed signal to a frame memory 24 .
  • the frame memory 24 stores an image signal provided by the signal processing unit 23 or a data compression/expansion unit 25 in units of a predetermined number of individual frames.
  • the data compression/expansion unit 25 compresses an image signal (a dynamic image signal or a still image signal) read out from the frame memory 24 and outputs the compressed data to a buffer memory 26 .
  • the data compression/expansion unit 25 expands an image signal read out from the buffer memory 26 for output to the frame memory 24 .
  • a data access unit 27 is provided with a recording/reproduction head.
  • the data access unit 27 drives the loaded magneto-optical recording medium 28 to record an image signal or an audio signal read out from the buffer memory 26 in the magneto-optical recording medium 28 .
  • the data access unit 27 also reads out an image signal or an audio signal recorded in the magneto-optical recording medium 28 and outputs it to the buffer memory 26 .
  • An audio input/output unit 29 which is provided with a microphone and a speaker (not shown), outputs sound that has been input through the microphone as an audio signal to an A/D conversion unit 31 .
  • the audio input/output unit 29 outputs an audio signal provided by a D/A conversion unit 30 via the speaker as sound.
  • the D/A conversion unit 30 converts a digital audio signal provided by an audio signal processing unit 32 to a an analog audio signal and outputs it to the audio input/output unit 29 .
  • the A/D conversion unit 31 converts an analog audio signal provided by the audio input/output unit 29 to a digital audio signal and outputs it to the audio signal processing unit 32 .
  • the audio signal processing unit 32 compresses an audio signal provided by the A/D conversion unit 31 and outputs it to the buffer memory 26 .
  • the audio signal processing unit 32 expands the audio signal read out from the buffer memory 26 to output it to the D/A conversion unit 30 .
  • a display image creation unit 33 creates an image that corresponds to the image signal read out from the frame memory 24 and displays the image on the liquid crystal display unit 4 A.
  • a touch-panel input unit 35 outputs an operation signal (position signal) from the touch-panel 4 B to a control unit 34 .
  • An operation member input unit 36 receives an operation signal from an operation member such as the power switch 5 , the dynamic image recording button 6 , the still image recording button 7 and the zoom button 8 and outputs the received signal to the control unit 34 .
  • the control unit 34 implements control of the various units in conformance to a program stored in a ROM 37 .
  • the control unit 34 which is internally provided with a timer (not shown), is also engaged in a time counting operation at all times. Data and programs required by the control unit 34 to execute various types of processing are stored at a RAM 38 .
  • the data compression/expansion unit 25 may be realized as internal functions of a microprocessor 40 .
  • step S 11 the user operates the power switch 5 to turn on the power at the main unit 1 .
  • step S 12 the control unit 34 implements control of the display image creation unit 33 to display an initial image on the liquid crystal display unit 4 A.
  • FIG. 6 presents a display example of the initial image.
  • a camera button 51 - 1 and a disk button (reproduction button) 51 - 2 are displayed in the lower left corner of the screen.
  • the camera button 51 - 1 When the user operates the camera button 51 - 1 , display of the camera window (the camera window will be explained later in reference to FIG. 7 ) that is utilized for recording a dynamic image or a still image starts.
  • the button 51 - 1 When the display of the camera window ends, the button 51 - 1 is displayed.
  • the lens drive unit 20 ⁇ the signal processing unit 23 in FIG. 3 are all in a state in which their operations are halted. This prevents wasteful consumption of power.
  • the disk button 51 - 2 when the disk button 51 - 2 is operated, display of the disk window which is used to verify (reproduce) the contents recorded in the magneto-optical recording medium 28 starts.
  • the disk button 51 - 2 is displayed.
  • step S 13 the control unit 34 verifies the states of the respective units and, in step S 14 , the detection processing, in which the state of the magneto-optical recording medium 28 is detected (to be detailed later in reference to FIG. 8 ), is executed.
  • step S 15 a decision is made as to whether or not the camera button 51 - 1 (see FIG. 6 ) has been operated, and if it is decided that the camera button 51 - 1 has not been operated, the operation returns to step S 15 . If it is decided in step S 15 that the camera button 51 - 1 has been operated, the operation proceeds to step S 16 in which the control unit 34 starts display of the camera window.
  • FIGS. 7A and 7B present display examples of the camera window.
  • FIG. 7A shows an example in which the camera window is displayed together with the disk window which is to be detailed later in reference to FIG. 9 .
  • an image that has been taken in (or an image being recorded) is displayed in an area 61 .
  • a mode button 62 is operated to select a mode such as an autofocus mode, a steady-cam mode or the like. The selected mode is displayed in an area 63 .
  • a dynamic image recording button (movie recording button) 64 is operated to start dynamic image recording.
  • a still image recording button (still recording button) 65 is operated to start still image recording.
  • a stop button 66 is operated to stop the recording operation in progress.
  • FIG. 7B presents an example in which the camera window is displayed over the entire screen.
  • the same reference numbers are assigned to areas identical to those in FIG. 7A and their explanation is omitted.
  • the available recording time (the available capacity in the magneto-optical recording medium 28 ) or the like is displayed in an area 71 .
  • step S 17 the control unit 34 starts operations of the lens drive unit 20 ⁇ the signal processing unit 23 (in other words, power supply to the lens drive unit 20 ⁇ the signal processing unit 23 is started).
  • step S 18 the control unit 34 implements control of the display image creation unit 33 to start monitor display of the image signal sequentially stored in the frame memory 24 on the liquid crystal display unit 4 A.
  • step S 19 the control unit 34 issues an instruction to the data access unit 27 to start rotation of the disk (the magneto-optical recording medium 28 ) and to make a seek operation to position the head at a track on the disk where recording is enabled.
  • a state in which recording can be started any time (standby state) is set.
  • step S 20 a decision is made as to whether or not the end button 67 has been operated. If it is decided that the end button 67 has been operated, the operation proceeds to step S 21 in which the control unit 34 implements control of the display image creation unit 33 to erase the camera window display and display the button 51 - 1 .
  • step S 22 the control unit 34 stops the power supply to the lens drive unit 20 ⁇ the signal processing unit 23 . This causes the operations of the lens drive unit 20 ⁇ the signal processing unit 23 to stop. If a recording operation is performed concurrently during a reproduction operation as in the embodiment illustrated in FIG. 16 , which is to be explained later, a decision is made in FIG. 23 as to whether or not reproduction is in progress.
  • step S 23 If it is decided in step S 23 that a reproduction operation is in progress, the operation returns to step S 13 in which the control unit 34 executes subsequent processing. If it is decided in step S 23 that reproduction is not in progress, the operation proceeds to step S 24 in which the data access unit 27 stops the disk rotation. Then, the operation returns to step S 13 to execute the processing in step S 13 and subsequent steps.
  • step S 20 If it is decided in step S 20 that the end button 67 has not been operated, the operation proceeds to step S 25 .
  • step S 25 a decision is made as to whether or not the dynamic image recording button 64 or the still image recording button 65 has been operated. If it is decided that neither the dynamic image recording button 64 nor the still image recording button 65 has been operated, the operation proceeds to step S 26 .
  • step S 26 the control unit 34 makes a decision as to whether or not the length of time Ta over which the disk rotation has been sustained is equal to or greater than a threshold value T 1 , and if it is decided that the length of time Ta that rotation has been sustained is still not equal to or greater than the threshold value T 1 , the operation returns to step S 20 to execute the processing in step S 20 and subsequent steps.
  • step S 26 If it is decided in step S 26 that the length of time Ta over which the disk rotation has been sustained is equal to or greater than the threshold value T 1 , the operation proceeds to step S 27 .
  • step S 27 the control unit 34 issues a command signal to the data access unit 27 to stop the disk rotation, and then the operation proceeds to step S 28 .
  • step S 28 a decision is made as to whether or not the length of time Tb of non-operation (the length of time over which no operation has been performed by the user) is equal to or greater than a threshold value T 2 . If it is decided that the length of non-operation time Tb is not yet equal to or greater than the threshold value T 2 , the operation returns to step S 20 in which the control unit 34 executes the processing in step S 20 and subsequent steps.
  • step S 28 If it is decided in step S 28 that the length of non-operation time Tb is equal to or greater than the threshold value T 2 , the operation proceeds to step S 29 in which the control unit 34 executes forced-end processing (this point will be detailed later in reference to FIG. 10 ).
  • step S 25 If it is decided in step S 25 that either the dynamic image recording button 64 or the still image recording button 65 has been operated, the operation proceeds to execute the operation in step S 30 .
  • step S 30 the control unit 34 issues a command to the data compression/expansion unit 25 to compress the image signal stored in the frame memory 24 and output it to the buffer memory 26 .
  • step S 31 the control unit 34 issues a command signal to the data access unit 27 to read out the image signal stored in the buffer memory 26 and record it in the magneto-optical recording medium 28 .
  • step S 32 a decision is made as to whether or not there is any available capacity in the magneto-optical recording medium 28 . If it is decided that there is no available capacity, the operation proceeds to step S 33 in which the control unit 24 implements control of the display image creation unit 33 to display a warning such as “no available capacity on the liquid crystal display unit 4 A. Then, the control unit 34 stops the recording operation (the compression of the image signal and storage of the compressed image signal in the buffer memory 26 , performed by the data compression/expansion unit 25 ) in step S 34 . In step S 35 , the control unit 34 issues a command to the data access unit 27 to stop the disk rotation. After this, the operation returns to step S 13 in which the control unit 34 executes the processing in step S 13 and subsequent steps.
  • step S 32 If it is decided in step S 32 that there is available capacity in the magneto-optical recording medium, the operation proceeds to step S 36 .
  • step S 36 the control unit 34 makes a decision as to whether or not the available capacity in the magneto-optical recording medium 28 is small. If it is decided in step S 36 that the available capacity is small, the operation proceeds to step S 37 , in which the control unit 34 implements control of the display image creation unit 33 to display a warning such as “running out of available capacity” on the liquid crystal display unit 4 A before proceeding to step S 38 . If it is decided in step S 36 that there is still sufficient available capacity, the operation proceeds to step S 38 , in which the control unit 34 makes a decision as to whether or not the stop button 66 has been operated.
  • step S 38 If the control unit 34 decides in step S 38 that the stop button 66 has not been operated, the operation returns to step S 32 , in which the control unit 34 executes the processing in step S 32 and subsequent steps. If it is decided in step S 38 that the stop button 66 has been operated, the operation proceeds to step S 39 , in which the control unit 34 stops the recording operation. In step S 40 , the data access unit 27 stops the rotation of the disk constituting the magneto-optical recording medium 28 .
  • FIG. 8 is a flowchart that illustrates the processing through which the state of the magneto-optical recording medium 28 is detected.
  • the control unit 34 makes a decision as to whether or not there is sufficient source voltage (i.e., whether or not there is sufficient battery power remaining). If it is decided that there is not sufficient source voltage (there is not sufficient battery power remaining), the operation proceeds to step S 52 to implement control of the display image creation unit 33 to display a warning such as “battery low.”
  • the control unit 34 executes forced-end processing in step S 53 .
  • step S 51 If it is decided in step S 51 that the source voltage is sufficiently high (there is sufficient battery power remaining), the operation proceeds to step S 54 to input information from the data access unit 27 and make a decision as to whether or not the magneto-optical recording medium 28 is loaded. If it is decided in step S 54 that the magneto-optical recording medium 28 is not loaded, the operation proceeds to step S 55 .
  • step S 55 the control unit 34 implements control of the display image creation unit 33 to display a warning such as “no disk loaded,” and then the operation proceeds to step S 66 .
  • step S 66 the control unit 34 executes error recovery processing by, for instance prompting the user to load the magneto-optical recording medium 28 before returning to step S 54 .
  • step S 54 If it is decided in step S 54 that the magneto-optical recording medium 28 is loaded, the operation proceeds to step S 56 , in which the control unit 34 issues a command signal to the data access unit 27 to rotate the disk and initiate a seek operation to position the head at a track on the disk where recording is enabled.
  • step S 57 a decision is made as to whether or not the magneto-optical recording medium 28 has been formatted. If it is decided in step S 57 that the magneto-optical recording medium 28 has not been formatted, the operation proceeds to step S 58 .
  • step S 58 the control unit 34 implements control of the display image creation unit 33 to display a warning such as “not formatted” before proceeding to step S 66 .
  • step S 66 the control unit 34 executes error recovery processing by, for instance, formatting the magneto-optical recording medium 28 , before returning to step S 54 .
  • step S 57 If it is decided in step S 57 that the magneto-optical recording medium 28 has been formatted, the operation proceeds to step S 59 to make a decision as to whether or not the magneto-optical recording medium 28 is write-protected (data write is prohibited). If it is decided in step S 59 that the magneto-optical recording medium 28 is write-protected (data write is prohibited), the operation proceeds to step S 60 .
  • step S 60 the control unit 34 implements control of the display image creation unit 33 to display a warning such as “write prohibited” before proceeding to step S 66 .
  • step S 66 the control unit 34 executes error recovery processing by, for instance, prompting the user to cancel the write-protect before returning to step S 54 .
  • step S 59 If it is decided in step S 59 that the magneto-optical recording medium 28 is not write-protected, the operation proceeds to step S 61 to start disk window display. With this, the disk window is displayed on the liquid crystal display unit 4 A.
  • FIG. 9 presents a disk window display example. In this example, the available recording time is displayed in an area 81 . In areas 82 - 1 ⁇ 82 - 4 , a thumbnail of a dynamic image recorded in the magneto-optical recording medium 28 , a thumbnail of a still image recorded in the magneto-optical recording medium 28 or a scenario editing image or scenario editing data in regard to these images are displayed.
  • scenario in this context refers to a file that provides procedures through which specific types of processing or editing are implemented on a specific portion of an image and through which a plurality of images are linked.
  • a cursor 83 is displayed at the selected item among the thumbnails and the scenario in the respective areas.
  • the thumbnail in the area 82 - 3 is selected.
  • a scroll button 84 is operated to scroll the display in the areas 82 - 1 ⁇ 82 - 4 (to switch to the display of another thumbnail or of the scenario).
  • An operating button 85 is operated to issue a command for the execution of processing such as reproduction, reverse reproduction, fast forward, fast rewind, pause, stop or the like, on the image corresponding to the selected thumbnail.
  • a delete button 86 is operated to delete the selected thumbnail or the selected scenario.
  • step S 62 the control unit 34 detects the available capacity in the magneto-optical recording medium 28 .
  • step S 63 the control unit 34 implements control of the display image creation unit 33 to display the available recording time corresponding to the detected available capacity in the area 81 of the disk window.
  • step S 64 the control unit 34 causes the thumbnail or the scenario corresponding to the dynamic image signal or the still image signal recorded in the magneto-optical recording medium 28 to be displayed in the area 82 - 1 ⁇ 82 - 4 of the disk window.
  • step S 65 the control unit 34 issues a command to the data access unit 27 to stop the disk rotation.
  • FIG. 10 is a flowchart illustrating the forced-end processing.
  • the control unit 34 stores various states (e.g., the mode setting) in, for instance, a RAM (not shown). Then the operation proceeds to step S 82 , in which the control unit 34 implements control of the display image creation unit 33 to display a warning such as “turning off power.”
  • step S 83 the control unit 34 makes a decision as to whether or not the length of time Tc over which the warning display has been on is equal to or greater than a threshold value T 3 , and if it is decided that the length of time Tc over which the display has been on is still not equal to or greater than the threshold value T 3 , the operation returns to step S 82 . If the control unit 34 decides in step S 83 that the length of time Tc over which the display has been on is equal to or greater than the threshold value T 3 , the operation proceeds to step S 84 to turn off the power at the main unit 1 .
  • step S 91 the control unit 34 starts power supply to the lens drive unit 20 ⁇ the signal processing unit 23 . With this, the operations at the lens drive unit 20 ⁇ the signal processing unit 23 are started, and image signal are sequentially stored in the frame memory 24 .
  • step S 92 the control unit 34 starts camera window display.
  • step S 93 the control unit 34 issues a command to the data access unit 27 to rotate the disk and initiate a seek operation to position the head at a track on the disk where recording is enabled.
  • step S 94 the control unit 34 issues a command to the data compression/expansion unit 25 to compress dynamic image signals that are sequentially stored in the frame memory 24 and to store them in the buffer memory 26 .
  • step S 95 a decision is made as to whether or not the camera window is on display. If the control unit 34 decides that the camera window is on display, the operation proceeds to step S 96 . In step S 96 , the control unit 34 implements control of the display image creation unit 33 to perform monitor display of the dynamic image signal in the area 61 of the camera window before proceeding to step S 97 . If it is decided in step S 95 that the camera window is not on display, the operation proceeds to step S 97 . In step S 97 , the control unit 34 makes a decision as to whether or not a write (recording) of the dynamic image signal in the magneto-optical recording medium 28 has been enabled.
  • step S 98 the control unit 34 makes a decision as to whether or not the buffer memory 26 has become full, and if it is decided that the buffer memory 26 has not become full yet, the operation returns to step S 95 to execute the processing in step S 95 and subsequent steps.
  • step S 98 If it is decided in step S 98 that the buffer memory 26 has become full, the operation proceeds to step S 99 to update the contents of the buffer memory 26 (overwrites the dynamic image signal stored in the buffer memory 26 with a new dynamic image signal provided by the data compression/expansion unit 25 ) before returning to step S 95 to execute the processing in step S 95 and subsequent steps.
  • step S 97 If it is decided in step S 97 that a write of the dynamic image signal in the magneto-optical recording medium 28 is enabled, the operation proceeds to step S 100 .
  • step S 100 the control unit 34 issues a command to the data access unit 27 to start a write of the dynamic image signal to the magneto-optical recording medium 28 .
  • step S 101 in which the control unit 34 makes a decision as to whether or not the stop button 66 has been operated. If it is decided that the stop button 66 has been operated, the operation proceeds to step S 102 , whereas if it is decided that the stop button 66 has not been operated, the operation returns to step S 100 .
  • step S 102 write-end processing to end the write of the new dynamic image signal provided by the data compression/expansion unit 25 in the magneto-optical recording medium 28 starts.
  • step S 103 the dynamic image signal stored in the buffer memory 26 is copied and recorded in the magneto-optical recording medium 28 .
  • the dynamic image signal copied from the buffer memory 26 in the magneto-optical recording medium 28 is appended to the dynamic image signal recorded in step S 100 so that they will be reproduced prior to the reproduction of the dynamic image signal recorded in step S 100 .
  • the reproduced dynamic image signal can be viewed with a sense of continuity.
  • FIG. 12 presents a flowchart illustrating an example of the second dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated while the camera window is not on display.
  • steps S 111 ⁇ S 118 is identical to the processing performed in S 91 ⁇ S 98 in FIG. 11 and the processing performed in step S 120 is identical to the processing performed in step S 100 in FIG. 11 , their explanation is omitted.
  • step S 118 in the flowchart in FIG. 12 that the buffer memory 26 has become full, the operation proceeds to step S 119 .
  • control unit 34 returns to step S 115 without updating the contents of the buffer memory 26 (without overwriting the dynamic image signal stored in the buffer memory 26 with the new dynamic image signal provided by the data compression/expansion unit 25 ), to execute the processing in step S 115 and subsequent steps.
  • Other aspects of the processing are identical to the processing in FIG. 11 .
  • FIG. 13 presents a flowchart illustrating an example of the third dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated while the camera window is not on display.
  • step S 131 the control unit 34 starts power supply to the lens drive unit 20 ⁇ the signal processing unit 23 .
  • step S 132 the control unit 34 starts camera window display.
  • step S 133 the control unit 34 issues a command to the data access unit 27 to rotate the disk and to initiate a head seek.
  • step S 134 in which the control unit 34 issues a command to the data compression/expansion unit 25 to compress a still image signal stored in the frame memory 24 and to store it in the buffer memory 26 .
  • step S 135 the control unit 34 issues a command to the audio signal processing unit 32 to compress an audio signal input via the audio input/output unit 29 and the A/D conversion unit 31 and to store the compressed signal in the buffer memory 26 .
  • step S 136 the control unit 34 makes a decision as to whether or not the camera window is on display, and if it is decided that the camera window is on display, the operation proceeds to step S 137 .
  • step S 137 the control unit 34 implements control of the display image creation unit 33 to perform monitor display of the dynamic image signal in the area 61 of the camera window before preceding to step S 138 .
  • step S 136 If the control unit 34 decides in step S 136 that the camera window is not on display, the operation proceeds to step S 138 in which a decision is made as to whether or not a write of various types of signals in the magneto-optical recording medium 28 has become enabled. If the control unit 34 decides in step S 138 that a write in the magneto-optical recording medium 28 has not been enabled yet, the operation proceeds to step S 139 .
  • step S 139 the control unit 34 makes a decision as to whether or not the buffer memory 26 has become full. If the control unit 34 decides that the buffer memory 26 has not become full yet, the operation returns to step S 136 to execute the processing in step S 136 and subsequent steps. If it is decided in step S 139 that the buffer memory 26 has become full, the operation proceeds to step S 140 before returning to step S 136 without updating the contents of the buffer memory 26 to execute the processing in step S 136 and subsequent steps.
  • step S 138 If it is decided in step S 138 that a write of various types of signals in the magneto-optical recording medium 28 has become enabled, the operation proceeds to step S 141 to issue a command to the data access unit 27 to write the contents (still image signal and audio signal) stored in the buffer memory 26 in the magneto-optical recording medium 28 . Then, the control unit 34 starts a write of the dynamic image signal and the audio signal in the magneto-optical recording medium 28 in step S 142 .
  • FIG. 14 presents a flowchart illustrating an example of the fourth dynamic image signal pre-emptive recording processing that is executed it the dynamic image recording button 6 is operated while the camera window is not on display.
  • the processing performed in steps S 151 ⁇ S 155 is identical to the processing performed in steps S 91 ⁇ S 95 in FIG. 11
  • the processing performed in steps S 157 ⁇ S 159 is identical to the processing performed in steps S 97 ⁇ S 99 in FIG. 12 .
  • an explanation of these steps is omitted.
  • the operation proceeds to step S 156 .
  • step S 156 the control unit 34 implements control of the display image creation unit 33 to bring up a wait display such as “preparation in progress; please wait,” before proceeding to step S 157 . If it is decided in step S 157 that a write of various types of signals in the magneto-optical recording medium 28 has been enabled, the operation proceeds to step S 160 .
  • step S 160 the control unit 34 implements control of the display image creation unit 33 to cancel the wait display and to start monitor display of the dynamic image signal. Then, in step S 161 , the control unit 34 issues a command to the data access unit 27 to start a write of the dynamic image signal in the magneto-optical recording medium 28 .
  • Other aspects of the processing are identical to the processing illustrated in FIG. 11 .
  • step S 171 the control unit 34 interrupts the reproduction operation and starts display of the camera window in step S 172 .
  • step S 173 the control unit 34 issues a command to the data access unit 27 to sustain the rotation of the disk for reproduction and to initiate a head seek to locate a position where recording is enabled.
  • the processing that is performed subsequently is identical to that in FIG. 11 .
  • step S 194 the control unit 34 sustains the reproduction operation, and in step S 192 , it starts display of the camera window.
  • step S 193 the control unit 34 issues a command to the data access unit 27 to perform a seek operation to position the head at a track on the disk where recording is enabled. While other aspects of the processing are identical to those in the processing illustrated in FIG.
  • the reproduction operation and the recording operation are executed alternately through time-sharing. It is to be noted that instead of executing the reproduction operation and the recording operation through time-sharing, two heads, one for recording and the other for reproduction, may be provided at the data access unit 27 to perform recording and reproduction at the same time using these two heads.
  • step S 211 the control unit 34 starts supplying a source voltage to the lens drive unit 20 ⁇ the signal processing unit 23 .
  • the operations at the various units start, and still image signal sampled with specific timing are stored in the frame memory 24 .
  • step S 212 the control unit 34 issues a command to the data compression/expansion unit 25 to read out the still image signal stored in the frame memory 24 , to compress it and to store it in the buffer memory 26 .
  • step S 213 the control unit 34 starts display of the camera window.
  • step S 214 the control unit 34 issues a control signal to the data access unit 27 to rotate the disk constituting the magneto-optical recording medium 28 and to initiate a seek operation to position the head at a track on the disk where recording is enabled.
  • step S 215 the control unit 34 makes a decision as to whether or not the camera window is on display and if it is decided that the camera window is on display, the operation proceeds to step S 216 .
  • step S 216 the control unit 34 implements control of the display image creation unit 33 to display a still image signal in the area 61 of the camera window before the operation proceeds to step S 217 .
  • step S 215 the operation proceeds to step S 217 .
  • step S 217 the control unit 34 makes a decision as to whether or not a write of the still image signal in the magneto-optical recording medium 28 has become enabled. If the control unit 34 decides that a write in the magneto-optical recording medium 28 has not become enabled yet (the disk constituting the magneto-optical recording medium 28 has not reached the steady rotating rate or the head is not at a recording-enabled position), the operation returns to step S 215 to execute the processing in step S 215 and subsequent steps.
  • step S 217 If the control unit 34 decides in step S 217 that a write of the still image signal in the magneto-optical recording medium 28 has become enabled, the operation proceeds to step S 218 , in which the control unit 34 issues a command to the data access unit 27 to write the still image signal in the magneto-optical recording medium 28 .
  • FIG. 18 is a block diagram illustrating another structural example of the movie camera in FIG. 3 , with the same reference numbers assigned to components identical to those in FIG. 3 to preclude the necessity for an explanation thereof.
  • the buffer memory 26 in FIG. 3 is not included.
  • signals are transmitted and received directly between the data compression/expansion unit 25 and the data access unit 27 or between the audio signal processing unit 32 and the data access unit 27 .
  • Other structural features are identical to those in FIG. 3 .
  • FIG. 19 presents a flowchart illustrating an example of the dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button is operated while the camera window is not on display in the movie camera illustrated in FIG. 18 .
  • the processing performed in steps S 301 ⁇ S 305 is identical to the processing performed in steps S 91 ⁇ S 95 in FIG. 11 and the processing performed in step S 307 is identical to the processing performed in step S 97 in FIG. 11 , their explanation is omitted. If it is decided in step S 305 that the camera window is on display, the operation proceeds to step S 306 .
  • step S 306 the control unit 34 implements control of the display image creation unit 33 to bring up a wait display such as “preparation for recording in progress; please wait,” before preceding to step S 307 . If the control unit 34 decides in step S 307 that a write of dynamic image signal in the magneto-optical recording medium 28 has become enabled, the operation proceeds to step S 308 , in which the control unit 34 implements control of the display image creation unit 33 to cancel the wait display and to start monitor display of a dynamic image signal stored in the frame memory 24 . In step S 309 , the control unit 34 issues a command to the data access unit 27 to start a write of the dynamic image signal in the magneto-optical recording medium 28 . Other aspects of the processing are identical to those in FIG. 11 .
  • pre-emptive recording of dynamic images is performed in reference to the individual embodiments described above.
  • the present invention may be adopted when implementing processing in which pre-emptive recording of still images is performed as well as dynamic images.
  • Pre-emptive recording of still images is started when the still image recording button 7 is operated while a reproduction operation is in progress.
  • the pre-emptive recording of still images is implemented by adopting a processing similar to that for the dynamic image pre-emptive recording described above.
  • the contents of the buffer memory 26 do not need to be updated even when the buffer memory 26 has become full.
  • a warning may be displayed to the effect that any further pre-emptive recording of still images cannot be performed.
  • control unit 34 may select a signal to be stored in the buffer memory 26 , among a dynamic image signal, a still image signal and an audio signal, in correspondence to the length of time to elapse before a recording-enabled state is achieved, the capacity at the buffer memory 26 or the battery state until the magneto-optical recording medium 28 enters a recording-enabled state.
  • a camera that is provided with four recording buttons, i.e., the dynamic image recording button and the still image recording button operated through the touch-panel provided on the screen of the display apparatus and the dynamic image recording button and still image recording button provided at locations other than the location of the touch-panel installation, has been explained.
  • the button that is operated through the touch-panel may be used as a dynamic image recording button, with a button provided at a position other than the location of the touch-panel installation made to function as a still image recording button.
  • the image signal recording/reproduction apparatus and the method of image signal recording/reproduction that have been explained in reference to FIGS. 1 ⁇ 19 achieve the following advantage. Namely, when a command for recording is issued while the reproduction apparatus is engaged in reproduction of a dynamic image signal or a still image signal, a command is issued to the recording apparatus to start recording a dynamic image signal or a still image signal while sustaining the mechanical drive of the recording medium. Consequently, even while the movie camera is engaged in a reproduction operation, for instance, a pre-emptive recording of an image can be started.
  • an image signal recording start can be prompted by the first instruction device provided on the screen of the display apparatus or by the second instruction device provided at a position other than the installation position of the first instruction device.
  • an image signal recording start can be instructed by either of the instruction device depending upon the operating state to achieve a prompt start of image signal recording.
  • image signal recording can be started by using the second instruction device even in a state in which a recording start cannot be prompted by the first instruction device, image recording can be started without delay.

Abstract

A dynamic image recording button and a still image recording button are provided at the main unit of a movie camera. A magneto-optical recording medium is loaded in a slot. If the dynamic image recording button or the still image recording button is operated during a reproduction operation, the reproduction operation is interrupted in a state in which the mechanical drive (rotation) of the magneto-optical recording medium is sustained. At this point, a dynamic image signal or a still image signal obtained through a photographing operation performed at the camera unit is temporarily recorded in a buffer memory, and is written in the magneto-optical recording medium when a write in the magneto-optical recording medium becomes enabled. Instructions to record dynamic images and to record still images can be issued to the movie camera through a touch-panel provided on the screen of a liquid crystal display unit. Even when operation cannot be performed through the touch-panel, the instructions can be issued through the dynamic image recording button or the still image recording button.

Description

  • This is a Continuation of application Ser. No. 10/364,368 filed Feb. 12, 2003 which is a Continuation of application Ser. No. 09/318,830 filed May 26, 1999. The disclosures of the prior applications are hereby incorporated by reference herein in their entirety.
  • INCORPORATION BY REFERENCE
  • The disclosures of the following priority applications are herein incorporated by reference:
  • Japanese Patent Application No. 10-145818 filed on May 27, 1998
  • Japanese Patent Application No. 10-145819 filed on May 27, 1998
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an image signal recording/reproduction apparatus, a method of image signal recording/reproduction and an image signal recording apparatus.
  • 2. Description of the Related Art
  • Examples of recording media employed to record images in movie cameras in the prior art include magnetic tape. In such a movie camera employing magnetic tape, when an instruction to start recording an image is issued, the drive of an imaging unit constituted of a CCD or the like starts and, after sequentially performing an operation to wind the magnetic tape onto a cylinder, an operation to set the cylinder in a steady-rotating state and an operation to advance the loaded magnetic tape to a position where recording is enabled (hereafter, these operations are collectively referred to as the preparatory operations), the camera enters a state in which recording on the magnetic tape is enabled.
  • Since it is necessary to perform a number of operations as described above before the recording-enabled state is achieved in the movie camera described above, a certain length of time elapses after, for instance, the user operates a recording start button until the actual recording of the image signal starts. Since images cannot be captured during this time, the user may miss recording an opportunity to capture a desired scene.
  • This problem is dealt with in movie cameras in the prior art by providing a standby state in which recording of an image signal can be started any time with the tape wound at the cylinder and the cylinder in the steady-rotating state.
  • However, there is a problem in that, since the motor is rotating at all times in the standby state, extra power is consumed. In addition, there is a problem of the tape or the magnetic head becoming worn since the motor is rotating while the tape is stationary.
  • Furthermore, when starting recording immediately after turning on the power at the main unit, for instance, a certain length of time must elapse before the recording can start, which may cause the user to miss recording the desired scene, as explained above.
  • Moreover, when it becomes necessary to immediately switch to a recording operation while performing a reproduction operation in the movie camera, the recording operation cannot be started promptly for the following reason. Namely, when switching from the reproduction operation to the recording operation, the operating mode at the movie camera must be switched from the reproduction operation mode to the recording operation mode by temporarily stopping the tape. When the recording operation at the movie camera is then started, the preparatory operations described earlier are performed again before the actual recording operation starts. Thus, a significant length of time must elapse before the recording start, which may cause the user to miss recording the desired scene.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide an image signal recording/reproduction apparatus, a method of image signal recording/reproduction and an image signal recording apparatus that allow recording of a dynamic image signal, a still image signal, an audio signal or the like to start promptly.
  • In order to achieve the object described above, the present invention comprises an imaging apparatus that captures an image of a subject to be taken, a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by the imaging apparatus, an operation apparatus that is operated to start recording of the dynamic image signal or the still image signal generated by the generating apparatus, a recording apparatus that records the dynamic image signal or the still image signal in a recording medium through mechanical drive, a reproduction apparatus that reproduces the dynamic image signal or the still image signal recorded in the recording medium through mechanical drive and a control apparatus that implements control whereby a dynamic image signal or a still image signal is recorded in a recording medium by the recording apparatus by sustaining the mechanical drive if the operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by the reproduction apparatus.
  • According to the present invention, if the operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by the reproduction apparatus, the control apparatus interrupts the reproduction operation.
  • According to the present invention, the recording medium may be a magneto-optical disk, and the mechanical drive mentioned above may contain the rotational drive of the magneto-optical disk.
  • The present invention is further provided with a temporary storage device that temporarily stores a dynamic image signal or a still image signal until recording of the dynamic image signal or the still image signal in the recording medium by the recording apparatus is enabled.
  • In addition, the present invention is provided with a control apparatus that updates the contents of the temporary storage device when the temporary storage device becomes full.
  • Furthermore, according to the present invention, if the operation apparatus is operated while a dynamic image signal or a still image signal is being reproduced by the reproduction apparatus, the control apparatus alternately implements reproduction of the dynamic image signal or the still image signal performed by the reproduction apparatus and recording of the dynamic image signal or the still image signal performed by the recording apparatus through time sharing.
  • Alternatively, according to the present invention, the control apparatus may simultaneously implement reproduction of the dynamic image signal or the still image signal performed by the reproduction apparatus and recording of the dynamic image signal or the still image signal performed by the recording apparatus if the operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by the reproduction apparatus.
  • The present invention is further provided with a stop operation apparatus that is operated to stop recording a dynamic image signal or a still image signal generated by the generating apparatus, and the control apparatus stops recording in the recording medium of a dynamic image signal or a still image signal newly generated by the generating apparatus after the stop operation apparatus has been operated in response to the operation of the stop operation apparatus and then, in succession, implements the recording of a dynamic image signal or still image signal stored at the temporary storage device in the recording medium.
  • Furthermore, according to the present invention, a dynamic image signal or a still image signal may be recorded so that during a reproduction operation, a dynamic image signal or a still image signal recorded in the recording medium after the stop operation apparatus has been operated is reproduced prior to reproduction of the dynamic image signal or still image signal recorded in the recording medium before the stop operation apparatus has been operated.
  • The present invention also provides a method of image signal recording/reproduction that is adopted in an image signal recording/reproduction apparatus comprising an imaging apparatus that captures an image of a subject to be taken, a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by the imaging apparatus, an operation apparatus that is operated to start recording of the dynamic image signal or the still image signal generated by the generating apparatus, a recording apparatus that records the dynamic image signal or the still image signal generated by the generating apparatus in a recording medium through mechanical drive and a reproduction apparatus that reproduces the dynamic image signal or the still image signal recorded in the recording medium through mechanical drive.
  • This method of image signal recording/reproduction includes a step in which the mechanical drive is sustained if the operation apparatus is operated while a dynamic image signal or a still image signal is being reproduced by the reproduction apparatus and a step in which the dynamic image signal or the still image signal is recorded in the recording medium by the recording apparatus.
  • The present invention comprises an imaging apparatus that captures an image of a subject to be taken, a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by the imaging apparatus, a display apparatus that displays information, a first instruction device provided superimposed on the display apparatus that issues an instruction to start recording of the dynamic image, signal or the still image signal generated by the generating apparatus and a second instruction device provided at a position that is different from the position at which the first instruction device is installed, which issues an instruction to start recording of the dynamic image signal or the still image signal generated by the generating apparatus.
  • In addition, according to the present invention, a recording start may be instructed by the second instruction device regardless of whether or not a recording start can be instructed by the first instruction device.
  • In addition, according to the present invention, the generating apparatus is capable of generating a dynamic image signal and a still image signal, and the second instruction device is provided with a third instruction device that issues an instruction to start recording the dynamic image signal and a fourth instruction device that issues an instruction to start recording the still image signal.
  • Furthermore, according to the present invention, when the third instruction device issues an instruction to start recording in a state in which an instruction to start recording cannot be issued by the first instruction device, the still image signal is first recorded and then recording of the dynamic image signal is performed in succession.
  • Moreover, according to the present invention, the first instruction device issues an instruction to start recording either the dynamic image signal or the still image signal, and the second instruction device issues an instruction to start recording an image signal other than the image signal the recording start for which has been instructed by the first instruction device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective illustrating an example of the external structure of a movie camera adopting the present invention;
  • FIG. 2 illustrates a structural example in which a selector switch 11 is provided at the main unit 1 in FIG. 1;
  • FIG. 3 is a block diagram illustrating an example of the electrical structure of the movie camera in FIG. 1;
  • FIG. 4 is a flowchart illustrating the operation in which normal recording processing is performed;
  • FIG. 5 is a flowchart continuing from FIG. 4;
  • FIG. 6 illustrates an example of the initial image display;
  • FIG. 7 illustrates an example of the camera window display;
  • FIG. 8 is a flowchart illustrating detection processing in which the state of the magneto-optical recording medium 28 is detected;
  • FIG. 9 illustrates an example of the disk window display;
  • FIG. 10 is a flowchart illustrating an example of forced-end processing;
  • FIG. 11 is a flowchart illustrating an example of first dynamic image signal pre-emptive (or quick start) recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 12 is a flowchart illustrating an example of second dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 13 is a flowchart illustrating an example of third dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 14 is a flowchart illustrating an example of forth dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated when the disk window is not active;
  • FIG. 15 is a flowchart illustrating an example of dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button is operated during a reproduction operation;
  • FIG. 16 is a flowchart illustrating another example of dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button is operated during a reproduction operation;
  • FIG. 17 is a flowchart illustrating an example of still image signal pre-emptive recording processing that is executed if the still image recording button 7 is operated when the disk window is not active;
  • FIG. 18 is a block diagram illustrating another structural example of the movie camera in FIG. 3; and
  • FIG. 19 is a flowchart illustrating an example of dynamic image signal pre-emptive recording processing executed in the movie camera in FIG. 18.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is a perspective illustrating an example of the external structure of a movie camera adopting the present invention. At the front surface of a main unit 1, a liquid crystal display unit 4A is provided. A touch-panel 4B is provided on the screen of the liquid crystal display unit 4A. The touch-panel 4B outputs a position signal that corresponds to a position specified through a user touch operation. The touch-panel 4B is constituted of a transparent material such as glass or resin. The user can view through the touch-panel 4B an image displayed on the liquid crystal display unit 4A which is provided under the touch-panel 4B.
  • In addition, at the front surface of the main unit 1, a power switch (main switch) 5, a dynamic image recording button 6 which is operated to start dynamic image recording and a zoom button 8 which is operated to change the focal length for the taking lens are provided. At the upper surface of the main unit 1, a still image recording button 7 which is operated to start still image recording is provided. A slot 9 is provided at a side surface (the right side surface in FIG. 1) of the main unit 1. A detachable magneto-optical recording medium 28 or the like, such as an MO (magneto-optical) disk, is loaded at the slot 9.
  • In addition, a camera unit 2 is rotatably mounted at the main unit 1. The camera unit 2 is capable of performing photographing at any angle position over the 360 range. Thus, the user can perform photographing at various camera angles while monitoring the subject displayed on the liquid crystal display unit 4A.
  • It is to be noted that a selector switch 11 that achieves selection between a state in which the dynamic image recording button 6 can be operated and a state in which it cannot be operated may be provided at the main unit 1, as illustrated in FIG. 2. In the example, when the lever at the selector switch 11 is switched to the “standby” position, operation of the dynamic image recording button 6 is enabled (i.e., the operation is accepted). In addition, when the lever is switched to the “lock” position, operation of the dynamic image recording button 6 is disabled (not accepted). This prevents the photographer from inadvertently operating the dynamic image recording button 6.
  • FIG. 3 is a block diagram illustrating an example of an electrical structure of the movie camera in FIG. 1. A lens drive unit 20 which is controlled by a signal processing unit 23 drives a taking lens 3 to achieve focus adjustment, zoom adjustment and the like. An imaging device 21 performs photoelectric conversion of a subject image which is formed via the taking lens 3 and outputs an image signal (electrical signal) to an A/D conversion unit 22. The A/D conversion unit 22 converts the analog image signal provided by the imaging device 21 to a digital image signal. The signal processing unit 23 implements control of exposure at the imaging device 21 (including control of the aperture at the taking lens 3 and control of the gain used to amplify the image signal output by the imaging device 21. In addition, the signal processing unit 23 performs processing such as white balance correction and gamma control on an image signal provided by the A/D conversion unit 22 and outputs the processed signal to a frame memory 24.
  • The frame memory 24 stores an image signal provided by the signal processing unit 23 or a data compression/expansion unit 25 in units of a predetermined number of individual frames. The data compression/expansion unit 25 compresses an image signal (a dynamic image signal or a still image signal) read out from the frame memory 24 and outputs the compressed data to a buffer memory 26. In addition, the data compression/expansion unit 25 expands an image signal read out from the buffer memory 26 for output to the frame memory 24.
  • A data access unit 27 is provided with a recording/reproduction head. The data access unit 27 drives the loaded magneto-optical recording medium 28 to record an image signal or an audio signal read out from the buffer memory 26 in the magneto-optical recording medium 28. The data access unit 27 also reads out an image signal or an audio signal recorded in the magneto-optical recording medium 28 and outputs it to the buffer memory 26.
  • An audio input/output unit 29, which is provided with a microphone and a speaker (not shown), outputs sound that has been input through the microphone as an audio signal to an A/D conversion unit 31. In addition, the audio input/output unit 29 outputs an audio signal provided by a D/A conversion unit 30 via the speaker as sound. The D/A conversion unit 30 converts a digital audio signal provided by an audio signal processing unit 32 to a an analog audio signal and outputs it to the audio input/output unit 29. The A/D conversion unit 31 converts an analog audio signal provided by the audio input/output unit 29 to a digital audio signal and outputs it to the audio signal processing unit 32. The audio signal processing unit 32 compresses an audio signal provided by the A/D conversion unit 31 and outputs it to the buffer memory 26. In addition, the audio signal processing unit 32 expands the audio signal read out from the buffer memory 26 to output it to the D/A conversion unit 30.
  • A display image creation unit 33 creates an image that corresponds to the image signal read out from the frame memory 24 and displays the image on the liquid crystal display unit 4A. A touch-panel input unit 35 outputs an operation signal (position signal) from the touch-panel 4B to a control unit 34. An operation member input unit 36 receives an operation signal from an operation member such as the power switch 5, the dynamic image recording button 6, the still image recording button 7 and the zoom button 8 and outputs the received signal to the control unit 34. The control unit 34 implements control of the various units in conformance to a program stored in a ROM 37. The control unit 34, which is internally provided with a timer (not shown), is also engaged in a time counting operation at all times. Data and programs required by the control unit 34 to execute various types of processing are stored at a RAM 38.
  • It is to be noted that the data compression/expansion unit 25, the display image creation unit 33, the touch-panel input unit 35 and the control unit 34 may be realized as internal functions of a microprocessor 40.
  • Next, in reference to the flowchart presented in FIGS. 4 and 5, the normal recording processing is explained. In step S11, the user operates the power switch 5 to turn on the power at the main unit 1. Next, in step S12, the control unit 34 implements control of the display image creation unit 33 to display an initial image on the liquid crystal display unit 4A. FIG. 6 presents a display example of the initial image. In the example in FIG. 6, a camera button 51-1 and a disk button (reproduction button) 51-2 are displayed in the lower left corner of the screen. When the user touches the area where either the camera button 51-1 or the disk button 51-2 is displayed with a finger or the like, an operation signal is output to the touch-panel input unit 35 from the touch-panel 4B. In the following explanation, touching the area where, for instance, the camera button 51-1 is displayed with a finger or the like is referred to as “operating the camera button 51-1.”
  • When the user operates the camera button 51-1, display of the camera window (the camera window will be explained later in reference to FIG. 7) that is utilized for recording a dynamic image or a still image starts. When the display of the camera window ends, the button 51-1 is displayed. When the camera button 51-1 is on display, the lens drive unit 20˜the signal processing unit 23 in FIG. 3 are all in a state in which their operations are halted. This prevents wasteful consumption of power. Likewise, when the disk button 51-2 is operated, display of the disk window which is used to verify (reproduce) the contents recorded in the magneto-optical recording medium 28 starts. When the display of the disk window ends, the disk button 51-2 is displayed.
  • The operation then proceeds to step S13 in which the control unit 34 verifies the states of the respective units and, in step S14, the detection processing, in which the state of the magneto-optical recording medium 28 is detected (to be detailed later in reference to FIG. 8), is executed. Then, in step S15, a decision is made as to whether or not the camera button 51-1 (see FIG. 6) has been operated, and if it is decided that the camera button 51-1 has not been operated, the operation returns to step S15. If it is decided in step S15 that the camera button 51-1 has been operated, the operation proceeds to step S16 in which the control unit 34 starts display of the camera window.
  • FIGS. 7A and 7B present display examples of the camera window. FIG. 7A shows an example in which the camera window is displayed together with the disk window which is to be detailed later in reference to FIG. 9. In the example in FIG. 7A, an image that has been taken in (or an image being recorded) is displayed in an area 61. A mode button 62 is operated to select a mode such as an autofocus mode, a steady-cam mode or the like. The selected mode is displayed in an area 63. A dynamic image recording button (movie recording button) 64 is operated to start dynamic image recording. A still image recording button (still recording button) 65 is operated to start still image recording. A stop button 66 is operated to stop the recording operation in progress. An end button (close button) 67 is operated to end (close) the camera window display. FIG. 7B presents an example in which the camera window is displayed over the entire screen. In FIG. 7B, the same reference numbers are assigned to areas identical to those in FIG. 7A and their explanation is omitted. In the example in FIG. 7B, the available recording time (the available capacity in the magneto-optical recording medium 28) or the like is displayed in an area 71.
  • Next, the operation proceeds to step S17 in which the control unit 34 starts operations of the lens drive unit 20˜the signal processing unit 23 (in other words, power supply to the lens drive unit 20˜the signal processing unit 23 is started). With this, image signals corresponding to the subject image formed on the imaging device 21 by the taking lens 3 are sequentially stored in the frame memory 24. Then, the operation proceeds to step S18 in which the control unit 34 implements control of the display image creation unit 33 to start monitor display of the image signal sequentially stored in the frame memory 24 on the liquid crystal display unit 4A. In step S19, the control unit 34 issues an instruction to the data access unit 27 to start rotation of the disk (the magneto-optical recording medium 28) and to make a seek operation to position the head at a track on the disk where recording is enabled. Thus, a state in which recording can be started any time (standby state) is set.
  • In step S20, a decision is made as to whether or not the end button 67 has been operated. If it is decided that the end button 67 has been operated, the operation proceeds to step S21 in which the control unit 34 implements control of the display image creation unit 33 to erase the camera window display and display the button 51-1. In step S22, the control unit 34 stops the power supply to the lens drive unit 20˜the signal processing unit 23. This causes the operations of the lens drive unit 20˜the signal processing unit 23 to stop. If a recording operation is performed concurrently during a reproduction operation as in the embodiment illustrated in FIG. 16, which is to be explained later, a decision is made in FIG. 23 as to whether or not reproduction is in progress. If it is decided in step S23 that a reproduction operation is in progress, the operation returns to step S13 in which the control unit 34 executes subsequent processing. If it is decided in step S23 that reproduction is not in progress, the operation proceeds to step S24 in which the data access unit 27 stops the disk rotation. Then, the operation returns to step S13 to execute the processing in step S13 and subsequent steps.
  • If it is decided in step S20 that the end button 67 has not been operated, the operation proceeds to step S25. In step S25, a decision is made as to whether or not the dynamic image recording button 64 or the still image recording button 65 has been operated. If it is decided that neither the dynamic image recording button 64 nor the still image recording button 65 has been operated, the operation proceeds to step S26. In step S26, the control unit 34 makes a decision as to whether or not the length of time Ta over which the disk rotation has been sustained is equal to or greater than a threshold value T1, and if it is decided that the length of time Ta that rotation has been sustained is still not equal to or greater than the threshold value T1, the operation returns to step S20 to execute the processing in step S20 and subsequent steps. If it is decided in step S26 that the length of time Ta over which the disk rotation has been sustained is equal to or greater than the threshold value T1, the operation proceeds to step S27. In step S27, the control unit 34 issues a command signal to the data access unit 27 to stop the disk rotation, and then the operation proceeds to step S28. In step S28, a decision is made as to whether or not the length of time Tb of non-operation (the length of time over which no operation has been performed by the user) is equal to or greater than a threshold value T2. If it is decided that the length of non-operation time Tb is not yet equal to or greater than the threshold value T2, the operation returns to step S20 in which the control unit 34 executes the processing in step S20 and subsequent steps. If it is decided in step S28 that the length of non-operation time Tb is equal to or greater than the threshold value T2, the operation proceeds to step S29 in which the control unit 34 executes forced-end processing (this point will be detailed later in reference to FIG. 10).
  • If it is decided in step S25 that either the dynamic image recording button 64 or the still image recording button 65 has been operated, the operation proceeds to execute the operation in step S30. In step S30, the control unit 34 issues a command to the data compression/expansion unit 25 to compress the image signal stored in the frame memory 24 and output it to the buffer memory 26. In step S31, the control unit 34 issues a command signal to the data access unit 27 to read out the image signal stored in the buffer memory 26 and record it in the magneto-optical recording medium 28.
  • In step S32, a decision is made as to whether or not there is any available capacity in the magneto-optical recording medium 28. If it is decided that there is no available capacity, the operation proceeds to step S33 in which the control unit 24 implements control of the display image creation unit 33 to display a warning such as “no available capacity on the liquid crystal display unit 4A. Then, the control unit 34 stops the recording operation (the compression of the image signal and storage of the compressed image signal in the buffer memory 26, performed by the data compression/expansion unit 25) in step S34. In step S35, the control unit 34 issues a command to the data access unit 27 to stop the disk rotation. After this, the operation returns to step S13 in which the control unit 34 executes the processing in step S13 and subsequent steps.
  • If it is decided in step S32 that there is available capacity in the magneto-optical recording medium, the operation proceeds to step S36. In step S36, the control unit 34 makes a decision as to whether or not the available capacity in the magneto-optical recording medium 28 is small. If it is decided in step S36 that the available capacity is small, the operation proceeds to step S37, in which the control unit 34 implements control of the display image creation unit 33 to display a warning such as “running out of available capacity” on the liquid crystal display unit 4A before proceeding to step S38. If it is decided in step S36 that there is still sufficient available capacity, the operation proceeds to step S38, in which the control unit 34 makes a decision as to whether or not the stop button 66 has been operated. If the control unit 34 decides in step S38 that the stop button 66 has not been operated, the operation returns to step S32, in which the control unit 34 executes the processing in step S32 and subsequent steps. If it is decided in step S38 that the stop button 66 has been operated, the operation proceeds to step S39, in which the control unit 34 stops the recording operation. In step S40, the data access unit 27 stops the rotation of the disk constituting the magneto-optical recording medium 28.
  • FIG. 8 is a flowchart that illustrates the processing through which the state of the magneto-optical recording medium 28 is detected. First, in step S51, the control unit 34 makes a decision as to whether or not there is sufficient source voltage (i.e., whether or not there is sufficient battery power remaining). If it is decided that there is not sufficient source voltage (there is not sufficient battery power remaining), the operation proceeds to step S52 to implement control of the display image creation unit 33 to display a warning such as “battery low.” The control unit 34 executes forced-end processing in step S53. If it is decided in step S51 that the source voltage is sufficiently high (there is sufficient battery power remaining), the operation proceeds to step S54 to input information from the data access unit 27 and make a decision as to whether or not the magneto-optical recording medium 28 is loaded. If it is decided in step S54 that the magneto-optical recording medium 28 is not loaded, the operation proceeds to step S55. In step S55, the control unit 34 implements control of the display image creation unit 33 to display a warning such as “no disk loaded,” and then the operation proceeds to step S66. In step S66, the control unit 34 executes error recovery processing by, for instance prompting the user to load the magneto-optical recording medium 28 before returning to step S54.
  • If it is decided in step S54 that the magneto-optical recording medium 28 is loaded, the operation proceeds to step S56, in which the control unit 34 issues a command signal to the data access unit 27 to rotate the disk and initiate a seek operation to position the head at a track on the disk where recording is enabled. In step S57, a decision is made as to whether or not the magneto-optical recording medium 28 has been formatted. If it is decided in step S57 that the magneto-optical recording medium 28 has not been formatted, the operation proceeds to step S58. In step S58, the control unit 34 implements control of the display image creation unit 33 to display a warning such as “not formatted” before proceeding to step S66. In step S66, the control unit 34 executes error recovery processing by, for instance, formatting the magneto-optical recording medium 28, before returning to step S54.
  • If it is decided in step S57 that the magneto-optical recording medium 28 has been formatted, the operation proceeds to step S59 to make a decision as to whether or not the magneto-optical recording medium 28 is write-protected (data write is prohibited). If it is decided in step S59 that the magneto-optical recording medium 28 is write-protected (data write is prohibited), the operation proceeds to step S60. In step S60, the control unit 34 implements control of the display image creation unit 33 to display a warning such as “write prohibited” before proceeding to step S66. In step S66, the control unit 34 executes error recovery processing by, for instance, prompting the user to cancel the write-protect before returning to step S54.
  • If it is decided in step S59 that the magneto-optical recording medium 28 is not write-protected, the operation proceeds to step S61 to start disk window display. With this, the disk window is displayed on the liquid crystal display unit 4A. FIG. 9 presents a disk window display example. In this example, the available recording time is displayed in an area 81. In areas 82-1˜82-4, a thumbnail of a dynamic image recorded in the magneto-optical recording medium 28, a thumbnail of a still image recorded in the magneto-optical recording medium 28 or a scenario editing image or scenario editing data in regard to these images are displayed. It is to be noted that “scenario” in this context refers to a file that provides procedures through which specific types of processing or editing are implemented on a specific portion of an image and through which a plurality of images are linked. By utilizing the scenario, it becomes possible to perform editing processing by calling up a target image and to reproduce an image obtained through editing. A cursor 83 is displayed at the selected item among the thumbnails and the scenario in the respective areas. In the example in FIG. 9, the thumbnail in the area 82-3 is selected. A scroll button 84 is operated to scroll the display in the areas 82-1˜82-4 (to switch to the display of another thumbnail or of the scenario). An operating button 85 is operated to issue a command for the execution of processing such as reproduction, reverse reproduction, fast forward, fast rewind, pause, stop or the like, on the image corresponding to the selected thumbnail. A delete button 86 is operated to delete the selected thumbnail or the selected scenario.
  • Then, the operation proceeds to step S62 in which the control unit 34 detects the available capacity in the magneto-optical recording medium 28. In step S63, the control unit 34 implements control of the display image creation unit 33 to display the available recording time corresponding to the detected available capacity in the area 81 of the disk window. Then, in step S64, the control unit 34 causes the thumbnail or the scenario corresponding to the dynamic image signal or the still image signal recorded in the magneto-optical recording medium 28 to be displayed in the area 82-1˜82-4 of the disk window. In step S65, the control unit 34 issues a command to the data access unit 27 to stop the disk rotation.
  • FIG. 10 is a flowchart illustrating the forced-end processing. First, in step S81, the control unit 34 stores various states (e.g., the mode setting) in, for instance, a RAM (not shown). Then the operation proceeds to step S82, in which the control unit 34 implements control of the display image creation unit 33 to display a warning such as “turning off power.” In step S83, the control unit 34 makes a decision as to whether or not the length of time Tc over which the warning display has been on is equal to or greater than a threshold value T3, and if it is decided that the length of time Tc over which the display has been on is still not equal to or greater than the threshold value T3, the operation returns to step S82. If the control unit 34 decides in step S83 that the length of time Tc over which the display has been on is equal to or greater than the threshold value T3, the operation proceeds to step S84 to turn off the power at the main unit 1.
  • Next, in reference to the flowchart in FIG. 11, an example of the first dynamic image signal pre-emptive (or quick start) recording processing, which is executed if the dynamic image recording button 6 is operated while the camera window is not on display, is explained. First, in step S91, the control unit 34 starts power supply to the lens drive unit 20˜the signal processing unit 23. With this, the operations at the lens drive unit 20˜the signal processing unit 23 are started, and image signal are sequentially stored in the frame memory 24. In step S92, the control unit 34 starts camera window display. In step S93, the control unit 34 issues a command to the data access unit 27 to rotate the disk and initiate a seek operation to position the head at a track on the disk where recording is enabled. In step S94, the control unit 34 issues a command to the data compression/expansion unit 25 to compress dynamic image signals that are sequentially stored in the frame memory 24 and to store them in the buffer memory 26.
  • In step S95, a decision is made as to whether or not the camera window is on display. If the control unit 34 decides that the camera window is on display, the operation proceeds to step S96. In step S96, the control unit 34 implements control of the display image creation unit 33 to perform monitor display of the dynamic image signal in the area 61 of the camera window before proceeding to step S97. If it is decided in step S95 that the camera window is not on display, the operation proceeds to step S97. In step S97, the control unit 34 makes a decision as to whether or not a write (recording) of the dynamic image signal in the magneto-optical recording medium 28 has been enabled. If the control unit 34 decides that the dynamic image signal cannot yet be written in the magneto-optical recording medium 28 (the disk constituting the magneto-optical recording medium 28 has not reached the steady-rotating state yet, or the head has not moved to a recording-enabled position), the operation proceeds to step S98. In step S98, the control unit 34 makes a decision as to whether or not the buffer memory 26 has become full, and if it is decided that the buffer memory 26 has not become full yet, the operation returns to step S95 to execute the processing in step S95 and subsequent steps.
  • If it is decided in step S98 that the buffer memory 26 has become full, the operation proceeds to step S99 to update the contents of the buffer memory 26 (overwrites the dynamic image signal stored in the buffer memory 26 with a new dynamic image signal provided by the data compression/expansion unit 25) before returning to step S95 to execute the processing in step S95 and subsequent steps.
  • If it is decided in step S97 that a write of the dynamic image signal in the magneto-optical recording medium 28 is enabled, the operation proceeds to step S100. In step S100, the control unit 34 issues a command to the data access unit 27 to start a write of the dynamic image signal to the magneto-optical recording medium 28.
  • Then the operation proceeds to step S101, in which the control unit 34 makes a decision as to whether or not the stop button 66 has been operated. If it is decided that the stop button 66 has been operated, the operation proceeds to step S102, whereas if it is decided that the stop button 66 has not been operated, the operation returns to step S100.
  • In step S102, write-end processing to end the write of the new dynamic image signal provided by the data compression/expansion unit 25 in the magneto-optical recording medium 28 starts. Next, in step S103, the dynamic image signal stored in the buffer memory 26 is copied and recorded in the magneto-optical recording medium 28. At this point, the dynamic image signal copied from the buffer memory 26 in the magneto-optical recording medium 28 is appended to the dynamic image signal recorded in step S100 so that they will be reproduced prior to the reproduction of the dynamic image signal recorded in step S100. By implementing such appending processing, the reproduced dynamic image signal can be viewed with a sense of continuity.
  • FIG. 12 presents a flowchart illustrating an example of the second dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated while the camera window is not on display. In this example, since the processing performed in steps S111˜S118 is identical to the processing performed in S91˜S98 in FIG. 11 and the processing performed in step S120 is identical to the processing performed in step S100 in FIG. 11, their explanation is omitted. When it is decided in step S118 in the flowchart in FIG. 12 that the buffer memory 26 has become full, the operation proceeds to step S119. Then, the control unit 34 returns to step S115 without updating the contents of the buffer memory 26 (without overwriting the dynamic image signal stored in the buffer memory 26 with the new dynamic image signal provided by the data compression/expansion unit 25), to execute the processing in step S115 and subsequent steps. Other aspects of the processing are identical to the processing in FIG. 11.
  • FIG. 13 presents a flowchart illustrating an example of the third dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated while the camera window is not on display. First, in step S131, the control unit 34 starts power supply to the lens drive unit 20˜the signal processing unit 23. Then the operation proceeds to step S132 in which the control unit 34 starts camera window display. In step S133, the control unit 34 issues a command to the data access unit 27 to rotate the disk and to initiate a head seek. The operation then proceeds to step S134, in which the control unit 34 issues a command to the data compression/expansion unit 25 to compress a still image signal stored in the frame memory 24 and to store it in the buffer memory 26.
  • In step S135, the control unit 34 issues a command to the audio signal processing unit 32 to compress an audio signal input via the audio input/output unit 29 and the A/D conversion unit 31 and to store the compressed signal in the buffer memory 26. In step S136, the control unit 34 makes a decision as to whether or not the camera window is on display, and if it is decided that the camera window is on display, the operation proceeds to step S137. In step S137, the control unit 34 implements control of the display image creation unit 33 to perform monitor display of the dynamic image signal in the area 61 of the camera window before preceding to step S138. If the control unit 34 decides in step S136 that the camera window is not on display, the operation proceeds to step S138 in which a decision is made as to whether or not a write of various types of signals in the magneto-optical recording medium 28 has become enabled. If the control unit 34 decides in step S138 that a write in the magneto-optical recording medium 28 has not been enabled yet, the operation proceeds to step S139.
  • In step S139, the control unit 34 makes a decision as to whether or not the buffer memory 26 has become full. If the control unit 34 decides that the buffer memory 26 has not become full yet, the operation returns to step S136 to execute the processing in step S136 and subsequent steps. If it is decided in step S139 that the buffer memory 26 has become full, the operation proceeds to step S140 before returning to step S136 without updating the contents of the buffer memory 26 to execute the processing in step S136 and subsequent steps.
  • If it is decided in step S138 that a write of various types of signals in the magneto-optical recording medium 28 has become enabled, the operation proceeds to step S141 to issue a command to the data access unit 27 to write the contents (still image signal and audio signal) stored in the buffer memory 26 in the magneto-optical recording medium 28. Then, the control unit 34 starts a write of the dynamic image signal and the audio signal in the magneto-optical recording medium 28 in step S142.
  • FIG. 14 presents a flowchart illustrating an example of the fourth dynamic image signal pre-emptive recording processing that is executed it the dynamic image recording button 6 is operated while the camera window is not on display. In the flowchart in FIG. 14, the processing performed in steps S151˜S155 is identical to the processing performed in steps S91˜S95 in FIG. 11, and the processing performed in steps S157˜S159 is identical to the processing performed in steps S97˜S99 in FIG. 12. Thus, an explanation of these steps is omitted. In the flowchart in FIG. 14, if it is decided in step S155 that the camera window is on display, the operation proceeds to step S156. In step S156, the control unit 34 implements control of the display image creation unit 33 to bring up a wait display such as “preparation in progress; please wait,” before proceeding to step S157. If it is decided in step S157 that a write of various types of signals in the magneto-optical recording medium 28 has been enabled, the operation proceeds to step S160. In step S160, the control unit 34 implements control of the display image creation unit 33 to cancel the wait display and to start monitor display of the dynamic image signal. Then, in step S161, the control unit 34 issues a command to the data access unit 27 to start a write of the dynamic image signal in the magneto-optical recording medium 28. Other aspects of the processing are identical to the processing illustrated in FIG. 11.
  • Next, in reference to the flowchart in FIG. 15, an example of the dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated during a reproduction operation is explained. In this example, since the processing performed in steps S174˜S180 corresponds to the processing performed in steps S94˜S100 in FIG. 11, its explanation is omitted. In step S171, the control unit 34 interrupts the reproduction operation and starts display of the camera window in step S172. In step S173, the control unit 34 issues a command to the data access unit 27 to sustain the rotation of the disk for reproduction and to initiate a head seek to locate a position where recording is enabled. The processing that is performed subsequently is identical to that in FIG. 11.
  • Next, in reference to the flowchart in FIG. 16, an example of the dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button 6 is operated during a reproduction operation is explained. Since the processing performed in steps S194˜S200 in the example illustrated in FIG. 16 is identical to the processing performed in steps S94˜S100 in FIG. 11, its explanation is omitted. In step S191, the control unit 34 sustains the reproduction operation, and in step S192, it starts display of the camera window. In step S193, the control unit 34 issues a command to the data access unit 27 to perform a seek operation to position the head at a track on the disk where recording is enabled. While other aspects of the processing are identical to those in the processing illustrated in FIG. 11, the reproduction operation and the recording operation are executed alternately through time-sharing. It is to be noted that instead of executing the reproduction operation and the recording operation through time-sharing, two heads, one for recording and the other for reproduction, may be provided at the data access unit 27 to perform recording and reproduction at the same time using these two heads.
  • Next, in reference to the flowchart in FIG. 17, an example of the still image signal pre-emptive recording processing that is executed if the still image recording button 7 is operated while the camera window is not on display is explained. First, in step S211, the control unit 34 starts supplying a source voltage to the lens drive unit 20˜the signal processing unit 23. Thus, the operations at the various units start, and still image signal sampled with specific timing are stored in the frame memory 24. In step S212, the control unit 34 issues a command to the data compression/expansion unit 25 to read out the still image signal stored in the frame memory 24, to compress it and to store it in the buffer memory 26. Then, the operation proceeds to step S213, in which the control unit 34 starts display of the camera window. In step S214, the control unit 34 issues a control signal to the data access unit 27 to rotate the disk constituting the magneto-optical recording medium 28 and to initiate a seek operation to position the head at a track on the disk where recording is enabled. In step S215, the control unit 34 makes a decision as to whether or not the camera window is on display and if it is decided that the camera window is on display, the operation proceeds to step S216. In step S216, the control unit 34 implements control of the display image creation unit 33 to display a still image signal in the area 61 of the camera window before the operation proceeds to step S217. If the control unit 34 decides in step 215 that the camera window is not on display, the operation proceeds to step S217. In step S217, the control unit 34 makes a decision as to whether or not a write of the still image signal in the magneto-optical recording medium 28 has become enabled. If the control unit 34 decides that a write in the magneto-optical recording medium 28 has not become enabled yet (the disk constituting the magneto-optical recording medium 28 has not reached the steady rotating rate or the head is not at a recording-enabled position), the operation returns to step S215 to execute the processing in step S215 and subsequent steps.
  • If the control unit 34 decides in step S217 that a write of the still image signal in the magneto-optical recording medium 28 has become enabled, the operation proceeds to step S218, in which the control unit 34 issues a command to the data access unit 27 to write the still image signal in the magneto-optical recording medium 28.
  • FIG. 18 is a block diagram illustrating another structural example of the movie camera in FIG. 3, with the same reference numbers assigned to components identical to those in FIG. 3 to preclude the necessity for an explanation thereof. In the example in FIG. 18, the buffer memory 26 in FIG. 3 is not included. In other words, signals are transmitted and received directly between the data compression/expansion unit 25 and the data access unit 27 or between the audio signal processing unit 32 and the data access unit 27. Other structural features are identical to those in FIG. 3.
  • FIG. 19 presents a flowchart illustrating an example of the dynamic image signal pre-emptive recording processing that is executed if the dynamic image recording button is operated while the camera window is not on display in the movie camera illustrated in FIG. 18. In the example illustrated in FIG. 19, since the processing performed in steps S301˜S305 is identical to the processing performed in steps S91˜S95 in FIG. 11 and the processing performed in step S307 is identical to the processing performed in step S97 in FIG. 11, their explanation is omitted. If it is decided in step S305 that the camera window is on display, the operation proceeds to step S306. In step S306, the control unit 34 implements control of the display image creation unit 33 to bring up a wait display such as “preparation for recording in progress; please wait,” before preceding to step S307. If the control unit 34 decides in step S307 that a write of dynamic image signal in the magneto-optical recording medium 28 has become enabled, the operation proceeds to step S308, in which the control unit 34 implements control of the display image creation unit 33 to cancel the wait display and to start monitor display of a dynamic image signal stored in the frame memory 24. In step S309, the control unit 34 issues a command to the data access unit 27 to start a write of the dynamic image signal in the magneto-optical recording medium 28. Other aspects of the processing are identical to those in FIG. 11.
  • It is to be noted that the explanation has been given on processing in which pre-emptive recording of dynamic images is performed in reference to the individual embodiments described above. The present invention may be adopted when implementing processing in which pre-emptive recording of still images is performed as well as dynamic images. Pre-emptive recording of still images is started when the still image recording button 7 is operated while a reproduction operation is in progress. The pre-emptive recording of still images is implemented by adopting a processing similar to that for the dynamic image pre-emptive recording described above. However, when implementing pre-emptive recording of still images, the contents of the buffer memory 26 do not need to be updated even when the buffer memory 26 has become full. In addition, when the buffer memory 26 has become full, a warning may be displayed to the effect that any further pre-emptive recording of still images cannot be performed.
  • In addition, in each of the embodiments described above, the control unit 34 may select a signal to be stored in the buffer memory 26, among a dynamic image signal, a still image signal and an audio signal, in correspondence to the length of time to elapse before a recording-enabled state is achieved, the capacity at the buffer memory 26 or the battery state until the magneto-optical recording medium 28 enters a recording-enabled state.
  • In reference to the embodiments, a camera that is provided with four recording buttons, i.e., the dynamic image recording button and the still image recording button operated through the touch-panel provided on the screen of the display apparatus and the dynamic image recording button and still image recording button provided at locations other than the location of the touch-panel installation, has been explained. However, it is not necessary to provide all four of these recording buttons. For instance, the button that is operated through the touch-panel may be used as a dynamic image recording button, with a button provided at a position other than the location of the touch-panel installation made to function as a still image recording button. Or the reverse of this arrangement and a button operated through the touch-panel being a still image recording button with a button provided at a position other than the location of the touch-panel installation functioning as a dynamic image recording button may be assumed. By adopting such a structure, a reduction in the number of parts is achieved.
  • The image signal recording/reproduction apparatus and the method of image signal recording/reproduction that have been explained in reference to FIGS. 1˜19 achieve the following advantage. Namely, when a command for recording is issued while the reproduction apparatus is engaged in reproduction of a dynamic image signal or a still image signal, a command is issued to the recording apparatus to start recording a dynamic image signal or a still image signal while sustaining the mechanical drive of the recording medium. Consequently, even while the movie camera is engaged in a reproduction operation, for instance, a pre-emptive recording of an image can be started.
  • In addition, in the image signal recording apparatus that has been explained in reference to FIGS. 1˜19, an image signal recording start can be prompted by the first instruction device provided on the screen of the display apparatus or by the second instruction device provided at a position other than the installation position of the first instruction device. Thus, an image signal recording start can be instructed by either of the instruction device depending upon the operating state to achieve a prompt start of image signal recording. Furthermore, since image signal recording can be started by using the second instruction device even in a state in which a recording start cannot be prompted by the first instruction device, image recording can be started without delay.

Claims (15)

1. An image signal recording/reproduction apparatus comprising:
an imaging apparatus that captures an image of a subject to be taken;
a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by said imaging apparatus;
an operation apparatus that is operated to start recording of the dynamic image signal or the still image signal generated by said generating apparatus;
a recording apparatus that records the dynamic image signal or the still image signal into a recording medium through mechanical drive;
a reproduction apparatus that reproduces the dynamic image signal or the still image signal recorded at said recording medium through mechanical drive; and
a control apparatus that implements control so that said mechanical drive is sustained if said operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by said reproduction apparatus and so that said recording apparatus records the dynamic image signal or the still image signal in said recording medium.
2. An image signal recording/reproduction apparatus according to claim 1, wherein:
said control apparatus interrupts reproduction if said operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by said reproduction apparatus.
3. An image signal recording/reproduction apparatus according to claim 1, wherein:
said recording medium is a magneto-optical disk, and said mechanical drive includes a rotational drive of said magneto-optical disk.
4. An image signal recording/reproduction apparatus according to claim 1, further comprising:
a temporary storage device that temporarily stores the dynamic image signal or the still image signal until recording of the dynamic image signal or the still image signal in said recording medium by said recording apparatus is enabled.
5. An image signal recording/reproduction apparatus according to claim 1, further comprising:
a control apparatus that updates contents of said temporary storage device if said temporary storage device becomes full.
6. An image signal recording/reproduction apparatus according to claim 1, wherein:
said control apparatus alternately implements reproduction of the dynamic image signal or the still image signal by said reproduction apparatus and recording of the dynamic image signal or the still image signal by said recording apparatus through time-sharing, if said operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by said reproduction apparatus.
7. An image signal recording/reproduction apparatus according to claim 1, wherein:
said control apparatus simultaneously implements reproduction of the dynamic image signal or the still image signal by said reproduction apparatus and recording of the dynamic image signal or the still image signal by said recording apparatus, if said operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by said reproduction apparatus.
8. An image signal recording/reproduction apparatus according to claim 4, further comprising:
a stop operation apparatus that is operated to stop recording of the dynamic image signal or the still image signal generated by said generating apparatus, wherein:
said control apparatus, in response to an operation of said stop operation apparatus, stops recording in said recording medium of the dynamic image signal or the still image signal newly generated by said generating apparatus after said stop operation apparatus has been operated and then records the dynamic image signal or the still image signal stored in said temporary storage device in said recording medium in succession.
9. An image signal recording/reproduction apparatus according to claim 8, wherein:
said control apparatus records the dynamic image signal or the still image signal in such a manner that during a reproduction operation, the dynamic image signal or the still image signal recorded in said recording medium after said stop operation apparatus has been operated is reproduced prior to reproduction of the dynamic image signal or the still image signal recorded in said recording medium before said stop operation apparatus has been operated.
10. A method of image signal recording/reproduction employed in an image signal recording/reproduction apparatus comprising:
an imaging apparatus that captures an image of a subject;
a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by said imaging apparatus;
an operation apparatus that is operated to start recording of the dynamic image signal or the still image signal generated by said generating apparatus;
a recording apparatus that records the dynamic image signal or the still image signal generated by said generating apparatus into a recording medium through mechanical drive; and
a reproduction apparatus that reproduces the dynamic image signal or the still image signal recorded at said recording medium through mechanical drive, that includes;
a step in which the mechanical drive is sustained if said operation apparatus is operated while the dynamic image signal or the still image signal is being reproduced by said reproduction apparatus; and
a step in which the dynamic image signal or the still image signal is recorded in said recording medium by said recording apparatus.
11. An image signal recording apparatus comprising:
an imaging apparatus that captures an image of a subject;
a generating apparatus that generates a dynamic image signal or a still image signal of the subject captured by said imaging apparatus;
a display apparatus that displays information;
a first instruction device provided on said display apparatus screen, that issues an instruction to start recording a dynamic image signal or a still image signal generated by said generating apparatus; and
a second instruction device provided at a position other than the position at which said first instruction device is provided, that issues an instruction to start recording a dynamic image signal or a still image signal generated by said generating apparatus.
12. An image signal recording apparatus according to claim 11, wherein:
said instruction to start recording can be issued by said second instruction device regardless of whether or not said first instruction device has issued an instruction to start recording.
13. An image signal recording apparatus according to claim 11, wherein:
said generating apparatus is capable of generating a dynamic image signal and a still image signal; and
said second instruction device is provided; with
a third instruction device that issues an instruction to start recording of the dynamic image signal and a fourth instruction device that issues an instruction to start recording of the still image signal.
14. An image signal recording apparatus according to claim 13, wherein:
if said instruction to start recording is issued by said third instruction device while an instruction to start recording cannot be issued by said first instruction device, a still image signal is first recorded and then a dynamic image signal is recorded.
15. An image signal recording apparatus according to claim 11, wherein:
said first instruction device issues an instruction to start recording either the dynamic image signal or the still image signal; and
said second instruction device issues an instruction to start recording an image signal other than the image signal specified by said first instruction device.
US11/898,455 1998-05-27 2007-09-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus Abandoned US20080025701A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/898,455 US20080025701A1 (en) 1998-05-27 2007-09-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US13/479,659 US9973673B2 (en) 1998-05-27 2012-05-24 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US15/951,294 US20180249057A1 (en) 1998-05-27 2018-04-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP10145819A JPH11341425A (en) 1998-05-27 1998-05-27 Image signal recording and reproducing device and image signal recording and reproducing method
JP10-145818 1998-05-27
JP10-145819 1998-05-27
JP10145818A JPH11341418A (en) 1998-05-27 1998-05-27 Image signal recorder
US09/318,830 US20020106199A1 (en) 1998-05-27 1999-05-26 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US10/364,368 US20030123859A1 (en) 1998-05-27 2003-02-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US11/898,455 US20080025701A1 (en) 1998-05-27 2007-09-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/364,368 Continuation US20030123859A1 (en) 1998-05-27 2003-02-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/479,659 Continuation US9973673B2 (en) 1998-05-27 2012-05-24 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus

Publications (1)

Publication Number Publication Date
US20080025701A1 true US20080025701A1 (en) 2008-01-31

Family

ID=26476837

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/318,830 Abandoned US20020106199A1 (en) 1998-05-27 1999-05-26 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US10/364,368 Abandoned US20030123859A1 (en) 1998-05-27 2003-02-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US11/898,455 Abandoned US20080025701A1 (en) 1998-05-27 2007-09-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US13/479,659 Expired - Fee Related US9973673B2 (en) 1998-05-27 2012-05-24 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US15/951,294 Abandoned US20180249057A1 (en) 1998-05-27 2018-04-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/318,830 Abandoned US20020106199A1 (en) 1998-05-27 1999-05-26 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US10/364,368 Abandoned US20030123859A1 (en) 1998-05-27 2003-02-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/479,659 Expired - Fee Related US9973673B2 (en) 1998-05-27 2012-05-24 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US15/951,294 Abandoned US20180249057A1 (en) 1998-05-27 2018-04-12 Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus

Country Status (1)

Country Link
US (5) US20020106199A1 (en)

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135265A1 (en) * 2007-11-22 2009-05-28 Yuji Kawamura Image pickup apparatus, image pickup apparatus control method, image pickup apparatus control program, data processing apparatus, data processing method, and data processing program
US20130038783A1 (en) * 2011-08-09 2013-02-14 Sony Corporation Camera module, manufacturing apparatus, and manufacturing method
US8428453B1 (en) * 2012-08-08 2013-04-23 Snapchat, Inc. Single mode visual media capture
US9083770B1 (en) 2013-11-26 2015-07-14 Snapchat, Inc. Method and system for integrating real time communication features in applications
US9094137B1 (en) 2014-06-13 2015-07-28 Snapchat, Inc. Priority based placement of messages in a geo-location based event gallery
US9225897B1 (en) 2014-07-07 2015-12-29 Snapchat, Inc. Apparatus and method for supplying content aware photo filters
US9237202B1 (en) 2014-03-07 2016-01-12 Snapchat, Inc. Content delivery network for ephemeral objects
US9276886B1 (en) 2014-05-09 2016-03-01 Snapchat, Inc. Apparatus and method for dynamically configuring application component tiles
US9385983B1 (en) 2014-12-19 2016-07-05 Snapchat, Inc. Gallery of messages from individuals with a shared interest
US9396354B1 (en) 2014-05-28 2016-07-19 Snapchat, Inc. Apparatus and method for automated privacy protection in distributed images
US9537811B2 (en) 2014-10-02 2017-01-03 Snap Inc. Ephemeral gallery of ephemeral messages
US9560264B2 (en) 2012-08-27 2017-01-31 Snap Inc. Device and method for photo and video capture
US9705831B2 (en) 2013-05-30 2017-07-11 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US9721394B2 (en) 2012-08-22 2017-08-01 Snaps Media, Inc. Augmented reality virtual content platform apparatuses, methods and systems
US9742713B2 (en) 2013-05-30 2017-08-22 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US9843720B1 (en) 2014-11-12 2017-12-12 Snap Inc. User interface for accessing media at a geographic location
US9854219B2 (en) 2014-12-19 2017-12-26 Snap Inc. Gallery of videos set to an audio time line
US9866999B1 (en) 2014-01-12 2018-01-09 Investment Asset Holdings Llc Location-based messaging
US9882907B1 (en) 2012-11-08 2018-01-30 Snap Inc. Apparatus and method for single action control of social network profile access
US9936030B2 (en) 2014-01-03 2018-04-03 Investel Capital Corporation User content sharing system and method with location-based external content integration
US10055717B1 (en) 2014-08-22 2018-08-21 Snap Inc. Message processor with application prompts
US10082926B1 (en) 2014-02-21 2018-09-25 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US10123166B2 (en) 2015-01-26 2018-11-06 Snap Inc. Content request by location
US10133705B1 (en) 2015-01-19 2018-11-20 Snap Inc. Multichannel system
US10135949B1 (en) 2015-05-05 2018-11-20 Snap Inc. Systems and methods for story and sub-story navigation
US10157449B1 (en) 2015-01-09 2018-12-18 Snap Inc. Geo-location-based image filters
US10165402B1 (en) 2016-06-28 2018-12-25 Snap Inc. System to track engagement of media items
US10203855B2 (en) 2016-12-09 2019-02-12 Snap Inc. Customized user-controlled media overlays
US10219111B1 (en) 2018-04-18 2019-02-26 Snap Inc. Visitation tracking system
US20190064667A1 (en) * 2017-08-24 2019-02-28 International Business Machines Corporation Polymer brushes for extreme ultraviolet photolithography
US10223397B1 (en) 2015-03-13 2019-03-05 Snap Inc. Social graph based co-location of network users
US10284508B1 (en) 2014-10-02 2019-05-07 Snap Inc. Ephemeral gallery of ephemeral messages with opt-in permanence
US10311916B2 (en) 2014-12-19 2019-06-04 Snap Inc. Gallery of videos set to an audio time line
US10319149B1 (en) 2017-02-17 2019-06-11 Snap Inc. Augmented reality anamorphosis system
US10327096B1 (en) 2018-03-06 2019-06-18 Snap Inc. Geo-fence selection system
US10334307B2 (en) 2011-07-12 2019-06-25 Snap Inc. Methods and systems of providing visual content editing functions
US10348662B2 (en) 2016-07-19 2019-07-09 Snap Inc. Generating customized electronic messaging graphics
US10354425B2 (en) 2015-12-18 2019-07-16 Snap Inc. Method and system for providing context relevant media augmentation
US10366543B1 (en) 2015-10-30 2019-07-30 Snap Inc. Image based tracking in augmented reality systems
US10387514B1 (en) 2016-06-30 2019-08-20 Snap Inc. Automated content curation and communication
US10387730B1 (en) 2017-04-20 2019-08-20 Snap Inc. Augmented reality typography personalization system
US10423983B2 (en) 2014-09-16 2019-09-24 Snap Inc. Determining targeting information based on a predictive targeting model
US10430838B1 (en) 2016-06-28 2019-10-01 Snap Inc. Methods and systems for generation, curation, and presentation of media collections with automated advertising
US10439972B1 (en) 2013-05-30 2019-10-08 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US10474321B2 (en) 2015-11-30 2019-11-12 Snap Inc. Network resource location linking and visual content sharing
US10499191B1 (en) 2017-10-09 2019-12-03 Snap Inc. Context sensitive presentation of content
US10523625B1 (en) 2017-03-09 2019-12-31 Snap Inc. Restricted group content collection
US10582277B2 (en) 2017-03-27 2020-03-03 Snap Inc. Generating a stitched data stream
US10581782B2 (en) 2017-03-27 2020-03-03 Snap Inc. Generating a stitched data stream
US10592574B2 (en) 2015-05-05 2020-03-17 Snap Inc. Systems and methods for automated local story generation and curation
US10616239B2 (en) 2015-03-18 2020-04-07 Snap Inc. Geo-fence authorization provisioning
US10623666B2 (en) 2016-11-07 2020-04-14 Snap Inc. Selective identification and order of image modifiers
US10638256B1 (en) 2016-06-20 2020-04-28 Pipbin, Inc. System for distribution and display of mobile targeted augmented reality content
US10678818B2 (en) 2018-01-03 2020-06-09 Snap Inc. Tag distribution visualization system
US10679389B2 (en) 2016-02-26 2020-06-09 Snap Inc. Methods and systems for generation, curation, and presentation of media collections
US10679393B2 (en) 2018-07-24 2020-06-09 Snap Inc. Conditional modification of augmented reality object
US10740974B1 (en) 2017-09-15 2020-08-11 Snap Inc. Augmented reality system
US10805696B1 (en) 2016-06-20 2020-10-13 Pipbin, Inc. System for recording and targeting tagged content of user interest
US10817898B2 (en) 2015-08-13 2020-10-27 Placed, Llc Determining exposures to content presented by physical objects
US10824654B2 (en) 2014-09-18 2020-11-03 Snap Inc. Geolocation-based pictographs
US10834525B2 (en) 2016-02-26 2020-11-10 Snap Inc. Generation, curation, and presentation of media collections
US10839219B1 (en) 2016-06-20 2020-11-17 Pipbin, Inc. System for curation, distribution and display of location-dependent augmented reality content
US10862951B1 (en) 2007-01-05 2020-12-08 Snap Inc. Real-time display of multiple images
US10885136B1 (en) 2018-02-28 2021-01-05 Snap Inc. Audience filtering system
US10915911B2 (en) 2017-02-03 2021-02-09 Snap Inc. System to determine a price-schedule to distribute media content
US10933311B2 (en) 2018-03-14 2021-03-02 Snap Inc. Generating collectible items based on location information
US10952013B1 (en) 2017-04-27 2021-03-16 Snap Inc. Selective location-based identity communication
US10948717B1 (en) 2015-03-23 2021-03-16 Snap Inc. Reducing boot time and power consumption in wearable display systems
US10963529B1 (en) 2017-04-27 2021-03-30 Snap Inc. Location-based search mechanism in a graphical user interface
US10979752B1 (en) 2018-02-28 2021-04-13 Snap Inc. Generating media content items based on location information
US10993069B2 (en) 2015-07-16 2021-04-27 Snap Inc. Dynamically adaptive media content delivery
US10997760B2 (en) 2018-08-31 2021-05-04 Snap Inc. Augmented reality anthropomorphization system
US10997783B2 (en) 2015-11-30 2021-05-04 Snap Inc. Image and point cloud based tracking and in augmented reality systems
US11017173B1 (en) 2017-12-22 2021-05-25 Snap Inc. Named entity recognition visual context and caption data
US11023514B2 (en) 2016-02-26 2021-06-01 Snap Inc. Methods and systems for generation, curation, and presentation of media collections
US11030787B2 (en) 2017-10-30 2021-06-08 Snap Inc. Mobile-based cartographic control of display content
US11037372B2 (en) 2017-03-06 2021-06-15 Snap Inc. Virtual vision system
US11044393B1 (en) 2016-06-20 2021-06-22 Pipbin, Inc. System for curation and display of location-dependent augmented reality content in an augmented estate system
US11128715B1 (en) 2019-12-30 2021-09-21 Snap Inc. Physical friend proximity in chat
US11163941B1 (en) 2018-03-30 2021-11-02 Snap Inc. Annotating a collection of media content items
US11170393B1 (en) 2017-04-11 2021-11-09 Snap Inc. System to calculate an engagement score of location based media content
US11182383B1 (en) 2012-02-24 2021-11-23 Placed, Llc System and method for data collection to validate location data
US11189299B1 (en) 2017-02-20 2021-11-30 Snap Inc. Augmented reality speech balloon system
US11199957B1 (en) 2018-11-30 2021-12-14 Snap Inc. Generating customized avatars based on location information
US11201981B1 (en) 2016-06-20 2021-12-14 Pipbin, Inc. System for notification of user accessibility of curated location-dependent content in an augmented estate
US11206615B2 (en) 2019-05-30 2021-12-21 Snap Inc. Wearable device location systems
US11218838B2 (en) 2019-10-31 2022-01-04 Snap Inc. Focused map-based context information surfacing
US11216869B2 (en) 2014-09-23 2022-01-04 Snap Inc. User interface to augment an image using geolocation
US11228551B1 (en) 2020-02-12 2022-01-18 Snap Inc. Multiple gateway message exchange
US11232040B1 (en) 2017-04-28 2022-01-25 Snap Inc. Precaching unlockable data elements
US11250075B1 (en) 2017-02-17 2022-02-15 Snap Inc. Searching social media content
US11249614B2 (en) 2019-03-28 2022-02-15 Snap Inc. Generating personalized map interface with enhanced icons
US11265273B1 (en) 2017-12-01 2022-03-01 Snap, Inc. Dynamic media overlay with smart widget
US11290851B2 (en) 2020-06-15 2022-03-29 Snap Inc. Location sharing using offline and online objects
US11294936B1 (en) 2019-01-30 2022-04-05 Snap Inc. Adaptive spatial density based clustering
US11301117B2 (en) 2019-03-08 2022-04-12 Snap Inc. Contextual information in chat
US11314776B2 (en) 2020-06-15 2022-04-26 Snap Inc. Location sharing using friend list versions
US11343323B2 (en) 2019-12-31 2022-05-24 Snap Inc. Augmented reality objects registry
US11361493B2 (en) 2019-04-01 2022-06-14 Snap Inc. Semantic texture mapping system
US11388226B1 (en) 2015-01-13 2022-07-12 Snap Inc. Guided personal identity based actions
US11429618B2 (en) 2019-12-30 2022-08-30 Snap Inc. Surfacing augmented reality objects
US11430091B2 (en) 2020-03-27 2022-08-30 Snap Inc. Location mapping for large scale augmented-reality
US11455082B2 (en) 2018-09-28 2022-09-27 Snap Inc. Collaborative achievement interface
US11475254B1 (en) 2017-09-08 2022-10-18 Snap Inc. Multimodal entity identification
US11483267B2 (en) 2020-06-15 2022-10-25 Snap Inc. Location sharing using different rate-limited links
US11500525B2 (en) 2019-02-25 2022-11-15 Snap Inc. Custom media overlay system
US11503432B2 (en) 2020-06-15 2022-11-15 Snap Inc. Scalable real-time location sharing framework
US11507614B1 (en) 2018-02-13 2022-11-22 Snap Inc. Icon based tagging
US11516167B2 (en) 2020-03-05 2022-11-29 Snap Inc. Storing data based on device location
US11558709B2 (en) 2018-11-30 2023-01-17 Snap Inc. Position service to determine relative position to map features
US11574431B2 (en) 2019-02-26 2023-02-07 Snap Inc. Avatar based on weather
US11601783B2 (en) 2019-06-07 2023-03-07 Snap Inc. Detection of a physical collision between two client devices in a location sharing system
US11601888B2 (en) 2021-03-29 2023-03-07 Snap Inc. Determining location using multi-source geolocation data
US11606755B2 (en) 2019-05-30 2023-03-14 Snap Inc. Wearable device location systems architecture
US11616745B2 (en) 2017-01-09 2023-03-28 Snap Inc. Contextual generation and selection of customized media content
US11619501B2 (en) 2020-03-11 2023-04-04 Snap Inc. Avatar based on trip
US11625443B2 (en) 2014-06-05 2023-04-11 Snap Inc. Web document enhancement
US11631276B2 (en) 2016-03-31 2023-04-18 Snap Inc. Automated avatar generation
US11645324B2 (en) 2021-03-31 2023-05-09 Snap Inc. Location-based timeline media content system
US11675831B2 (en) 2017-05-31 2023-06-13 Snap Inc. Geolocation based playlists
US11676378B2 (en) 2020-06-29 2023-06-13 Snap Inc. Providing travel-based augmented reality content with a captured image
US11714535B2 (en) 2019-07-11 2023-08-01 Snap Inc. Edge gesture interface with smart interactions
US11729343B2 (en) 2019-12-30 2023-08-15 Snap Inc. Including video feed in message thread
US11734712B2 (en) 2012-02-24 2023-08-22 Foursquare Labs, Inc. Attributing in-store visits to media consumption based on data collected from user devices
US11751015B2 (en) 2019-01-16 2023-09-05 Snap Inc. Location-based context information sharing in a messaging system
US11776256B2 (en) 2020-03-27 2023-10-03 Snap Inc. Shared augmented reality system
US11785161B1 (en) 2016-06-20 2023-10-10 Pipbin, Inc. System for user accessibility of tagged curated augmented reality content
US11799811B2 (en) 2018-10-31 2023-10-24 Snap Inc. Messaging and gaming applications communication platform
US11809624B2 (en) 2019-02-13 2023-11-07 Snap Inc. Sleep detection in a location sharing system
US11816853B2 (en) 2016-08-30 2023-11-14 Snap Inc. Systems and methods for simultaneous localization and mapping
US11821742B2 (en) 2019-09-26 2023-11-21 Snap Inc. Travel based notifications
US11829834B2 (en) 2021-10-29 2023-11-28 Snap Inc. Extended QR code
US11842411B2 (en) 2017-04-27 2023-12-12 Snap Inc. Location-based virtual avatars
US11843456B2 (en) 2016-10-24 2023-12-12 Snap Inc. Generating and displaying customized avatars in media overlays
US11852554B1 (en) 2019-03-21 2023-12-26 Snap Inc. Barometer calibration in a location sharing system
US11860888B2 (en) 2018-05-22 2024-01-02 Snap Inc. Event detection system
US11870743B1 (en) 2017-01-23 2024-01-09 Snap Inc. Customized digital avatar accessories
US11868414B1 (en) 2019-03-14 2024-01-09 Snap Inc. Graph-based prediction for contact suggestion in a location sharing system
US11877211B2 (en) 2019-01-14 2024-01-16 Snap Inc. Destination sharing in location sharing system
US11876941B1 (en) 2016-06-20 2024-01-16 Pipbin, Inc. Clickable augmented reality content manager, system, and network
US11893208B2 (en) 2019-12-31 2024-02-06 Snap Inc. Combined map icon with action indicator
US11900418B2 (en) 2016-04-04 2024-02-13 Snap Inc. Mutable geo-fencing system
US11925869B2 (en) 2012-05-08 2024-03-12 Snap Inc. System and method for generating and displaying avatars
US11943192B2 (en) 2020-08-31 2024-03-26 Snap Inc. Co-location connection service
US11954314B2 (en) 2022-09-09 2024-04-09 Snap Inc. Custom media overlay system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050139A (en) * 1998-07-29 2000-02-18 Minolta Co Ltd Digital camera
US7016595B1 (en) * 1999-05-28 2006-03-21 Nikon Corporation Television set capable of controlling external device and image storage controlled by television set
US7339615B2 (en) * 1999-12-22 2008-03-04 Fujifilm Corporation Method and apparatus for capturing images and for recording data that includes image data and audio data separately prepared from the image data
TW502532B (en) * 1999-12-24 2002-09-11 Sanyo Electric Co Digital still camera, memory control device therefor, apparatus and method for image processing
US20080122935A1 (en) * 2000-05-22 2008-05-29 Nikon Corporation Digital image storage system
JP4944306B2 (en) * 2001-04-16 2012-05-30 キヤノン株式会社 Recording device
JP4028694B2 (en) * 2001-04-27 2007-12-26 松下電器産業株式会社 CAMERA DEVICE AND ELECTRONIC DEVICE HAVING THE CAMERA DEVICE
JP4436583B2 (en) * 2001-12-19 2010-03-24 富士フイルム株式会社 Digital camera
US20040090533A1 (en) * 2002-11-11 2004-05-13 Dow James C. System and method for video image capture
JP2006040050A (en) * 2004-07-28 2006-02-09 Olympus Corp Reproduction device, camera and display switching method for reproduction device
JP4858747B2 (en) * 2005-07-20 2012-01-18 ソニー株式会社 Image processing apparatus and method, and program
US8106856B2 (en) 2006-09-06 2012-01-31 Apple Inc. Portable electronic device for photo management
JP4260215B1 (en) 2007-08-29 2009-04-30 任天堂株式会社 Imaging device
JP2009118215A (en) * 2007-11-07 2009-05-28 Canon Inc Imaging apparatus
JP4181211B1 (en) 2008-06-13 2008-11-12 任天堂株式会社 Information processing apparatus and startup program executed therein
US8130275B2 (en) 2008-06-13 2012-03-06 Nintendo Co., Ltd. Information-processing apparatus, and storage medium storing a photographing application launch program executed by information-processing apparatus
US8848100B2 (en) * 2008-10-01 2014-09-30 Nintendo Co., Ltd. Information processing device, information processing system, and launch program and storage medium storing the same providing photographing functionality
JP2010136261A (en) * 2008-12-08 2010-06-17 Sanyo Electric Co Ltd Digital camera
EP3855297A3 (en) 2009-09-22 2021-10-27 Apple Inc. Device method and graphical user interface for manipulating user interface objects
US8698762B2 (en) 2010-01-06 2014-04-15 Apple Inc. Device, method, and graphical user interface for navigating and displaying content in context
US8996059B2 (en) 2012-07-19 2015-03-31 Kirusa, Inc. Adaptive communication mode for recording a media message
KR20150015236A (en) 2013-07-31 2015-02-10 삼성전자주식회사 Apparatus and Method for Reproducing Optical Recording, and Computer-readable Medium
AU2017100670C4 (en) 2016-06-12 2019-11-21 Apple Inc. User interfaces for retrieving contextually relevant media content
DK180171B1 (en) 2018-05-07 2020-07-14 Apple Inc USER INTERFACES FOR SHARING CONTEXTUALLY RELEVANT MEDIA CONTENT
DK201970535A1 (en) 2019-05-06 2020-12-21 Apple Inc Media browsing user interface with intelligently selected representative media items
DK202070616A1 (en) 2020-02-14 2022-01-14 Apple Inc User interfaces for workout content

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164839A (en) * 1988-12-27 1992-11-17 Explore Technology, Inc. Method for handling audio/video source information
US5404316A (en) * 1992-08-03 1995-04-04 Spectra Group Ltd., Inc. Desktop digital video processing system
US5471439A (en) * 1992-02-14 1995-11-28 Sharp Kabushiki Kaisha Magnetic head device with slidable and adjustable magnetic head
US5477337A (en) * 1982-12-22 1995-12-19 Lex Computer And Management Corporation Analog/digital video and audio picture composition apparatus and methods of constructing and utilizing same
US5513306A (en) * 1990-08-09 1996-04-30 Apple Computer, Inc. Temporal event viewing and editing system
US5719985A (en) * 1993-12-24 1998-02-17 Sony Corporation Apparatus for simultaneously recording and reproducing data to and from a recording medium
US6222986B1 (en) * 1995-01-31 2001-04-24 Fuji Photo Film Co., Ltd. Solid-state electronic image sensing device
US6263310B1 (en) * 1991-06-06 2001-07-17 Lj Laboratories, L.L.C. Method for producing remotely a commemorative device having an audio message circuit
US6278835B1 (en) * 1997-05-07 2001-08-21 Lsi Logic Corporation Method of controlling repetitive reading of group of pictures (GOP) data from a storage medium, and an apparatus therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703638A (en) * 1991-09-25 1997-12-30 Canon Kabushiki Kaisha Image pickup apparatus for moving image photographing or for still image photographing
JPH0879626A (en) * 1994-09-05 1996-03-22 Sony Corp Video device
US6359649B1 (en) * 1995-04-04 2002-03-19 Canon Kabushiki Kaisa Video camera integrated with still camera
JPH10171010A (en) * 1996-12-10 1998-06-26 Canon Inc Camera, connection device thereof, and camera system
US6525715B2 (en) * 1997-03-24 2003-02-25 Seiko Epson Corporation Portable information acquisition device
JPH11136568A (en) * 1997-10-31 1999-05-21 Fuji Photo Film Co Ltd Touch panel operation-type camera

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477337A (en) * 1982-12-22 1995-12-19 Lex Computer And Management Corporation Analog/digital video and audio picture composition apparatus and methods of constructing and utilizing same
US5164839A (en) * 1988-12-27 1992-11-17 Explore Technology, Inc. Method for handling audio/video source information
US5513306A (en) * 1990-08-09 1996-04-30 Apple Computer, Inc. Temporal event viewing and editing system
US6263310B1 (en) * 1991-06-06 2001-07-17 Lj Laboratories, L.L.C. Method for producing remotely a commemorative device having an audio message circuit
US5471439A (en) * 1992-02-14 1995-11-28 Sharp Kabushiki Kaisha Magnetic head device with slidable and adjustable magnetic head
US5404316A (en) * 1992-08-03 1995-04-04 Spectra Group Ltd., Inc. Desktop digital video processing system
US5719985A (en) * 1993-12-24 1998-02-17 Sony Corporation Apparatus for simultaneously recording and reproducing data to and from a recording medium
US6222986B1 (en) * 1995-01-31 2001-04-24 Fuji Photo Film Co., Ltd. Solid-state electronic image sensing device
US6278835B1 (en) * 1997-05-07 2001-08-21 Lsi Logic Corporation Method of controlling repetitive reading of group of pictures (GOP) data from a storage medium, and an apparatus therefor

Cited By (340)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11588770B2 (en) 2007-01-05 2023-02-21 Snap Inc. Real-time display of multiple images
US10862951B1 (en) 2007-01-05 2020-12-08 Snap Inc. Real-time display of multiple images
US8098291B2 (en) * 2007-11-22 2012-01-17 Sony Corporation Image pickup apparatus, control method, and control program, and data processing apparatus, method, and program for recording a moving image and a still image
US20090135265A1 (en) * 2007-11-22 2009-05-28 Yuji Kawamura Image pickup apparatus, image pickup apparatus control method, image pickup apparatus control program, data processing apparatus, data processing method, and data processing program
US10334307B2 (en) 2011-07-12 2019-06-25 Snap Inc. Methods and systems of providing visual content editing functions
US10999623B2 (en) 2011-07-12 2021-05-04 Snap Inc. Providing visual content editing functions
US11451856B2 (en) 2011-07-12 2022-09-20 Snap Inc. Providing visual content editing functions
US11750875B2 (en) 2011-07-12 2023-09-05 Snap Inc. Providing visual content editing functions
US20130038783A1 (en) * 2011-08-09 2013-02-14 Sony Corporation Camera module, manufacturing apparatus, and manufacturing method
US9191559B2 (en) * 2011-08-09 2015-11-17 Sony Corporation Camera module, manufacturing apparatus, and manufacturing method
US11182383B1 (en) 2012-02-24 2021-11-23 Placed, Llc System and method for data collection to validate location data
US11734712B2 (en) 2012-02-24 2023-08-22 Foursquare Labs, Inc. Attributing in-store visits to media consumption based on data collected from user devices
US11925869B2 (en) 2012-05-08 2024-03-12 Snap Inc. System and method for generating and displaying avatars
US8428453B1 (en) * 2012-08-08 2013-04-23 Snapchat, Inc. Single mode visual media capture
US9721394B2 (en) 2012-08-22 2017-08-01 Snaps Media, Inc. Augmented reality virtual content platform apparatuses, methods and systems
US10169924B2 (en) 2012-08-22 2019-01-01 Snaps Media Inc. Augmented reality virtual content platform apparatuses, methods and systems
US9792733B2 (en) 2012-08-22 2017-10-17 Snaps Media, Inc. Augmented reality virtual content platform apparatuses, methods and systems
US9560264B2 (en) 2012-08-27 2017-01-31 Snap Inc. Device and method for photo and video capture
US10798289B1 (en) 2012-08-27 2020-10-06 Snap, Inc. Device and method for photo and video capture
US10027882B1 (en) 2012-08-27 2018-07-17 Snap Inc. Device and method for photo and video capture
US11310413B2 (en) 2012-08-27 2022-04-19 Snap Inc. Device and method for photo and video capture
US9781335B1 (en) 2012-08-27 2017-10-03 Snap Inc. Device and method for photo and video capture
US9882907B1 (en) 2012-11-08 2018-01-30 Snap Inc. Apparatus and method for single action control of social network profile access
US10887308B1 (en) 2012-11-08 2021-01-05 Snap Inc. Interactive user-interface to adjust access privileges
US11252158B2 (en) 2012-11-08 2022-02-15 Snap Inc. Interactive user-interface to adjust access privileges
US11115361B2 (en) 2013-05-30 2021-09-07 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US9705831B2 (en) 2013-05-30 2017-07-11 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US11134046B2 (en) 2013-05-30 2021-09-28 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US10587552B1 (en) 2013-05-30 2020-03-10 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US11509618B2 (en) 2013-05-30 2022-11-22 Snap Inc. Maintaining a message thread with opt-in permanence for entries
US9742713B2 (en) 2013-05-30 2017-08-22 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US10439972B1 (en) 2013-05-30 2019-10-08 Snap Inc. Apparatus and method for maintaining a message thread with opt-in permanence for entries
US9794303B1 (en) 2013-11-26 2017-10-17 Snap Inc. Method and system for integrating real time communication features in applications
US11546388B2 (en) 2013-11-26 2023-01-03 Snap Inc. Method and system for integrating real time communication features in applications
US10681092B1 (en) 2013-11-26 2020-06-09 Snap Inc. Method and system for integrating real time communication features in applications
US10069876B1 (en) 2013-11-26 2018-09-04 Snap Inc. Method and system for integrating real time communication features in applications
US11102253B2 (en) 2013-11-26 2021-08-24 Snap Inc. Method and system for integrating real time communication features in applications
US9083770B1 (en) 2013-11-26 2015-07-14 Snapchat, Inc. Method and system for integrating real time communication features in applications
US9936030B2 (en) 2014-01-03 2018-04-03 Investel Capital Corporation User content sharing system and method with location-based external content integration
US10080102B1 (en) 2014-01-12 2018-09-18 Investment Asset Holdings Llc Location-based messaging
US9866999B1 (en) 2014-01-12 2018-01-09 Investment Asset Holdings Llc Location-based messaging
US10349209B1 (en) 2014-01-12 2019-07-09 Investment Asset Holdings Llc Location-based messaging
US11463394B2 (en) 2014-02-21 2022-10-04 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US10958605B1 (en) 2014-02-21 2021-03-23 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US10084735B1 (en) 2014-02-21 2018-09-25 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US11902235B2 (en) 2014-02-21 2024-02-13 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US11463393B2 (en) 2014-02-21 2022-10-04 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US10082926B1 (en) 2014-02-21 2018-09-25 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US10949049B1 (en) 2014-02-21 2021-03-16 Snap Inc. Apparatus and method for alternate channel communication initiated through a common message thread
US9407712B1 (en) 2014-03-07 2016-08-02 Snapchat, Inc. Content delivery network for ephemeral objects
US9237202B1 (en) 2014-03-07 2016-01-12 Snapchat, Inc. Content delivery network for ephemeral objects
US10817156B1 (en) 2014-05-09 2020-10-27 Snap Inc. Dynamic configuration of application component tiles
US11743219B2 (en) 2014-05-09 2023-08-29 Snap Inc. Dynamic configuration of application component tiles
US9276886B1 (en) 2014-05-09 2016-03-01 Snapchat, Inc. Apparatus and method for dynamically configuring application component tiles
US11310183B2 (en) 2014-05-09 2022-04-19 Snap Inc. Dynamic configuration of application component tiles
US10990697B2 (en) 2014-05-28 2021-04-27 Snap Inc. Apparatus and method for automated privacy protection in distributed images
US9396354B1 (en) 2014-05-28 2016-07-19 Snapchat, Inc. Apparatus and method for automated privacy protection in distributed images
US9785796B1 (en) 2014-05-28 2017-10-10 Snap Inc. Apparatus and method for automated privacy protection in distributed images
US10572681B1 (en) 2014-05-28 2020-02-25 Snap Inc. Apparatus and method for automated privacy protection in distributed images
US11921805B2 (en) 2014-06-05 2024-03-05 Snap Inc. Web document enhancement
US11625443B2 (en) 2014-06-05 2023-04-11 Snap Inc. Web document enhancement
US9532171B2 (en) 2014-06-13 2016-12-27 Snap Inc. Geo-location based event gallery
US9430783B1 (en) 2014-06-13 2016-08-30 Snapchat, Inc. Prioritization of messages within gallery
US10200813B1 (en) 2014-06-13 2019-02-05 Snap Inc. Geo-location based event gallery
US10623891B2 (en) 2014-06-13 2020-04-14 Snap Inc. Prioritization of messages within a message collection
US9825898B2 (en) 2014-06-13 2017-11-21 Snap Inc. Prioritization of messages within a message collection
US10779113B2 (en) 2014-06-13 2020-09-15 Snap Inc. Prioritization of messages within a message collection
US10182311B2 (en) 2014-06-13 2019-01-15 Snap Inc. Prioritization of messages within a message collection
US9693191B2 (en) 2014-06-13 2017-06-27 Snap Inc. Prioritization of messages within gallery
US10659914B1 (en) 2014-06-13 2020-05-19 Snap Inc. Geo-location based event gallery
US11317240B2 (en) 2014-06-13 2022-04-26 Snap Inc. Geo-location based event gallery
US10524087B1 (en) 2014-06-13 2019-12-31 Snap Inc. Message destination list mechanism
US9113301B1 (en) 2014-06-13 2015-08-18 Snapchat, Inc. Geo-location based event gallery
US9094137B1 (en) 2014-06-13 2015-07-28 Snapchat, Inc. Priority based placement of messages in a geo-location based event gallery
US10448201B1 (en) 2014-06-13 2019-10-15 Snap Inc. Prioritization of messages within a message collection
US11166121B2 (en) 2014-06-13 2021-11-02 Snap Inc. Prioritization of messages within a message collection
US10432850B1 (en) 2014-07-07 2019-10-01 Snap Inc. Apparatus and method for supplying content aware photo filters
US9407816B1 (en) 2014-07-07 2016-08-02 Snapchat, Inc. Apparatus and method for supplying content aware photo filters
US10154192B1 (en) 2014-07-07 2018-12-11 Snap Inc. Apparatus and method for supplying content aware photo filters
US11849214B2 (en) 2014-07-07 2023-12-19 Snap Inc. Apparatus and method for supplying content aware photo filters
US11496673B1 (en) 2014-07-07 2022-11-08 Snap Inc. Apparatus and method for supplying content aware photo filters
US11595569B2 (en) 2014-07-07 2023-02-28 Snap Inc. Supplying content aware photo filters
US11122200B2 (en) 2014-07-07 2021-09-14 Snap Inc. Supplying content aware photo filters
US10602057B1 (en) 2014-07-07 2020-03-24 Snap Inc. Supplying content aware photo filters
US10348960B1 (en) 2014-07-07 2019-07-09 Snap Inc. Apparatus and method for supplying content aware photo filters
US10701262B1 (en) 2014-07-07 2020-06-30 Snap Inc. Apparatus and method for supplying content aware photo filters
US9225897B1 (en) 2014-07-07 2015-12-29 Snapchat, Inc. Apparatus and method for supplying content aware photo filters
US10055717B1 (en) 2014-08-22 2018-08-21 Snap Inc. Message processor with application prompts
US11017363B1 (en) 2014-08-22 2021-05-25 Snap Inc. Message processor with application prompts
US10423983B2 (en) 2014-09-16 2019-09-24 Snap Inc. Determining targeting information based on a predictive targeting model
US11625755B1 (en) 2014-09-16 2023-04-11 Foursquare Labs, Inc. Determining targeting information based on a predictive targeting model
US11281701B2 (en) 2014-09-18 2022-03-22 Snap Inc. Geolocation-based pictographs
US11741136B2 (en) 2014-09-18 2023-08-29 Snap Inc. Geolocation-based pictographs
US10824654B2 (en) 2014-09-18 2020-11-03 Snap Inc. Geolocation-based pictographs
US11216869B2 (en) 2014-09-23 2022-01-04 Snap Inc. User interface to augment an image using geolocation
US11411908B1 (en) 2014-10-02 2022-08-09 Snap Inc. Ephemeral message gallery user interface with online viewing history indicia
US9537811B2 (en) 2014-10-02 2017-01-03 Snap Inc. Ephemeral gallery of ephemeral messages
US10944710B1 (en) 2014-10-02 2021-03-09 Snap Inc. Ephemeral gallery user interface with remaining gallery time indication
US10958608B1 (en) 2014-10-02 2021-03-23 Snap Inc. Ephemeral gallery of visual media messages
US10476830B2 (en) 2014-10-02 2019-11-12 Snap Inc. Ephemeral gallery of ephemeral messages
US11012398B1 (en) 2014-10-02 2021-05-18 Snap Inc. Ephemeral message gallery user interface with screenshot messages
US20170374003A1 (en) 2014-10-02 2017-12-28 Snapchat, Inc. Ephemeral gallery of ephemeral messages
US11855947B1 (en) 2014-10-02 2023-12-26 Snap Inc. Gallery of ephemeral messages
US10708210B1 (en) 2014-10-02 2020-07-07 Snap Inc. Multi-user ephemeral message gallery
US11522822B1 (en) 2014-10-02 2022-12-06 Snap Inc. Ephemeral gallery elimination based on gallery and message timers
US11038829B1 (en) 2014-10-02 2021-06-15 Snap Inc. Ephemeral gallery of ephemeral messages with opt-in permanence
US10284508B1 (en) 2014-10-02 2019-05-07 Snap Inc. Ephemeral gallery of ephemeral messages with opt-in permanence
US11190679B2 (en) 2014-11-12 2021-11-30 Snap Inc. Accessing media at a geographic location
US10616476B1 (en) 2014-11-12 2020-04-07 Snap Inc. User interface for accessing media at a geographic location
US9843720B1 (en) 2014-11-12 2017-12-12 Snap Inc. User interface for accessing media at a geographic location
US11250887B2 (en) 2014-12-19 2022-02-15 Snap Inc. Routing messages by message parameter
US11783862B2 (en) 2014-12-19 2023-10-10 Snap Inc. Routing messages by message parameter
US10580458B2 (en) 2014-12-19 2020-03-03 Snap Inc. Gallery of videos set to an audio time line
US10311916B2 (en) 2014-12-19 2019-06-04 Snap Inc. Gallery of videos set to an audio time line
US10811053B2 (en) 2014-12-19 2020-10-20 Snap Inc. Routing messages by message parameter
US9854219B2 (en) 2014-12-19 2017-12-26 Snap Inc. Gallery of videos set to an audio time line
US11372608B2 (en) 2014-12-19 2022-06-28 Snap Inc. Gallery of messages from individuals with a shared interest
US10514876B2 (en) 2014-12-19 2019-12-24 Snap Inc. Gallery of messages from individuals with a shared interest
US11803345B2 (en) 2014-12-19 2023-10-31 Snap Inc. Gallery of messages from individuals with a shared interest
US9385983B1 (en) 2014-12-19 2016-07-05 Snapchat, Inc. Gallery of messages from individuals with a shared interest
US10380720B1 (en) 2015-01-09 2019-08-13 Snap Inc. Location-based image filters
US11734342B2 (en) 2015-01-09 2023-08-22 Snap Inc. Object recognition based image overlays
US10157449B1 (en) 2015-01-09 2018-12-18 Snap Inc. Geo-location-based image filters
US11301960B2 (en) 2015-01-09 2022-04-12 Snap Inc. Object recognition based image filters
US11388226B1 (en) 2015-01-13 2022-07-12 Snap Inc. Guided personal identity based actions
US10133705B1 (en) 2015-01-19 2018-11-20 Snap Inc. Multichannel system
US10416845B1 (en) 2015-01-19 2019-09-17 Snap Inc. Multichannel system
US11249617B1 (en) 2015-01-19 2022-02-15 Snap Inc. Multichannel system
US10123166B2 (en) 2015-01-26 2018-11-06 Snap Inc. Content request by location
US11528579B2 (en) 2015-01-26 2022-12-13 Snap Inc. Content request by location
US10536800B1 (en) 2015-01-26 2020-01-14 Snap Inc. Content request by location
US11910267B2 (en) 2015-01-26 2024-02-20 Snap Inc. Content request by location
US10932085B1 (en) 2015-01-26 2021-02-23 Snap Inc. Content request by location
US10223397B1 (en) 2015-03-13 2019-03-05 Snap Inc. Social graph based co-location of network users
US11902287B2 (en) 2015-03-18 2024-02-13 Snap Inc. Geo-fence authorization provisioning
US10616239B2 (en) 2015-03-18 2020-04-07 Snap Inc. Geo-fence authorization provisioning
US10893055B2 (en) 2015-03-18 2021-01-12 Snap Inc. Geo-fence authorization provisioning
US11662576B2 (en) 2015-03-23 2023-05-30 Snap Inc. Reducing boot time and power consumption in displaying data content
US11320651B2 (en) 2015-03-23 2022-05-03 Snap Inc. Reducing boot time and power consumption in displaying data content
US10948717B1 (en) 2015-03-23 2021-03-16 Snap Inc. Reducing boot time and power consumption in wearable display systems
US11496544B2 (en) 2015-05-05 2022-11-08 Snap Inc. Story and sub-story navigation
US11449539B2 (en) 2015-05-05 2022-09-20 Snap Inc. Automated local story generation and curation
US10911575B1 (en) 2015-05-05 2021-02-02 Snap Inc. Systems and methods for story and sub-story navigation
US10592574B2 (en) 2015-05-05 2020-03-17 Snap Inc. Systems and methods for automated local story generation and curation
US10135949B1 (en) 2015-05-05 2018-11-20 Snap Inc. Systems and methods for story and sub-story navigation
US10993069B2 (en) 2015-07-16 2021-04-27 Snap Inc. Dynamically adaptive media content delivery
US10817898B2 (en) 2015-08-13 2020-10-27 Placed, Llc Determining exposures to content presented by physical objects
US11315331B2 (en) 2015-10-30 2022-04-26 Snap Inc. Image based tracking in augmented reality systems
US11769307B2 (en) 2015-10-30 2023-09-26 Snap Inc. Image based tracking in augmented reality systems
US10733802B2 (en) 2015-10-30 2020-08-04 Snap Inc. Image based tracking in augmented reality systems
US10366543B1 (en) 2015-10-30 2019-07-30 Snap Inc. Image based tracking in augmented reality systems
US10997783B2 (en) 2015-11-30 2021-05-04 Snap Inc. Image and point cloud based tracking and in augmented reality systems
US10474321B2 (en) 2015-11-30 2019-11-12 Snap Inc. Network resource location linking and visual content sharing
US11599241B2 (en) 2015-11-30 2023-03-07 Snap Inc. Network resource location linking and visual content sharing
US11380051B2 (en) 2015-11-30 2022-07-05 Snap Inc. Image and point cloud based tracking and in augmented reality systems
US10997758B1 (en) 2015-12-18 2021-05-04 Snap Inc. Media overlay publication system
US10354425B2 (en) 2015-12-18 2019-07-16 Snap Inc. Method and system for providing context relevant media augmentation
US11468615B2 (en) 2015-12-18 2022-10-11 Snap Inc. Media overlay publication system
US11830117B2 (en) 2015-12-18 2023-11-28 Snap Inc Media overlay publication system
US11611846B2 (en) 2016-02-26 2023-03-21 Snap Inc. Generation, curation, and presentation of media collections
US11197123B2 (en) 2016-02-26 2021-12-07 Snap Inc. Generation, curation, and presentation of media collections
US11889381B2 (en) 2016-02-26 2024-01-30 Snap Inc. Generation, curation, and presentation of media collections
US11023514B2 (en) 2016-02-26 2021-06-01 Snap Inc. Methods and systems for generation, curation, and presentation of media collections
US10679389B2 (en) 2016-02-26 2020-06-09 Snap Inc. Methods and systems for generation, curation, and presentation of media collections
US10834525B2 (en) 2016-02-26 2020-11-10 Snap Inc. Generation, curation, and presentation of media collections
US11631276B2 (en) 2016-03-31 2023-04-18 Snap Inc. Automated avatar generation
US11900418B2 (en) 2016-04-04 2024-02-13 Snap Inc. Mutable geo-fencing system
US11785161B1 (en) 2016-06-20 2023-10-10 Pipbin, Inc. System for user accessibility of tagged curated augmented reality content
US11876941B1 (en) 2016-06-20 2024-01-16 Pipbin, Inc. Clickable augmented reality content manager, system, and network
US10992836B2 (en) 2016-06-20 2021-04-27 Pipbin, Inc. Augmented property system of curated augmented reality media elements
US11044393B1 (en) 2016-06-20 2021-06-22 Pipbin, Inc. System for curation and display of location-dependent augmented reality content in an augmented estate system
US10638256B1 (en) 2016-06-20 2020-04-28 Pipbin, Inc. System for distribution and display of mobile targeted augmented reality content
US11201981B1 (en) 2016-06-20 2021-12-14 Pipbin, Inc. System for notification of user accessibility of curated location-dependent content in an augmented estate
US10839219B1 (en) 2016-06-20 2020-11-17 Pipbin, Inc. System for curation, distribution and display of location-dependent augmented reality content
US10805696B1 (en) 2016-06-20 2020-10-13 Pipbin, Inc. System for recording and targeting tagged content of user interest
US11640625B2 (en) 2016-06-28 2023-05-02 Snap Inc. Generation, curation, and presentation of media collections with automated advertising
US10219110B2 (en) 2016-06-28 2019-02-26 Snap Inc. System to track engagement of media items
US10735892B2 (en) 2016-06-28 2020-08-04 Snap Inc. System to track engagement of media items
US10785597B2 (en) 2016-06-28 2020-09-22 Snap Inc. System to track engagement of media items
US10327100B1 (en) 2016-06-28 2019-06-18 Snap Inc. System to track engagement of media items
US10165402B1 (en) 2016-06-28 2018-12-25 Snap Inc. System to track engagement of media items
US10885559B1 (en) 2016-06-28 2021-01-05 Snap Inc. Generation, curation, and presentation of media collections with automated advertising
US11445326B2 (en) 2016-06-28 2022-09-13 Snap Inc. Track engagement of media items
US10430838B1 (en) 2016-06-28 2019-10-01 Snap Inc. Methods and systems for generation, curation, and presentation of media collections with automated advertising
US10506371B2 (en) 2016-06-28 2019-12-10 Snap Inc. System to track engagement of media items
US10387514B1 (en) 2016-06-30 2019-08-20 Snap Inc. Automated content curation and communication
US11080351B1 (en) 2016-06-30 2021-08-03 Snap Inc. Automated content curation and communication
US11895068B2 (en) 2016-06-30 2024-02-06 Snap Inc. Automated content curation and communication
US11509615B2 (en) 2016-07-19 2022-11-22 Snap Inc. Generating customized electronic messaging graphics
US10348662B2 (en) 2016-07-19 2019-07-09 Snap Inc. Generating customized electronic messaging graphics
US11816853B2 (en) 2016-08-30 2023-11-14 Snap Inc. Systems and methods for simultaneous localization and mapping
US11843456B2 (en) 2016-10-24 2023-12-12 Snap Inc. Generating and displaying customized avatars in media overlays
US11876762B1 (en) 2016-10-24 2024-01-16 Snap Inc. Generating and displaying customized avatars in media overlays
US10623666B2 (en) 2016-11-07 2020-04-14 Snap Inc. Selective identification and order of image modifiers
US11233952B2 (en) 2016-11-07 2022-01-25 Snap Inc. Selective identification and order of image modifiers
US11750767B2 (en) 2016-11-07 2023-09-05 Snap Inc. Selective identification and order of image modifiers
US11397517B2 (en) 2016-12-09 2022-07-26 Snap Inc. Customized media overlays
US10754525B1 (en) 2016-12-09 2020-08-25 Snap Inc. Customized media overlays
US10203855B2 (en) 2016-12-09 2019-02-12 Snap Inc. Customized user-controlled media overlays
US11616745B2 (en) 2017-01-09 2023-03-28 Snap Inc. Contextual generation and selection of customized media content
US11870743B1 (en) 2017-01-23 2024-01-09 Snap Inc. Customized digital avatar accessories
US10915911B2 (en) 2017-02-03 2021-02-09 Snap Inc. System to determine a price-schedule to distribute media content
US11861795B1 (en) 2017-02-17 2024-01-02 Snap Inc. Augmented reality anamorphosis system
US11250075B1 (en) 2017-02-17 2022-02-15 Snap Inc. Searching social media content
US10319149B1 (en) 2017-02-17 2019-06-11 Snap Inc. Augmented reality anamorphosis system
US11720640B2 (en) 2017-02-17 2023-08-08 Snap Inc. Searching social media content
US11189299B1 (en) 2017-02-20 2021-11-30 Snap Inc. Augmented reality speech balloon system
US11748579B2 (en) 2017-02-20 2023-09-05 Snap Inc. Augmented reality speech balloon system
US11037372B2 (en) 2017-03-06 2021-06-15 Snap Inc. Virtual vision system
US11670057B2 (en) 2017-03-06 2023-06-06 Snap Inc. Virtual vision system
US10887269B1 (en) 2017-03-09 2021-01-05 Snap Inc. Restricted group content collection
US10523625B1 (en) 2017-03-09 2019-12-31 Snap Inc. Restricted group content collection
US11258749B2 (en) 2017-03-09 2022-02-22 Snap Inc. Restricted group content collection
US11558678B2 (en) 2017-03-27 2023-01-17 Snap Inc. Generating a stitched data stream
US11297399B1 (en) 2017-03-27 2022-04-05 Snap Inc. Generating a stitched data stream
US10581782B2 (en) 2017-03-27 2020-03-03 Snap Inc. Generating a stitched data stream
US11349796B2 (en) 2017-03-27 2022-05-31 Snap Inc. Generating a stitched data stream
US10582277B2 (en) 2017-03-27 2020-03-03 Snap Inc. Generating a stitched data stream
US11170393B1 (en) 2017-04-11 2021-11-09 Snap Inc. System to calculate an engagement score of location based media content
US10387730B1 (en) 2017-04-20 2019-08-20 Snap Inc. Augmented reality typography personalization system
US11195018B1 (en) 2017-04-20 2021-12-07 Snap Inc. Augmented reality typography personalization system
US11409407B2 (en) 2017-04-27 2022-08-09 Snap Inc. Map-based graphical user interface indicating geospatial activity metrics
US11556221B2 (en) 2017-04-27 2023-01-17 Snap Inc. Friend location sharing mechanism for social media platforms
US10963529B1 (en) 2017-04-27 2021-03-30 Snap Inc. Location-based search mechanism in a graphical user interface
US11782574B2 (en) 2017-04-27 2023-10-10 Snap Inc. Map-based graphical user interface indicating geospatial activity metrics
US11474663B2 (en) 2017-04-27 2022-10-18 Snap Inc. Location-based search mechanism in a graphical user interface
US11418906B2 (en) 2017-04-27 2022-08-16 Snap Inc. Selective location-based identity communication
US11451956B1 (en) 2017-04-27 2022-09-20 Snap Inc. Location privacy management on map-based social media platforms
US11385763B2 (en) 2017-04-27 2022-07-12 Snap Inc. Map-based graphical user interface indicating geospatial activity metrics
US10952013B1 (en) 2017-04-27 2021-03-16 Snap Inc. Selective location-based identity communication
US11392264B1 (en) 2017-04-27 2022-07-19 Snap Inc. Map-based graphical user interface for multi-type social media galleries
US11893647B2 (en) 2017-04-27 2024-02-06 Snap Inc. Location-based virtual avatars
US11842411B2 (en) 2017-04-27 2023-12-12 Snap Inc. Location-based virtual avatars
US11232040B1 (en) 2017-04-28 2022-01-25 Snap Inc. Precaching unlockable data elements
US11675831B2 (en) 2017-05-31 2023-06-13 Snap Inc. Geolocation based playlists
US20190064667A1 (en) * 2017-08-24 2019-02-28 International Business Machines Corporation Polymer brushes for extreme ultraviolet photolithography
US11475254B1 (en) 2017-09-08 2022-10-18 Snap Inc. Multimodal entity identification
US10740974B1 (en) 2017-09-15 2020-08-11 Snap Inc. Augmented reality system
US11721080B2 (en) 2017-09-15 2023-08-08 Snap Inc. Augmented reality system
US11335067B2 (en) 2017-09-15 2022-05-17 Snap Inc. Augmented reality system
US10499191B1 (en) 2017-10-09 2019-12-03 Snap Inc. Context sensitive presentation of content
US11006242B1 (en) 2017-10-09 2021-05-11 Snap Inc. Context sensitive presentation of content
US11617056B2 (en) 2017-10-09 2023-03-28 Snap Inc. Context sensitive presentation of content
US11670025B2 (en) 2017-10-30 2023-06-06 Snap Inc. Mobile-based cartographic control of display content
US11030787B2 (en) 2017-10-30 2021-06-08 Snap Inc. Mobile-based cartographic control of display content
US11558327B2 (en) 2017-12-01 2023-01-17 Snap Inc. Dynamic media overlay with smart widget
US11265273B1 (en) 2017-12-01 2022-03-01 Snap, Inc. Dynamic media overlay with smart widget
US11943185B2 (en) 2017-12-01 2024-03-26 Snap Inc. Dynamic media overlay with smart widget
US11687720B2 (en) 2017-12-22 2023-06-27 Snap Inc. Named entity recognition visual context and caption data
US11017173B1 (en) 2017-12-22 2021-05-25 Snap Inc. Named entity recognition visual context and caption data
US10678818B2 (en) 2018-01-03 2020-06-09 Snap Inc. Tag distribution visualization system
US11487794B2 (en) 2018-01-03 2022-11-01 Snap Inc. Tag distribution visualization system
US11507614B1 (en) 2018-02-13 2022-11-22 Snap Inc. Icon based tagging
US11841896B2 (en) 2018-02-13 2023-12-12 Snap Inc. Icon based tagging
US11523159B2 (en) 2018-02-28 2022-12-06 Snap Inc. Generating media content items based on location information
US10979752B1 (en) 2018-02-28 2021-04-13 Snap Inc. Generating media content items based on location information
US10885136B1 (en) 2018-02-28 2021-01-05 Snap Inc. Audience filtering system
US10524088B2 (en) 2018-03-06 2019-12-31 Snap Inc. Geo-fence selection system
US11044574B2 (en) 2018-03-06 2021-06-22 Snap Inc. Geo-fence selection system
US10327096B1 (en) 2018-03-06 2019-06-18 Snap Inc. Geo-fence selection system
US11722837B2 (en) 2018-03-06 2023-08-08 Snap Inc. Geo-fence selection system
US11570572B2 (en) 2018-03-06 2023-01-31 Snap Inc. Geo-fence selection system
US11491393B2 (en) 2018-03-14 2022-11-08 Snap Inc. Generating collectible items based on location information
US10933311B2 (en) 2018-03-14 2021-03-02 Snap Inc. Generating collectible items based on location information
US11163941B1 (en) 2018-03-30 2021-11-02 Snap Inc. Annotating a collection of media content items
US11683657B2 (en) 2018-04-18 2023-06-20 Snap Inc. Visitation tracking system
US10779114B2 (en) 2018-04-18 2020-09-15 Snap Inc. Visitation tracking system
US10681491B1 (en) 2018-04-18 2020-06-09 Snap Inc. Visitation tracking system
US10448199B1 (en) 2018-04-18 2019-10-15 Snap Inc. Visitation tracking system
US10219111B1 (en) 2018-04-18 2019-02-26 Snap Inc. Visitation tracking system
US11297463B2 (en) 2018-04-18 2022-04-05 Snap Inc. Visitation tracking system
US10924886B2 (en) 2018-04-18 2021-02-16 Snap Inc. Visitation tracking system
US11860888B2 (en) 2018-05-22 2024-01-02 Snap Inc. Event detection system
US10789749B2 (en) 2018-07-24 2020-09-29 Snap Inc. Conditional modification of augmented reality object
US11670026B2 (en) 2018-07-24 2023-06-06 Snap Inc. Conditional modification of augmented reality object
US10679393B2 (en) 2018-07-24 2020-06-09 Snap Inc. Conditional modification of augmented reality object
US11367234B2 (en) 2018-07-24 2022-06-21 Snap Inc. Conditional modification of augmented reality object
US10943381B2 (en) 2018-07-24 2021-03-09 Snap Inc. Conditional modification of augmented reality object
US10997760B2 (en) 2018-08-31 2021-05-04 Snap Inc. Augmented reality anthropomorphization system
US11676319B2 (en) 2018-08-31 2023-06-13 Snap Inc. Augmented reality anthropomorphtzation system
US11450050B2 (en) 2018-08-31 2022-09-20 Snap Inc. Augmented reality anthropomorphization system
US11704005B2 (en) 2018-09-28 2023-07-18 Snap Inc. Collaborative achievement interface
US11455082B2 (en) 2018-09-28 2022-09-27 Snap Inc. Collaborative achievement interface
US11799811B2 (en) 2018-10-31 2023-10-24 Snap Inc. Messaging and gaming applications communication platform
US11698722B2 (en) 2018-11-30 2023-07-11 Snap Inc. Generating customized avatars based on location information
US11558709B2 (en) 2018-11-30 2023-01-17 Snap Inc. Position service to determine relative position to map features
US11199957B1 (en) 2018-11-30 2021-12-14 Snap Inc. Generating customized avatars based on location information
US11812335B2 (en) 2018-11-30 2023-11-07 Snap Inc. Position service to determine relative position to map features
US11877211B2 (en) 2019-01-14 2024-01-16 Snap Inc. Destination sharing in location sharing system
US11751015B2 (en) 2019-01-16 2023-09-05 Snap Inc. Location-based context information sharing in a messaging system
US11693887B2 (en) 2019-01-30 2023-07-04 Snap Inc. Adaptive spatial density based clustering
US11294936B1 (en) 2019-01-30 2022-04-05 Snap Inc. Adaptive spatial density based clustering
US11809624B2 (en) 2019-02-13 2023-11-07 Snap Inc. Sleep detection in a location sharing system
US11500525B2 (en) 2019-02-25 2022-11-15 Snap Inc. Custom media overlay system
US11574431B2 (en) 2019-02-26 2023-02-07 Snap Inc. Avatar based on weather
US11301117B2 (en) 2019-03-08 2022-04-12 Snap Inc. Contextual information in chat
US11868414B1 (en) 2019-03-14 2024-01-09 Snap Inc. Graph-based prediction for contact suggestion in a location sharing system
US11852554B1 (en) 2019-03-21 2023-12-26 Snap Inc. Barometer calibration in a location sharing system
US11249614B2 (en) 2019-03-28 2022-02-15 Snap Inc. Generating personalized map interface with enhanced icons
US11740760B2 (en) 2019-03-28 2023-08-29 Snap Inc. Generating personalized map interface with enhanced icons
US11361493B2 (en) 2019-04-01 2022-06-14 Snap Inc. Semantic texture mapping system
US11206615B2 (en) 2019-05-30 2021-12-21 Snap Inc. Wearable device location systems
US11606755B2 (en) 2019-05-30 2023-03-14 Snap Inc. Wearable device location systems architecture
US11785549B2 (en) 2019-05-30 2023-10-10 Snap Inc. Wearable device location systems
US11917495B2 (en) 2019-06-07 2024-02-27 Snap Inc. Detection of a physical collision between two client devices in a location sharing system
US11601783B2 (en) 2019-06-07 2023-03-07 Snap Inc. Detection of a physical collision between two client devices in a location sharing system
US11714535B2 (en) 2019-07-11 2023-08-01 Snap Inc. Edge gesture interface with smart interactions
US11821742B2 (en) 2019-09-26 2023-11-21 Snap Inc. Travel based notifications
US11218838B2 (en) 2019-10-31 2022-01-04 Snap Inc. Focused map-based context information surfacing
US11729343B2 (en) 2019-12-30 2023-08-15 Snap Inc. Including video feed in message thread
US11429618B2 (en) 2019-12-30 2022-08-30 Snap Inc. Surfacing augmented reality objects
US11128715B1 (en) 2019-12-30 2021-09-21 Snap Inc. Physical friend proximity in chat
US11343323B2 (en) 2019-12-31 2022-05-24 Snap Inc. Augmented reality objects registry
US11893208B2 (en) 2019-12-31 2024-02-06 Snap Inc. Combined map icon with action indicator
US11943303B2 (en) 2019-12-31 2024-03-26 Snap Inc. Augmented reality objects registry
US11888803B2 (en) 2020-02-12 2024-01-30 Snap Inc. Multiple gateway message exchange
US11228551B1 (en) 2020-02-12 2022-01-18 Snap Inc. Multiple gateway message exchange
US11516167B2 (en) 2020-03-05 2022-11-29 Snap Inc. Storing data based on device location
US11765117B2 (en) 2020-03-05 2023-09-19 Snap Inc. Storing data based on device location
US11619501B2 (en) 2020-03-11 2023-04-04 Snap Inc. Avatar based on trip
US11776256B2 (en) 2020-03-27 2023-10-03 Snap Inc. Shared augmented reality system
US11915400B2 (en) 2020-03-27 2024-02-27 Snap Inc. Location mapping for large scale augmented-reality
US11430091B2 (en) 2020-03-27 2022-08-30 Snap Inc. Location mapping for large scale augmented-reality
US11503432B2 (en) 2020-06-15 2022-11-15 Snap Inc. Scalable real-time location sharing framework
US11483267B2 (en) 2020-06-15 2022-10-25 Snap Inc. Location sharing using different rate-limited links
US11290851B2 (en) 2020-06-15 2022-03-29 Snap Inc. Location sharing using offline and online objects
US11314776B2 (en) 2020-06-15 2022-04-26 Snap Inc. Location sharing using friend list versions
US11676378B2 (en) 2020-06-29 2023-06-13 Snap Inc. Providing travel-based augmented reality content with a captured image
US11943192B2 (en) 2020-08-31 2024-03-26 Snap Inc. Co-location connection service
US11961116B2 (en) 2020-10-26 2024-04-16 Foursquare Labs, Inc. Determining exposures to content presented by physical objects
US11902902B2 (en) 2021-03-29 2024-02-13 Snap Inc. Scheduling requests for location data
US11606756B2 (en) 2021-03-29 2023-03-14 Snap Inc. Scheduling requests for location data
US11601888B2 (en) 2021-03-29 2023-03-07 Snap Inc. Determining location using multi-source geolocation data
US11645324B2 (en) 2021-03-31 2023-05-09 Snap Inc. Location-based timeline media content system
US11829834B2 (en) 2021-10-29 2023-11-28 Snap Inc. Extended QR code
US11956533B2 (en) 2021-11-29 2024-04-09 Snap Inc. Accessing media at a geographic location
US11962645B2 (en) 2022-06-02 2024-04-16 Snap Inc. Guided personal identity based actions
US11954314B2 (en) 2022-09-09 2024-04-09 Snap Inc. Custom media overlay system
US11963105B2 (en) 2023-02-10 2024-04-16 Snap Inc. Wearable device location systems architecture
US11961196B2 (en) 2023-03-17 2024-04-16 Snap Inc. Virtual vision system

Also Published As

Publication number Publication date
US20120274797A1 (en) 2012-11-01
US9973673B2 (en) 2018-05-15
US20030123859A1 (en) 2003-07-03
US20180249057A1 (en) 2018-08-30
US20020106199A1 (en) 2002-08-08

Similar Documents

Publication Publication Date Title
US20180249057A1 (en) Image signal recording/reproduction apparatus, method employed therein, and image signal recording apparatus
US10009573B2 (en) Image recording apparatus, dynamic image processing apparatus, dynamic image reproduction apparatus, dynamic image recording apparatus, information recording/reproduction apparatus
US7659927B2 (en) Digital video camera and mode changing method
US8773565B2 (en) Reproducing apparatus and method
US7444062B2 (en) Playback system
JP2004213701A (en) Reproducing device
JP2000138888A (en) Video recording and reproducing apparatus
US20040136685A1 (en) Recording device and moving picture recording device with camera
JPH11341425A (en) Image signal recording and reproducing device and image signal recording and reproducing method
US8849098B2 (en) Recording apparatus
JP3826134B2 (en) Recording device
JP4024142B2 (en) Video camera equipment
JP3062695B2 (en) Still image video playback device
JP4418737B2 (en) Recording device
JPH11341418A (en) Image signal recorder
JP2002238014A (en) Digital camera
JP2008011200A (en) Image reproducing unit
JP2005174376A (en) Memory device
JP2001136473A (en) Device controller and method, and storage medium
JP2005033342A (en) Imaging apparatus, control method thereof, program, and recording medium
JP2005176175A (en) Image processor
JPH11341409A (en) Image signal recorder and image signal recording method
JP2011004266A (en) Image recording apparatus and image recording method
JP2008113270A (en) Video reorder
JP2007299498A (en) Recorder and recording method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION