US20040006439A1 - Method and apparatus for reading and controlling utility consumption - Google Patents

Method and apparatus for reading and controlling utility consumption Download PDF

Info

Publication number
US20040006439A1
US20040006439A1 US10/615,572 US61557203A US2004006439A1 US 20040006439 A1 US20040006439 A1 US 20040006439A1 US 61557203 A US61557203 A US 61557203A US 2004006439 A1 US2004006439 A1 US 2004006439A1
Authority
US
United States
Prior art keywords
consumption
data
utility
segment
indicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/615,572
Inventor
Robert Hunter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/615,572 priority Critical patent/US20040006439A1/en
Priority to US10/683,928 priority patent/US7039532B2/en
Publication of US20040006439A1 publication Critical patent/US20040006439A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/008Modifications to installed utility meters to enable remote reading
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • This invention relates generally to a utility usage control system, and more particularly to a means of obtaining real-time utility consumption readings and also managing utility consumption by signaling for the control of end-use devices from a computer or personal digital assistant (PDA).
  • PDA personal digital assistant
  • AMR automatic meter reading devices
  • optical light-sensing arrangements to provide remote utility readings for determining utility consumption and for billing purposes.
  • These devices were typically developed as a cost-effective alternative to the existing meter reading methods and devices.
  • these AMR devices avoid having a person walk or drive from establishment to establishment and manually read each meter.
  • the majority of methods using optical light-sensing devices are installed inside the existing meter and/or require professional installation.
  • a skilled or trained individual must physically remove the glass housing present on such meter in order to install the automatic reading device. This process is inefficient and also very costly for either the utility company or the consumer.
  • the device utilizes a photoelectric sensor for reading the watt-hour indicator of electricity service usage.
  • a light source beams a light on a rotating disk in the meter.
  • the disk reflects the light except for one darkened area, which absorbs the beam of light.
  • the reflected light is sensed by the photoelectric sensor and a pulse is sent each time the reflected light is not sensed. Each pulse indicates one full rotation of the disk.
  • All of the computing elements of the monitor system are contained within the utility watt-hour meter housing, and even the glass cover is replaced with a polycarbonate cover.
  • Other similar devices installed within the existing meter housing are disclosed in U.S. Pat. No. 4,327,362 and U.S. Pat.
  • U.S. Patent No. 5,559,894 a camera is used to read the indicia of a plurality of dials.
  • This automatic meter reader device is integrated into a substantial housing structure and requires a substantial effort to install.
  • This device uses Optical Character Recognition (OCR) to read the serial number of the meter but does not specify such OCR use to read utility consumption data.
  • OCR Optical Character Recognition
  • this method and device requires alignment and perhaps continuous realignment in order to accomplish its task, thus rendering it costly to use and costly to maintain.
  • U.S. Pat. No. 6,167,389 allows the consumer, through the use of adapted end-use devices, to program these devices based on a pricing-tier billing system.
  • the pricing-tier billing system sets a billing rate for power consumption based on the load levels on a power grid.
  • a utility company may use a billing system with four-tiers: Normal Load, Medium Load, High Load, and Critical Load. Each tier has a different billing rate for power consumption with the Critical Load tier charging at the highest rate.
  • the utility company may transmit data packets though an open network from a centralized headend to gateways at customer locations.
  • gateways cause the gateways to generate random startup time offsets, to control when end-use devices will be started. This is useful to protect the power grid from being loaded such that it results in a blackout.
  • this system does little to provide feedback to the consumer, let alone provide them with real-time data on their use and cost that allows the consumer to directly shed load voluntarily or with incentive, in order to help the utility balance its load demands. Further, it requires either a full start or stop operation of equipment rather than a gradual increase or decrease of individual loads.
  • this device is primarily aimed at providing grid-level control to a utility but does little to help a consumer manage their consumption in a gradual and comfortable manner.
  • the present invention provides an electro-optical, automatic meter reader (AMR) for enabling a consumer to view and manage utility-based consumption on a computer, which may be any form of microprocessor-based computer or PDA.
  • AMR electro-optical, automatic meter reader
  • Such utility based product being consumed may be electrical power, natural gas, water or other products and services.
  • the automatic meter reader is an apparatus for optically reading a meter using a sensor that can be used to monitor electricity consumption.
  • a sensor of the apparatus may be attached to a bracket, which may be mounted to the outside cover of the meter.
  • An installation process of the apparatus need not require modification of the existing meter nor require removal of the housing of the existing meter.
  • An end-user may install the automatic meter reader without special skills or tools, in fact, with no additional hardware other than those included as a part of the system.
  • the photoelectric sensor beams a light onto a rotating disk, visible on the face of the meter, whose surface reflects the light.
  • a marker such as a black dot or line placed on the rotating disk absorbs the beamed light resulting in an interval where a lower level of light is being reflected.
  • the photoelectric sensor counts these intervals, representing the number of turns the disk rotates indicating utility usage during a given time period.
  • the apparatus connects to a data-collection unit through an Input/Output (I/O) port.
  • the data-collection unit stores the data from the sensor.
  • the I/O port connection may also serve to supply power for the apparatus through one otherwise unused pin of that serial connector being assigned as a power carrier, thus avoiding the need for a dedicated power supply.
  • the data collection unit may also be used to store data when the computer is turned off and can be powered by an external 12 volt DC power supply.
  • the automatic meter reader may monitor the value displayed by the meter by monitoring the state of each segment or, a subset of those segments associated with the display.
  • the data-collection unit connects through a second I/O port, to the computer.
  • the computer provides the consumer and utility with the ability to either directly or remotely view and manage his consumption.
  • the computer collects the data and provides information relating to utility-based consumption such as real-time rate of usage and historical usage levels. For example, information is arranged in three graphs that are analogous to information common to automobile travel. These include the real-time rate-of-use, comparable to the speedometer of an automobile. This graph tells the user their consumption rate on an instantaneous basis at the present moment.
  • the second graph a time-segment-based graph for displaying quantity vs. time data, is comparable to the trip odometer.
  • This graph shows the user their consumption on a day-to-date, daily, month-to-date, or other calendar-based time basis. It may also display utility or other time-based segments such as peak period, summer, Mondays, etc.
  • the final graph is comparable to the general odometer. It shows the total energy consumption through the life of the system.
  • Each graph can be displayed in units of measurement of the appropriate utility. For example, kilowatt hours for electric utilities, therms for natural gas utilities and gallons for water utilities. In addition, each graph may provide an alternate display in dollars or other forms of currency.
  • Data can be used to forecast whether the consumer will be under his specified usage or cost level of consumption. Such forecasts are commonly used by trip computers in automobiles to tell the consumer whether they should adjust their speed to reduce fuel consumption, when they will arrive at their destination based upon present and average speed, and how many miles they have to go to complete their trip.
  • a signal is sent from the computer to enable the manual or automatic control of usage of devices to assure that they end the time segment below the specified requirement, especially during energy or water crisis situations.
  • a forecast rate for use is shown for the consumer as a red colored line on each graph.
  • a second line the rate of consumption that must be averaged in order to arrive at or under the base line, is also displayed on each graph. If a consumer is averaging under their baseline amount, for the period in question, the bar for that particular graph shall show as a green bar. If the consumer is averaging over the baseline amount for the period in question, the bar for that particular graph shall show as a red bar.
  • the monthly bar shall show as red. If the consumer is averaging a rate of consumption on an hourly basis that will exceed the average daily baseline, that day's bar shall show as red in color. If the consumer is averaging a rate of consumption on a peak-period basis that will exceed the average baseline, that segment's bar shall show as red in color. In this way the consumer is always aware of their status to achieve baseline levels for the hour, day, and month or any time segment used by a utility or chosen by the consumer.
  • the consumer or utility may program the computer to automatically control the rate of utility-based consumption.
  • a number of commonly available products accept control commands including thermostats, lighting, dimmers, appliances, valves and other items.
  • the computer may alert such devices through automatic commands to, for example, adjust the thermostat on an air conditioning unit in response to the forecast.
  • a communication system such as the Internet, can also be utilized to allow the computer to communicate to the utility company for usage, control and billing purposes or to allow both the consumer and utility to access and manage consumption from a remote computer or PDA.
  • FIG. 1 illustrates a block schematic diagram of an apparatus for reading and managing power consumption in accordance with the present invention
  • FIG. 2A provides an illustrated embodiment of the reader in a plan view
  • FIG. 2B provides an illustrated embodiment of the reader in a side sectional view
  • FIG. 3A depict the bracket attached to a conventional meter in a front view
  • FIG. 3B depict the bracket attached to a conventional meter in a side view
  • FIG. 4 is an illustration of a preferred sensor
  • FIG. 5A provides an illustration of a conventional utility meter with a digital display
  • FIG. 5B provides an illustration of a conventional utility meter with dial indicators
  • FIG. 5C is an illustration of a digital display that may be found in the meter of FIG. 5A;
  • FIG. 5D is an illustration of an individual seven-segment numeric indicator
  • FIG. 5E is an illustration of a one embodiment of a sensor, which may be used to detect the value of the seven-segment indicator
  • FIG. 5F is an illustration of one embodiment of a fiber optic sensor and the digital indicator
  • FIG. 6 illustrates a user interface displayed on the screen of the computer
  • FIG. 7 is an illustration of the computer connected to power consuming device through a serial port or Ethernet interface of the computer;
  • FIG. 8 provides an illustration of the computer connected to a communication system for remote access to the data stored and compiled on the computer.
  • FIG. 9 illustrates an alternative embodiment of the present invention using wireless communication to transmit the data obtained by the reader.
  • FIG. 1 illustrates a block schematic diagram of an apparatus 100 for reading and managing power consumption in accordance with the present invention.
  • a reader 104 is attached to a typical utility meter 102 such as an analog or digital power meter commonly found on homes, apartment buildings and commercial buildings.
  • the reader 104 provides a means for automatically reading power consumption and may eliminate the need for manually reading the meter 102 .
  • the data generated by the reader 104 may be continuously transferred through a connection such as a serial cable 120 , to a data collection unit 106 or alternatively directly to the monitoring device 110 , such as a computer.
  • the data collector 106 is therefore optional. When provided, the data collection unit stores data generated by the reader 104 .
  • the data collection unit 106 may store data for a limited time when the monitoring device (computer) 110 is shut off or in the event of a power failure. With appropriate memory, the unit 106 may be able to store data for up to a year.
  • the preferred embodiment of the data-collection unit 106 for a household may include a single serial port interface from the reader 104 , such as a RJ-11 or RJ-45 and a single serial port out, to the computer 110 , such as a DB-9.
  • the preferred data-collection unit 106 is approximately 2′′ wide and 3′′ long and includes a 12 volt input, such as from a wall mounted AC to DC converter 108 .
  • a battery such as a standard watch battery, may be provided for backup.
  • the data collection unit 106 may be powered by the serial driver of one pin on the serial port of the computer.
  • the preferred data-collection unit 106 includes a microprocessor such as a PIK Microprocessor including non-volatile memory and a timer crystal. It will be apparent that any microprocessor or controller could be used.
  • the data collection unit 106 may be provided with inputs for additional readers 104 , such as four to eight inputs and an optional Ethernet connector for networking to a single monitoring device 110 .
  • the preferred embodiment of the monitoring device 110 may be a conventional general-purpose computer system or a serial server containing one or more serial ports and an Ethernet port, and need not be specific to this application.
  • the monitoring device 110 receives the data from a cable 118 , such a serial cable, which connects directly to the reader 104 .
  • a cable 116 may be a serial cable connecting to the optional data-collection unit 106 through a serial port in, such as a RJ-45 or RJ-11 connector and a serial port out, such as a DB-9 connector.
  • the monitoring device 110 will not lose information during power failure as it stored its data in non-volatile memory and real-time data is only gathered when power is present and being consumed.
  • the data collector 106 will not lose its data during an outage because it holds historic values in non-volatile memory and real-time data is only gathered when power is present and thus, being consumed.
  • the monitoring device 110 may be connected to a communication system 112 or network, such as the Internet to allow remote access 114 of the data.
  • a communication system 112 or network such as the Internet
  • a utility company may obtain the data for billing purposes or by the end-user who wants to control his power consumption from his PDA or computer from a remote location, such as his office.
  • FIGS. 2A and 2B provides an illustrated embodiment of the reader 104 in both a plan view (FIG. 2A) and a side sectional view (FIG. 2B).
  • the reader 104 includes a bracket 202 and a sensor 210 such as a photoelectric sensor.
  • the bracket 202 preferably is a unitary body and lacks movable parts thus being relatively cost effective and also being easy to install.
  • the preferred material for the bracket 202 is either rubber or plastic but it may be made out of any suitable material. Included in the bracket 202 may be an aperture 208 for accepting the sensor 210 .
  • the sensor 210 may be threaded into a nut 216 attached to the meter 102 .
  • the nut 216 may be plastic and secured using glue or epoxy to the meter face.
  • the nut 216 may fit into a recessed portion 218 of the bracket 202 .
  • a heat and moisture dissipation channel 212 may be included to allow ventilation of the heat generated by the sensor 210 .
  • the heat generated from the sensor 210 may be used to melt ice in cold-weather climates in which case melted ice may escape through the channel 212 .
  • the channel 212 acts as a temperature equalization path between the sensor 210 and the outside elements, thus preventing the fogging of the lens in the sensor aperture 406 .
  • the bracket 202 may also incorporate a fastener 204 and 206 , for example a hook and loop such as Velcro or double-sided tape or other adhesive to attach to the meter 102 . As illustrated in FIG. 2B, the back of the bracket 202 may follow the same contour as the meter 102 to ensure proper alignment and secure mounting to the meter.
  • a fastener 204 and 206 for example a hook and loop such as Velcro or double-sided tape or other adhesive to attach to the meter 102 .
  • the back of the bracket 202 may follow the same contour as the meter 102 to ensure proper alignment and secure mounting to the meter.
  • FIGS. 3A and 3B depict the bracket 202 attached to a conventional meter 102 in both a front view (FIG. 3A) and also a side view (FIG. 3B).
  • the bracket 202 may attach to the translucent (typically glass), outside cover 306 of the meter 102 conventional to most existing electric utility meters.
  • the shape 214 of the bracket 202 may follow the same contour as the translucent outside cover 306 of the existing meter 102 ensuring proper alignment with the existing meter 102 .
  • An installation process of the bracket 202 to the translucent outside cover 306 of the existing meter 102 need not require modification of the existing meter 102 nor removal of the translucent outside cover 306 .
  • the installation may only require one part of the bracket 202 to be rigidly attached to the translucent outside cover 306 allowing an end-user to install the reader 102 without special skills or tools.
  • FIG. 4 is an illustration of a preferred sensor.
  • the reader 104 utilizes a photoelectric sensor 210 such as the Mini-Beam 2 from the Banner Engineering Corp. of Minneapolis, Minn. to read the existing meter.
  • the sensor 210 includes a light source and a photo receptive element.
  • the preferred size of the sensor 210 is about a 1′′ square but is not limited to that size.
  • the preferred sensor also includes a threaded member 406 which may be screwed into a nut 216 secured to the meter housing 306 as mentioned above.
  • the nut 218 may also secure the sensor 210 to the bracket 202 as shown in FIG. 2B.
  • the nut 216 may fit into a recessed portion 218 of the bracket 202 .
  • a light emitting diode (LED) 402 may be placed on the back of the sensor 210 to provide a visual indication that the sensor 210 is picking up the correct signal such as to aid in installation of the reader 104 .
  • the sensor 210 may incorporate a cable 404 , such as a serial cable, that supplies the power preferably with 10V or 12 V but may range from 10-30V.
  • the cable 404 may also provide the means for transferring data.
  • FIGS. 5A and 5B provide an illustration of conventional utility meters 102 such as a digital meter 506 and an analog meter 508 .
  • the digital meter 506 may include a numeric display 510 .
  • the sensor 210 (FIG. 4) is oriented to beam a light, such as a visible red 660 nm, or another wavelength, onto a rotating disk 502 located in the meter 102 .
  • the beam of light passes through the translucent outside cover 306 of the meter 102 .
  • the surface of the disk 502 reflects the light; the reflected light is sensed by the photo receptive element of the sensor 210 .
  • a marker 504 such as a darkened area, normally found on the rotating disk 502 absorbs the beamed light resulting in an interval where a lower level of light is being reflected to the sensor 210 .
  • the number of intervals, counted by the sensor 210 represents the number of turns the disk rotates indicating utility usage during a given time period. The time between each interval is inversely proportional to the rate of power consumed. Further, the aforementioned LED 402 may turn on to indicate whether the sensor 210 has made contact with the rotating disk 502 and turn off when the black marker 504 is being sensed, thus a consumer with no special skills, will be sure of the proper alignment of the sensor 210 .
  • the reader 104 may use software algorithms to avoid spurious data in which light sensors are vulnerable to such as may be caused by sunlight striking the rotating disk 502 .
  • the rotating disk 502 in a meter 102 may have a maximum number of rotations per second and the reader 104 may be programmed to ignore certain detections. For example, if a sensor detects more then 2 passes per second from a rotating disk 502 with a 2 rotations per second maximum, the reader 104 may be programmed to ignore the second pass.
  • the reader 104 also may have the capability to alert the end user that an adjustment may need to be made to the sensor 210 .
  • the reader 210 may also use a software algorithm that avoids spurious data based on the time interval between each pass. For example, if a long-short-long pattern of the intervals between passes is sensed by the reader 210 may be programmed to ignore the middle short reading. Again, an alert signal may be sent to the end user that an adjustment may need to be made to the sensor 210 .
  • FIG. 5C is an illustration of the numeric display 510 that may be included as a part of the digital meter 506 .
  • the numeric display 510 may be arranged as an array of plural seven-segment numeric indicators 512 .
  • FIG. 5D is an illustration of one seven-segment indicator 512 , which may be comprised of: a top segment 514 , a top-right segment 516 , a center segment 518 , a bottom-right segment 520 , a bottom segment 522 , a bottom-left segment 524 and a top-left segment 526 . Segments 514 thru 526 may be used to indicate a number zero thru nine.
  • FIG. 5E illustrates a sensor assembly 528 that may-be used to determine the value of the indicator 512 .
  • the sensor assembly 528 may be comprised of: a top sensor 530 , an optional top-right sensor 532 , a center sensor 534 , an optional bottom-right sensor 536 , an optional bottom sensor 538 , an optional bottom-left sensor 540 and an optional top-left sensor 540 .
  • Sensor 530 may be used to determine the state of the segment 514 .
  • the sensor 532 may be used to determine the state of the segment 516 .
  • the sensor 534 may be used to determine the state of the segment 518 .
  • the sensor 536 may be used to determine the state of the segment 520 .
  • the sensor 538 may be used to determine the state of the segment 522 .
  • the sensor 540 may be used to determine the state of the segment 524 .
  • the sensor 542 may be used to determine the state of the segment 526 .
  • An array of sensor assemblies 528 may be arranged in front of an array of indicators 512 , such as numeric display 510 .
  • Sensor assembly 528 or an array of sensors 530 thru 538 may be held in place in front of an array of indicators 512 by an appropriate fixture 544 .
  • the fixture 544 may be formed as a unitary body that is affixed to the meter 102 (FIG. 5A) by a hook and loop fastener, or other appropriate means.
  • Table 1 illustrates which segments 514 thru 526 and which sensors 530 thru 542 are associated with which value of indicator 512 .
  • a first column of Table 1 lists sensors 530 thru 542 .
  • a second column of Table 1 lists corresponding segments 514 thru 526 .
  • a first row of Table 1 lists values that indicator 512 might display (i.e. 0-9). Each row between rows two thru nine is associated with one sensor and one segment. For example, row two is associated with sensor 530 and segment 514 . While, each column between columns three and twelve is associated with a value that indicator 512 can display. The state of segments 514 thru 526 and therefore the state of sensors 530 thru 542 is dependent on the value of indicator 512 .
  • each value of indicator 512 are indicative of the state of the segment that is in the same row as the X. For instance if value of indicator 512 is “1” than according to Table 1 , segments 516 and 520 will be in a different state then segments 514 , 518 , 522 , 524 and 526 .
  • a subset of five to six of the sensors of the set of seven sensors 530 thru 542 may be used to uniquely determine the value of the indicator 512 .
  • the set of six sensors may be comprised of sensors 530 , 534 and four sensors of a set comprising sensors 532 , 536 , 538 , 540 , and 542 .
  • sensors 532 , 536 , 538 , 540 , and 542 are optional.
  • the set of five sensors may be comprised of sensors 530 , 534 , 540 , 542 and one sensor of a set of the sensor 536 and the sensor 538 .
  • an integrated array may be provided.
  • the array of sensor assemblies 528 may be replaced with a charged-coupled device (CCD).
  • the CCD is an integrated two-dimensional array of sensors.
  • the CCD may be replaced by four or five linear array detectors (LADs).
  • LADs linear array detectors
  • an optical character recognition (OCR) routine may be used to determine a value presented by digital display 510 .
  • Each sensor in the CCD or LADs array is generally referred to as a pixel.
  • One or more pixels in the array may be assigned to each segment in the digital display 510 .
  • One or more lenses may be used to focus an image of digital display 510 onto the CCD or the LADs.
  • the one or more lenses may be used to de-magnify an image of the digital display 510 so it will fit on to a small CCD.
  • the one or more lenses may have different magnifications in the horizontal and vertical directions.
  • the one or more lenses may be Holographic Optical Elements (HOEs).
  • the HOEs may be used for diffracting light reflected from or transmitted by the numeric display 510 onto a set of sensors such as a CCD, a LAD or an array of sensor assemblies 512 .
  • FIG. 5F illustrates an alternate embodiment of the invention, in which a fiber optic sensor bundle 540 may be used to gather data.
  • the fiber optic bundle 546 is comprised of a multiple fibers.
  • the input face of each individual fiber may be positioned in front of each individual segment of digital display 510 , such that one fiber or a group of fibers may be assigned one segment for which it gathers light to be used in determining the state of each segment.
  • the output ends of the individual fibers may be bundled together to form one or more fiber optic bundles 546 .
  • the output ends of the individual fibers may be coupled to one or more fiber optic amplifiers for converting the signal into usable data.
  • An example of such a fiber optic sensor may be obtained from Keyence Corporation of America.
  • the sensor 210 may include a light source to illuminate the indicators included in the utility meter such as the digital display 510 or the rotating disk 506 .
  • the light source may be pulsed to eliminate the effect of changes in the ambient light on the reading of indicators.
  • the sensor 210 may be an infrared detector and if the light source is necessary, the light source may be an infrared light source.
  • reader 104 may include an infrared camera.
  • the infrared camera may have a short focal length and include a mount that allows the camera to be rotated 360 degrees about an axis such that the camera may be mounted on the meter and point at a display in the meter.
  • An example of such a camera is the Bullet Camera, model CVC-325WPS sold by CSI/SPECO.
  • FIG. 6 illustrates a user interface displayed on the screen of the computer 110 (FIG. 1).
  • the computer 110 may provide a central location for the end-user to remotely connect to or use directly to view the data collected by the reader 104 .
  • Software stored in the computer 110 memory causes the computer 110 to compile data from the reader.
  • the computer may be compliant to all automatic meter reading devices, and therefore might not be specific to the aforementioned reader 104 .
  • the computer may incorporate an adjustable architecture to optimize for various sizes and complexities fitting to the end-user's need.
  • An interface 602 such as web-based interface (e.g. a browser), allows the end-user to monitor the information relating to consumption.
  • the interface 602 may, for example, render all graphic data as line or bar graphs 608 using Macromedia Corporation's Flash program. By choosing to render data via flash, the vast majority of the program overhead for rendering the interface 602 is handled directly in the browser of the computer used to display the interface 602 .
  • the computer 110 may be an inexpensive device such as an embedded computer system, serial server or other device which contains one or more I/O ports. Because an end user might want to view monthly bar graphs 608 of power consumption, Macromedia Flash provides the ability to present real-time moving graphs or pictures.
  • the interface 602 may provide other data such as peak demand rate including date and time, of the peak demand.
  • the interface 602 is structured in automobile-familiar methods for ease of use and so that an end-user need not require special training or skills to use.
  • a spreadsheet with web-based query capabilities may also be used to allow users to both view live and historical data and save data to files for later review.
  • Using Microsoft Excel's remote web-query feature will allow the consumer to view all data graphs in real-time while providing a familiar interface means that is available to most any user.
  • HVAC Heating Ventilation Air Condition
  • the interface 602 may provide the end-user or utility with information on what devices are being currently used, the rate of power consumption, and the ability to control these devices, therefore, allowing the management of the consumption at a local or remote location.
  • HVAC Heating Ventilation Air Condition
  • the ability for the computer 110 to accurately forecast and signal for reductions or resumptions is significantly increased. If the forecast indicates that usage will exceed the desired amount, the computer may signal for the control of usage of devices to be implemented by manual means or automatically by the computer 110 .
  • Peak-level billing systems may also be used when calculating the forecast total power consumed.
  • the utility company may charge a premium rate for the power consumed above the baseline.
  • Some utility companies may also provide rebates on future bills when a customer falls below a predetermined level of usage for a given period.
  • the interface 602 may provide a forecast based on a real-time rate of consumption to determine whether the end-user will be under his monthly baseline utility usage level of consumption or other predetermined level.
  • the forecast may be computed by taking the average consumption used per day of the current billing cycle and multiplying it by the number of days in a billing cycle.
  • the forecast may divide the total power usage at that time by 5 to compute a daily average and then multiply the daily average by the number of days in the billing cycle.
  • a new forecast may be computed continuously based upon present and historical usage. If the forecast indicates that the usage will exceed the baseline level the computer 110 may signal for a home user to manually control the usage of end-use devices directly of from his PDA. For example, the end-user may turn off unnecessary lights, shorten the cycle for dishwashers or clothes washers or decrease the length of time certain devices will run such as a dryer or a HVAC. Futher, the computer may automatically signal a thermostat or lighting systems, especially in an office setting. Such ability to control allows both the utility and consumer to accurately project both the cost and quantity of use for any specified period and greatly simplifies both the management of the user and the utilities distribution system.
  • the forecast-driven computer 110 can allow the end user to manually or automatically utilize all of the non-premium utility product allocated to him. For example, rather than shutting off the HVAC system and enduring an uncomfortable climate, the end user can use the forecast to adjust the thermostat (e.g., by preconditioning the computer 110 to adjust the thermostat) to provide additional cooling during non-peak times leading up to a peak period and thus require significantly less cooling during the start of peak times. The thermostat may then also be adjusted to provide lesser cooling during the peak period. It may further allow the user to use energy storage technologies during non-peak times which may then be used off-grid during peak periods.
  • the thermostat e.g., by preconditioning the computer 110 to adjust the thermostat
  • the thermostat may then also be adjusted to provide lesser cooling during the peak period. It may further allow the user to use energy storage technologies during non-peak times which may then be used off-grid during peak periods.
  • the end-user may also determine an optimization schedule for running the devices 702 .
  • the end-user may obtain data such as cost per hour device used or cost/cycle (washing machine). This may help determine whether the device is properly running as efficient as intended by the manufacturer. Also based on this information, the end-user may program or choose from created device-operating schedules to maximize cost effectiveness and conservation.
  • the monitoring device 110 may perform other control functions. For example home security systems and fire alarm systems may be connected. The end-user may integrate these devices through the interface and program the monitoring device to respond to signals sent by these systems. For example, if other means of connectivity for a security or fire system were lost, the computer 110 may communicate via an Ethernet interface, the necessary security or fire information as a backup to the primary transmission system. Further, where fire or security systems communicate only via a local display or enunciator or to a remote monitoring company, the computer 110 , can provide the alerts from the fire or security system directly to a consumer.
  • home security systems and fire alarm systems may be connected. The end-user may integrate these devices through the interface and program the monitoring device to respond to signals sent by these systems. For example, if other means of connectivity for a security or fire system were lost, the computer 110 may communicate via an Ethernet interface, the necessary security or fire information as a backup to the primary transmission system. Further, where fire or security systems communicate only via a local display or enunciator or to a remote monitoring company, the computer
  • the computer 110 may be connected to a communication system 804 , such as the Internet. This may allow remote access to the data stored and compiled on the computer 110 .
  • a communication system 804 such as the Internet.
  • the end-user may control devices from any location such as a computer at work 808 or from his PDA 810 .
  • the end-user may want raise the temperature setting on the thermostat during the hours when he is at work and then remotely lower the temperature of his house before coming home, thus saving significant amounts of electricity use.
  • the utility company 806 may also communicate with the computer 110 .
  • the utility company 806 may download the monthly consumption information from the Internet and bill the end-user accordingly.
  • the utility company 806 may set up an on-line billing service and thus cut down on costs incurred in mailing the bill.
  • the utility company 806 may be alerted by the computer 110 when the forecast shows that consumption is exceeding its forecast allowable demand.
  • the utility company 806 may then send an alerts to households or apartment/office buildings to control the usage during a crisis situation. This alert could be sent via pager, text messaging or other means other means for manual adjustment of consumption.
  • the alert could also be sent for direct control of the consuming devices by the computer 110 .
  • the consumer and utility could agree for the consumer to install a certain version of the program within the computer that manages consuming devices in a manner agreed upon between the parties in such a way that both parties benefit economically while maintaining the integrity of the end user's environment.
  • Remote access to the data may provide landlords of apartment/commercial buildings with readily available utility cost information. Landlords can provide potential lessees current and historic monthly averages of utility bills from their PDA/computer/laptop 814 . Also, landlords may live in locations far from the property they own, possibly in a different state; thus, the landlord may use the data to determine at what rate each tenant is consuming power and directly or, via alert to the consumer, adjust their power use accordingly. Further, landlords may use such information from the computer 110 to automatically adjust or charge for the rent, common area expenses or utility charges accordingly.
  • the landlord or utility company 806 or, both acting together under contract might regulate the rate of power consumption while not physically going there.
  • the landlord may control the temperature of the common area of the building from his home computer 814 or even programming the lights to turn off at certain times during the day when sunlight is adequate.
  • the utility company 806 may raise the temperature of thermostats for HVAC systems in summer periods when the power-grid is approaching maximum capacity.
  • FIG. 9 illustrates an alternative embodiment of the present invention. Unless specifically stated, all elements, of FIG. 9 have a one-to-one functional correspondence with those of FIG. 1.
  • FIG. 9 differs from FIG. 1 in that the serial cable 120 (from FIG. 1) that connects the reader 104 and the data-collection unit 106 is replaced with a wireless communication channel.
  • a transmitter 906 for sending wireless communications may be attached to the reader 104 using a shorter serial cable.
  • a receiver 908 may be attached via another shorter serial cable to the data-collection unit 106 for accepting the transmitted communications from the transmitter 906 .
  • the transmitter 906 may send data via a wireless carrier frequency, such as 433 MHz, which is standard for garage door openers.
  • the signals sent via the transmitter 906 may be in the format of pulses that are created directly from the intervals of lower levels of reflected light sensed by the sensor 210 .
  • each pulse formed by the reader may result in a pulse at the carrier frequency communicated by the transmitter 906 .
  • the transmitter 906 may send a burst of the carrier frequency to represent each revolution of the rotating disk 502 .
  • the wireless signal from the transmitter 906 may be encoded with identification information placed on the carrier frequency to prevent interference from other sources. It will be apparent that a number of different schemes may be used for communicating the revolution of the rotating disk 502 via the transmitter 906 and receiver 908 .
  • the transmitter 906 and the receiver 908 may receive operating power from a battery or a wall-mounted AC to DC converter.
  • the reader 104 may communicate directly with the computer 110 .
  • the receiver and cable 904 may be mounted to the computer 110 rather than the data collection unit 106 .
  • the data collection unit 106 may be omitted.
  • Wireless communication may be used to help eliminate routing problems when using serial cables such as length of the cable needed and outdoor to indoor routing.
  • the wireless communication device would also be helpful for small businesses in which there are multiple readers which all have to be connected to a monitoring device 110 .

Abstract

A method and device, including an automatic meter reader, for enabling a consumer and a supplier to view and manage utility consumption. A sensor attached to a bracket is mounted to the outside cover of a utility meter without modification of the meter or removal of its housing. A data-collector stores data obtained from the sensor. The data-collector connects to a computer which provides the ability to view and manage utility-based consumption. The real-time and combined historic data can be used to forecast whether usage will fall above or below a usage level during a given period of time. In response to a forecast exceeding said level, the computer may display the appropriate graph in a red colored bar within a quantity vs. time chart and may send appropriate notifications. The computer may signal for the direct or indirect control of utility product consuming devices. A communication system may be established to the system for remote management by the consumer or by the utility company for its own billing and management purposes.

Description

  • This application is a continuation-in-part of prior application Ser. No. 09/896,159, filed Jun. 28, 2001, the entire contents of which are hereby incorporated by reference.[0001]
  • FIELD OF THE INVENTION
  • This invention relates generally to a utility usage control system, and more particularly to a means of obtaining real-time utility consumption readings and also managing utility consumption by signaling for the control of end-use devices from a computer or personal digital assistant (PDA). [0002]
  • BACKGROUND OF THE INVENTION
  • There are various types of automatic meter reading devices (AMR) which use optical light-sensing arrangements to provide remote utility readings for determining utility consumption and for billing purposes. These devices were typically developed as a cost-effective alternative to the existing meter reading methods and devices. For example, these AMR devices avoid having a person walk or drive from establishment to establishment and manually read each meter. However, the majority of methods using optical light-sensing devices are installed inside the existing meter and/or require professional installation. Thus, a skilled or trained individual must physically remove the glass housing present on such meter in order to install the automatic reading device. This process is inefficient and also very costly for either the utility company or the consumer. [0003]
  • In U.S. Pat. No. 5,767,790, the device utilizes a photoelectric sensor for reading the watt-hour indicator of electricity service usage. A light source beams a light on a rotating disk in the meter. The disk reflects the light except for one darkened area, which absorbs the beam of light. The reflected light is sensed by the photoelectric sensor and a pulse is sent each time the reflected light is not sensed. Each pulse indicates one full rotation of the disk. All of the computing elements of the monitor system are contained within the utility watt-hour meter housing, and even the glass cover is replaced with a polycarbonate cover. Other similar devices installed within the existing meter housing are disclosed in U.S. Pat. No. 4,327,362 and U.S. Pat. No. 5,506,404. A significant disadvantage typical of these devices is that the installation process requires the existing meter to be physically opened and/or the optical light sensing arrangement to be assembled with professional assistance. Thus, an ordinary consumer generally cannot set up the device, and therefore consumers would have to bear installation costs. [0004]
  • In U.S. Patent No. 5,559,894, a camera is used to read the indicia of a plurality of dials. This automatic meter reader device is integrated into a substantial housing structure and requires a substantial effort to install. This device uses Optical Character Recognition (OCR) to read the serial number of the meter but does not specify such OCR use to read utility consumption data. In addition, this method and device requires alignment and perhaps continuous realignment in order to accomplish its task, thus rendering it costly to use and costly to maintain. [0005]
  • In U.S. Pat No. 5,880,464, infrared light sensors are used to detect the shadow of a meter pointer against a meter face to enable the meter reader to determine consumption rates. This automatic meter reader device is placed on the cover of the watt-hour meter. However, the device requires the angle and heights of the light source and sensor to be adjusted in a specific manner using a height adjustment carrier having a collar that must be tightened, which a typical customer most likely would find difficult to accurately adjust. Furthermore, no provision is made for powering the device and thus further installation problems may be created for the consumer. [0006]
  • There are also certain utility-based applications in which a network controller or some other headend device located in a utility company interrogates the automatic meter reading device, in order to find out the utility usage for billing purposes. Typical drawbacks that are inherent in these systems are that customers cannot see their use in real-time, cannot access this information except when a billing statement is received and, cannot see data except in the standard format chosen by the utility company. [0007]
  • In addition, there are various types of readers that can be utilized to manage the consumption of electrical power or fossil fuels. U.S. Pat. No. 6,167,389 allows the consumer, through the use of adapted end-use devices, to program these devices based on a pricing-tier billing system. The pricing-tier billing system sets a billing rate for power consumption based on the load levels on a power grid. A utility company may use a billing system with four-tiers: Normal Load, Medium Load, High Load, and Critical Load. Each tier has a different billing rate for power consumption with the Critical Load tier charging at the highest rate. The utility company may transmit data packets though an open network from a centralized headend to gateways at customer locations. These data packet cause the gateways to generate random startup time offsets, to control when end-use devices will be started. This is useful to protect the power grid from being loaded such that it results in a blackout. However, this system does little to provide feedback to the consumer, let alone provide them with real-time data on their use and cost that allows the consumer to directly shed load voluntarily or with incentive, in order to help the utility balance its load demands. Further, it requires either a full start or stop operation of equipment rather than a gradual increase or decrease of individual loads. Thus, this device is primarily aimed at providing grid-level control to a utility but does little to help a consumer manage their consumption in a gradual and comfortable manner. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention provides an electro-optical, automatic meter reader (AMR) for enabling a consumer to view and manage utility-based consumption on a computer, which may be any form of microprocessor-based computer or PDA. Such utility based product being consumed may be electrical power, natural gas, water or other products and services. The automatic meter reader is an apparatus for optically reading a meter using a sensor that can be used to monitor electricity consumption. A sensor of the apparatus may be attached to a bracket, which may be mounted to the outside cover of the meter. An installation process of the apparatus need not require modification of the existing meter nor require removal of the housing of the existing meter. An end-user may install the automatic meter reader without special skills or tools, in fact, with no additional hardware other than those included as a part of the system. [0009]
  • The photoelectric sensor beams a light onto a rotating disk, visible on the face of the meter, whose surface reflects the light. A marker such as a black dot or line placed on the rotating disk absorbs the beamed light resulting in an interval where a lower level of light is being reflected. The photoelectric sensor counts these intervals, representing the number of turns the disk rotates indicating utility usage during a given time period. The apparatus connects to a data-collection unit through an Input/Output (I/O) port. The data-collection unit stores the data from the sensor. The I/O port connection may also serve to supply power for the apparatus through one otherwise unused pin of that serial connector being assigned as a power carrier, thus avoiding the need for a dedicated power supply. The data collection unit may also be used to store data when the computer is turned off and can be powered by an external 12 volt DC power supply. [0010]
  • Alternatively, if the meter includes a digital or seven-segment display, the automatic meter reader may monitor the value displayed by the meter by monitoring the state of each segment or, a subset of those segments associated with the display. [0011]
  • The data-collection unit connects through a second I/O port, to the computer. The computer provides the consumer and utility with the ability to either directly or remotely view and manage his consumption. The computer collects the data and provides information relating to utility-based consumption such as real-time rate of usage and historical usage levels. For example, information is arranged in three graphs that are analogous to information common to automobile travel. These include the real-time rate-of-use, comparable to the speedometer of an automobile. This graph tells the user their consumption rate on an instantaneous basis at the present moment. The second graph, a time-segment-based graph for displaying quantity vs. time data, is comparable to the trip odometer. This graph shows the user their consumption on a day-to-date, daily, month-to-date, or other calendar-based time basis. It may also display utility or other time-based segments such as peak period, summer, Mondays, etc. The final graph is comparable to the general odometer. It shows the total energy consumption through the life of the system. Each graph can be displayed in units of measurement of the appropriate utility. For example, kilowatt hours for electric utilities, therms for natural gas utilities and gallons for water utilities. In addition, each graph may provide an alternate display in dollars or other forms of currency. By presenting this data in three logical and understandable formats, Data can be used to forecast whether the consumer will be under his specified usage or cost level of consumption. Such forecasts are commonly used by trip computers in automobiles to tell the consumer whether they should adjust their speed to reduce fuel consumption, when they will arrive at their destination based upon present and average speed, and how many miles they have to go to complete their trip. [0012]
  • In the present invention, if the forecast indicates that the present usage rate will cause that consumer to exceed the baseline unit or cost level, a signal is sent from the computer to enable the manual or automatic control of usage of devices to assure that they end the time segment below the specified requirement, especially during energy or water crisis situations. A forecast rate for use is shown for the consumer as a red colored line on each graph. A second line, the rate of consumption that must be averaged in order to arrive at or under the base line, is also displayed on each graph. If a consumer is averaging under their baseline amount, for the period in question, the bar for that particular graph shall show as a green bar. If the consumer is averaging over the baseline amount for the period in question, the bar for that particular graph shall show as a red bar. For example, if the consumer is averaging a rate of consumption use on a daily basis that will exceed the monthly baseline level if continued for the rest of the cycle, the monthly bar shall show as red. If the consumer is averaging a rate of consumption on an hourly basis that will exceed the average daily baseline, that day's bar shall show as red in color. If the consumer is averaging a rate of consumption on a peak-period basis that will exceed the average baseline, that segment's bar shall show as red in color. In this way the consumer is always aware of their status to achieve baseline levels for the hour, day, and month or any time segment used by a utility or chosen by the consumer. [0013]
  • Further, the consumer or utility may program the computer to automatically control the rate of utility-based consumption. A number of commonly available products accept control commands including thermostats, lighting, dimmers, appliances, valves and other items. Thus, the computer may alert such devices through automatic commands to, for example, adjust the thermostat on an air conditioning unit in response to the forecast. In addition, a communication system, such as the Internet, can also be utilized to allow the computer to communicate to the utility company for usage, control and billing purposes or to allow both the consumer and utility to access and manage consumption from a remote computer or PDA.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described in more detail with reference to preferred embodiments of the invention, given only by way of example and illustrated in the accompanying drawings in which: [0015]
  • FIG. 1 illustrates a block schematic diagram of an apparatus for reading and managing power consumption in accordance with the present invention; [0016]
  • FIG. 2A provides an illustrated embodiment of the reader in a plan view; [0017]
  • FIG. 2B provides an illustrated embodiment of the reader in a side sectional view; [0018]
  • FIG. 3A depict the bracket attached to a conventional meter in a front view; [0019]
  • FIG. 3B depict the bracket attached to a conventional meter in a side view; [0020]
  • FIG. 4 is an illustration of a preferred sensor; [0021]
  • FIG. 5A provides an illustration of a conventional utility meter with a digital display; [0022]
  • FIG. 5B provides an illustration of a conventional utility meter with dial indicators; [0023]
  • FIG. 5C is an illustration of a digital display that may be found in the meter of FIG. 5A; [0024]
  • FIG. 5D is an illustration of an individual seven-segment numeric indicator; [0025]
  • FIG. 5E is an illustration of a one embodiment of a sensor, which may be used to detect the value of the seven-segment indicator; [0026]
  • FIG. 5F is an illustration of one embodiment of a fiber optic sensor and the digital indicator; [0027]
  • FIG. 6 illustrates a user interface displayed on the screen of the computer; [0028]
  • FIG. 7 is an illustration of the computer connected to power consuming device through a serial port or Ethernet interface of the computer; [0029]
  • FIG. 8 provides an illustration of the computer connected to a communication system for remote access to the data stored and compiled on the computer; and [0030]
  • FIG. 9 illustrates an alternative embodiment of the present invention using wireless communication to transmit the data obtained by the reader.[0031]
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates a block schematic diagram of an apparatus [0032] 100 for reading and managing power consumption in accordance with the present invention. As shown in FIG. 1, a reader 104 is attached to a typical utility meter 102 such as an analog or digital power meter commonly found on homes, apartment buildings and commercial buildings. The reader 104 provides a means for automatically reading power consumption and may eliminate the need for manually reading the meter 102. The data generated by the reader 104 may be continuously transferred through a connection such as a serial cable 120, to a data collection unit 106 or alternatively directly to the monitoring device 110, such as a computer.
  • The [0033] data collector 106 is therefore optional. When provided, the data collection unit stores data generated by the reader 104. The data collection unit 106 may store data for a limited time when the monitoring device (computer) 110 is shut off or in the event of a power failure. With appropriate memory, the unit 106 may be able to store data for up to a year. The preferred embodiment of the data-collection unit 106 for a household may include a single serial port interface from the reader 104, such as a RJ-11 or RJ-45 and a single serial port out, to the computer 110, such as a DB-9. The preferred data-collection unit 106 is approximately 2″ wide and 3″ long and includes a 12 volt input, such as from a wall mounted AC to DC converter 108. A battery, such as a standard watch battery, may be provided for backup. Further, the data collection unit 106 may be powered by the serial driver of one pin on the serial port of the computer. The preferred data-collection unit 106 includes a microprocessor such as a PIK Microprocessor including non-volatile memory and a timer crystal. It will be apparent that any microprocessor or controller could be used.
  • In a preferred application of the invention where multiple power meters are monitored, such as an apartment building or a commercial building, may be similar to the household application described above. However, the [0034] data collection unit 106 may be provided with inputs for additional readers 104, such as four to eight inputs and an optional Ethernet connector for networking to a single monitoring device 110.
  • The preferred embodiment of the [0035] monitoring device 110 may be a conventional general-purpose computer system or a serial server containing one or more serial ports and an Ethernet port, and need not be specific to this application. The monitoring device 110 receives the data from a cable 118, such a serial cable, which connects directly to the reader 104. Alternatively, a cable 116 may be a serial cable connecting to the optional data-collection unit 106 through a serial port in, such as a RJ-45 or RJ-11 connector and a serial port out, such as a DB-9 connector. The monitoring device 110 will not lose information during power failure as it stored its data in non-volatile memory and real-time data is only gathered when power is present and being consumed. In addition, when employed, the data collector 106 will not lose its data during an outage because it holds historic values in non-volatile memory and real-time data is only gathered when power is present and thus, being consumed.
  • The [0036] monitoring device 110 may be connected to a communication system 112 or network, such as the Internet to allow remote access 114 of the data. For example, a utility company may obtain the data for billing purposes or by the end-user who wants to control his power consumption from his PDA or computer from a remote location, such as his office.
  • FIGS. 2A and 2B provides an illustrated embodiment of the [0037] reader 104 in both a plan view (FIG. 2A) and a side sectional view (FIG. 2B). The reader 104 includes a bracket 202 and a sensor 210 such as a photoelectric sensor. The bracket 202 preferably is a unitary body and lacks movable parts thus being relatively cost effective and also being easy to install. The preferred material for the bracket 202 is either rubber or plastic but it may be made out of any suitable material. Included in the bracket 202 may be an aperture 208 for accepting the sensor 210. The sensor 210 may be threaded into a nut 216 attached to the meter 102. For example, the nut 216 may be plastic and secured using glue or epoxy to the meter face. The nut 216 may fit into a recessed portion 218 of the bracket 202. In addition, a heat and moisture dissipation channel 212 may be included to allow ventilation of the heat generated by the sensor 210. The heat generated from the sensor 210 may be used to melt ice in cold-weather climates in which case melted ice may escape through the channel 212. In addition, the channel 212 acts as a temperature equalization path between the sensor 210 and the outside elements, thus preventing the fogging of the lens in the sensor aperture 406. The bracket 202 may also incorporate a fastener 204 and 206, for example a hook and loop such as Velcro or double-sided tape or other adhesive to attach to the meter 102. As illustrated in FIG. 2B, the back of the bracket 202 may follow the same contour as the meter 102 to ensure proper alignment and secure mounting to the meter.
  • FIGS. 3A and 3B depict the [0038] bracket 202 attached to a conventional meter 102 in both a front view (FIG. 3A) and also a side view (FIG. 3B). The bracket 202 may attach to the translucent (typically glass), outside cover 306 of the meter 102 conventional to most existing electric utility meters. As mentioned above, the shape 214 of the bracket 202 may follow the same contour as the translucent outside cover 306 of the existing meter 102 ensuring proper alignment with the existing meter 102. An installation process of the bracket 202 to the translucent outside cover 306 of the existing meter 102 need not require modification of the existing meter 102 nor removal of the translucent outside cover 306. Furthermore, the installation may only require one part of the bracket 202 to be rigidly attached to the translucent outside cover 306 allowing an end-user to install the reader 102 without special skills or tools.
  • FIG. 4 is an illustration of a preferred sensor. The [0039] reader 104, in a preferred embodiment, utilizes a photoelectric sensor 210 such as the Mini-Beam 2 from the Banner Engineering Corp. of Minneapolis, Minn. to read the existing meter. The sensor 210 includes a light source and a photo receptive element. The preferred size of the sensor 210 is about a 1″ square but is not limited to that size. The preferred sensor also includes a threaded member 406 which may be screwed into a nut 216 secured to the meter housing 306 as mentioned above. The nut 218 may also secure the sensor 210 to the bracket 202 as shown in FIG. 2B. For example, the nut 216 may fit into a recessed portion 218 of the bracket 202. A light emitting diode (LED) 402 may be placed on the back of the sensor 210 to provide a visual indication that the sensor 210 is picking up the correct signal such as to aid in installation of the reader 104. The sensor 210 may incorporate a cable 404, such as a serial cable, that supplies the power preferably with 10V or 12 V but may range from 10-30V. The cable 404 may also provide the means for transferring data.
  • FIGS. 5A and 5B provide an illustration of [0040] conventional utility meters 102 such as a digital meter 506 and an analog meter 508. The digital meter 506 may include a numeric display 510. The sensor 210 (FIG. 4) is oriented to beam a light, such as a visible red 660 nm, or another wavelength, onto a rotating disk 502 located in the meter 102. The beam of light passes through the translucent outside cover 306 of the meter 102. The surface of the disk 502 reflects the light; the reflected light is sensed by the photo receptive element of the sensor 210. A marker 504, such as a darkened area, normally found on the rotating disk 502 absorbs the beamed light resulting in an interval where a lower level of light is being reflected to the sensor 210. The number of intervals, counted by the sensor 210, represents the number of turns the disk rotates indicating utility usage during a given time period. The time between each interval is inversely proportional to the rate of power consumed. Further, the aforementioned LED 402 may turn on to indicate whether the sensor 210 has made contact with the rotating disk 502 and turn off when the black marker 504 is being sensed, thus a consumer with no special skills, will be sure of the proper alignment of the sensor 210.
  • The [0041] reader 104 may use software algorithms to avoid spurious data in which light sensors are vulnerable to such as may be caused by sunlight striking the rotating disk 502. The rotating disk 502 in a meter 102, may have a maximum number of rotations per second and the reader 104 may be programmed to ignore certain detections. For example, if a sensor detects more then 2 passes per second from a rotating disk 502 with a 2 rotations per second maximum, the reader 104 may be programmed to ignore the second pass. The reader 104 also may have the capability to alert the end user that an adjustment may need to be made to the sensor 210.
  • The [0042] reader 210 may also use a software algorithm that avoids spurious data based on the time interval between each pass. For example, if a long-short-long pattern of the intervals between passes is sensed by the reader 210 may be programmed to ignore the middle short reading. Again, an alert signal may be sent to the end user that an adjustment may need to be made to the sensor 210.
  • FIG. 5C is an illustration of the [0043] numeric display 510 that may be included as a part of the digital meter 506. The numeric display 510 may be arranged as an array of plural seven-segment numeric indicators 512. FIG. 5D is an illustration of one seven-segment indicator 512, which may be comprised of: a top segment 514, a top-right segment 516, a center segment 518, a bottom-right segment 520, a bottom segment 522, a bottom-left segment 524 and a top-left segment 526. Segments 514 thru 526 may be used to indicate a number zero thru nine.
  • FIG. 5E illustrates a [0044] sensor assembly 528 that may-be used to determine the value of the indicator 512. The sensor assembly 528 may be comprised of: a top sensor 530, an optional top-right sensor 532, a center sensor 534, an optional bottom-right sensor 536, an optional bottom sensor 538, an optional bottom-left sensor 540 and an optional top-left sensor 540. Sensor 530 may be used to determine the state of the segment 514. The sensor 532 may be used to determine the state of the segment 516. The sensor 534 may be used to determine the state of the segment 518. The sensor 536 may be used to determine the state of the segment 520. The sensor 538 may be used to determine the state of the segment 522. The sensor 540 may be used to determine the state of the segment 524. The sensor 542 may be used to determine the state of the segment 526. An array of sensor assemblies 528 may be arranged in front of an array of indicators 512, such as numeric display 510. Sensor assembly 528 or an array of sensors 530 thru 538 may be held in place in front of an array of indicators 512 by an appropriate fixture 544. For example, similarly to the embodiment of reader 104 in FIG. 2, the fixture 544 may be formed as a unitary body that is affixed to the meter 102 (FIG. 5A) by a hook and loop fastener, or other appropriate means.
  • Table [0045] 1 illustrates which segments 514 thru 526 and which sensors 530 thru 542 are associated with which value of indicator 512. A first column of Table 1 lists sensors 530 thru 542. A second column of Table 1 lists corresponding segments 514 thru 526. A first row of Table 1 lists values that indicator 512 might display (i.e. 0-9). Each row between rows two thru nine is associated with one sensor and one segment. For example, row two is associated with sensor 530 and segment 514. While, each column between columns three and twelve is associated with a value that indicator 512 can display. The state of segments 514 thru 526 and therefore the state of sensors 530 thru 542 is dependent on the value of indicator 512. The Xs below each value of indicator 512 are indicative of the state of the segment that is in the same row as the X. For instance if value of indicator 512 is “1” than according to Table 1, segments 516 and 520 will be in a different state then segments 514, 518, 522, 524 and 526.
    TABLE 1
    Value of Indicator 512
    Sensor Segment 0 1 2 3 4 5 6 7 8 9
    530 514 X X X X X X X
    532 516 X X X X X X X X
    534 518 X X X X X X X
    536 520 X X X X X X X X X
    538 522 X X X X X X
    540 524 X X X X
    542 526 X X X X X X
  • In an alternate embodiment of the invention, a subset of five to six of the sensors of the set of seven [0046] sensors 530 thru 542 may be used to uniquely determine the value of the indicator 512. Where a set of six sensors are used to determine the value of the indicator 512, the set of six sensors may be comprised of sensors 530, 534 and four sensors of a set comprising sensors 532, 536, 538, 540, and 542. In other words, if only six sensors are used, then one of the sensors 532, 536, 538, 540, and 542 is optional. Where a set of the five sensors are used to determine the value of indicator 512, the set of five sensors may be comprised of sensors 530, 534, 540, 542 and one sensor of a set of the sensor 536 and the sensor 538.
  • In another alternate embodiment of the invention, rather then providing one sensor per segment as in FIG. 5E, an integrated array may be provided. For example, the array of [0047] sensor assemblies 528 may be replaced with a charged-coupled device (CCD). The CCD is an integrated two-dimensional array of sensors. Alternately the CCD may be replaced by four or five linear array detectors (LADs). If an integrated array such as a CCD or LAD is used, an optical character recognition (OCR) routine may be used to determine a value presented by digital display 510. Each sensor in the CCD or LADs array is generally referred to as a pixel. One or more pixels in the array may be assigned to each segment in the digital display 510. One or more lenses may be used to focus an image of digital display 510 onto the CCD or the LADs. The one or more lenses may be used to de-magnify an image of the digital display 510 so it will fit on to a small CCD. The one or more lenses may have different magnifications in the horizontal and vertical directions. The one or more lenses may be Holographic Optical Elements (HOEs). The HOEs may be used for diffracting light reflected from or transmitted by the numeric display 510 onto a set of sensors such as a CCD, a LAD or an array of sensor assemblies 512.
  • FIG. 5F illustrates an alternate embodiment of the invention, in which a fiber [0048] optic sensor bundle 540 may be used to gather data. The fiber optic bundle 546 is comprised of a multiple fibers. The input face of each individual fiber may be positioned in front of each individual segment of digital display 510, such that one fiber or a group of fibers may be assigned one segment for which it gathers light to be used in determining the state of each segment. The output ends of the individual fibers may be bundled together to form one or more fiber optic bundles 546. The output ends of the individual fibers may be coupled to one or more fiber optic amplifiers for converting the signal into usable data. An example of such a fiber optic sensor may be obtained from Keyence Corporation of America.
  • The [0049] sensor 210 may include a light source to illuminate the indicators included in the utility meter such as the digital display 510 or the rotating disk 506. The light source may be pulsed to eliminate the effect of changes in the ambient light on the reading of indicators. The sensor 210 may be an infrared detector and if the light source is necessary, the light source may be an infrared light source.
  • In yet another embodiment, [0050] reader 104 may include an infrared camera. The infrared camera may have a short focal length and include a mount that allows the camera to be rotated 360 degrees about an axis such that the camera may be mounted on the meter and point at a display in the meter. An example of such a camera is the Bullet Camera, model CVC-325WPS sold by CSI/SPECO.
  • FIG. 6 illustrates a user interface displayed on the screen of the computer [0051] 110 (FIG. 1). As Illustrated in FIG. 6, the computer 110 may provide a central location for the end-user to remotely connect to or use directly to view the data collected by the reader 104. Software stored in the computer 110 memory causes the computer 110 to compile data from the reader. The computer may be compliant to all automatic meter reading devices, and therefore might not be specific to the aforementioned reader 104. In addition, the computer may incorporate an adjustable architecture to optimize for various sizes and complexities fitting to the end-user's need.
  • An [0052] interface 602 such as web-based interface (e.g. a browser), allows the end-user to monitor the information relating to consumption. The interface 602 may, for example, render all graphic data as line or bar graphs 608 using Macromedia Corporation's Flash program. By choosing to render data via flash, the vast majority of the program overhead for rendering the interface 602 is handled directly in the browser of the computer used to display the interface 602. Thus, the computer 110 may be an inexpensive device such as an embedded computer system, serial server or other device which contains one or more I/O ports. Because an end user might want to view monthly bar graphs 608 of power consumption, Macromedia Flash provides the ability to present real-time moving graphs or pictures. This might be utilized when providing real-time power consumption rate 606 such as a line graph or chart depicting usage over time or up-to-date/cost per billing cycle costs. In addition the interface 602 may provide other data such as peak demand rate including date and time, of the peak demand. The interface 602 is structured in automobile-familiar methods for ease of use and so that an end-user need not require special training or skills to use.
  • In addition, a spreadsheet with web-based query capabilities may also be used to allow users to both view live and historical data and save data to files for later review. Using Microsoft Excel's remote web-query feature will allow the consumer to view all data graphs in real-time while providing a familiar interface means that is available to most any user. [0053]
  • Illustrated in FIG. 7 are [0054] devices 702 such as Heating Ventilation Air Condition (HVAC) systems and other power consuming devices that may be connected to the computer 110 through a serial port or Ethernet interface of the computer 110. The interface 602 may provide the end-user or utility with information on what devices are being currently used, the rate of power consumption, and the ability to control these devices, therefore, allowing the management of the consumption at a local or remote location.
  • The ability to manage the rate of consumption may be especially advantageous when dealing with utility companies that use a peak-level billing system. Peak-level billing systems may be implemented as intra-segment pricing systems whereby a peak-use period may have an extremely high rate of power cost and other time segments have a substantially lower power cost. In such systems, consuming power during peak-level periods can have a dramatic effect on the consumer's total power bill. Thus, the computer provides live data and forecast information for both usage (e.g., in kWH) and cost including cost for each time segment and the total of all time segments, allowing the knowledge and control of the amount units consumed and the total cost of that consumption. [0055]
  • By providing a very accurate forecast involving all cost-related segments, the ability for the [0056] computer 110 to accurately forecast and signal for reductions or resumptions is significantly increased. If the forecast indicates that usage will exceed the desired amount, the computer may signal for the control of usage of devices to be implemented by manual means or automatically by the computer 110.
  • Peak-level billing systems may also be used when calculating the forecast total power consumed. In this system, if a customer exceeds a predetermined level of consumption or baseline level, then the utility company may charge a premium rate for the power consumed above the baseline. Some utility companies may also provide rebates on future bills when a customer falls below a predetermined level of usage for a given period. The [0057] interface 602 may provide a forecast based on a real-time rate of consumption to determine whether the end-user will be under his monthly baseline utility usage level of consumption or other predetermined level. The forecast may be computed by taking the average consumption used per day of the current billing cycle and multiplying it by the number of days in a billing cycle. So, for example, if the customer of electricity was on day 5 and all segments were equal, the forecast may divide the total power usage at that time by 5 to compute a daily average and then multiply the daily average by the number of days in the billing cycle. A new forecast may be computed continuously based upon present and historical usage. If the forecast indicates that the usage will exceed the baseline level the computer 110 may signal for a home user to manually control the usage of end-use devices directly of from his PDA. For example, the end-user may turn off unnecessary lights, shorten the cycle for dishwashers or clothes washers or decrease the length of time certain devices will run such as a dryer or a HVAC. Futher, the computer may automatically signal a thermostat or lighting systems, especially in an office setting. Such ability to control allows both the utility and consumer to accurately project both the cost and quantity of use for any specified period and greatly simplifies both the management of the user and the utilities distribution system.
  • In addition, to avoid being charged a premium rate for consumption, the forecast-driven [0058] computer 110 can allow the end user to manually or automatically utilize all of the non-premium utility product allocated to him. For example, rather than shutting off the HVAC system and enduring an uncomfortable climate, the end user can use the forecast to adjust the thermostat (e.g., by preconditioning the computer 110 to adjust the thermostat) to provide additional cooling during non-peak times leading up to a peak period and thus require significantly less cooling during the start of peak times. The thermostat may then also be adjusted to provide lesser cooling during the peak period. It may further allow the user to use energy storage technologies during non-peak times which may then be used off-grid during peak periods.
  • Using the [0059] interface 602 provided by the software stored on the computer 110, the end-user may also determine an optimization schedule for running the devices 702. The end-user may obtain data such as cost per hour device used or cost/cycle (washing machine). This may help determine whether the device is properly running as efficient as intended by the manufacturer. Also based on this information, the end-user may program or choose from created device-operating schedules to maximize cost effectiveness and conservation.
  • In addition to the monitoring and controlling of utility-based consuming devices, the [0060] monitoring device 110 may perform other control functions. For example home security systems and fire alarm systems may be connected. The end-user may integrate these devices through the interface and program the monitoring device to respond to signals sent by these systems. For example, if other means of connectivity for a security or fire system were lost, the computer 110 may communicate via an Ethernet interface, the necessary security or fire information as a backup to the primary transmission system. Further, where fire or security systems communicate only via a local display or enunciator or to a remote monitoring company, the computer 110, can provide the alerts from the fire or security system directly to a consumer.
  • Illustrated in FIG. 8, the [0061] computer 110 may be connected to a communication system 804, such as the Internet. This may allow remote access to the data stored and compiled on the computer 110. By allowing remote access to the data on the computer 110, the end-user may control devices from any location such as a computer at work 808 or from his PDA 810. For example, the end-user may want raise the temperature setting on the thermostat during the hours when he is at work and then remotely lower the temperature of his house before coming home, thus saving significant amounts of electricity use.
  • There may be situations when the end-user wants to make sure that no consumption is taking place, when the end-user is on vacation or business trip, for instance. Remote access to consumption information may provide the end-user with information on whether a particular item is being consumed, at what rate it is being consumed, what device is involved and the ability to control that device. [0062]
  • The [0063] utility company 806 may also communicate with the computer 110. The utility company 806 may download the monthly consumption information from the Internet and bill the end-user accordingly. In addition the utility company 806 may set up an on-line billing service and thus cut down on costs incurred in mailing the bill. Further, the utility company 806 may be alerted by the computer 110 when the forecast shows that consumption is exceeding its forecast allowable demand. The utility company 806 may then send an alerts to households or apartment/office buildings to control the usage during a crisis situation. This alert could be sent via pager, text messaging or other means other means for manual adjustment of consumption. The alert could also be sent for direct control of the consuming devices by the computer 110. In addition, the consumer and utility could agree for the consumer to install a certain version of the program within the computer that manages consuming devices in a manner agreed upon between the parties in such a way that both parties benefit economically while maintaining the integrity of the end user's environment.
  • Remote access to the data may provide landlords of apartment/commercial buildings with readily available utility cost information. Landlords can provide potential lessees current and historic monthly averages of utility bills from their PDA/computer/[0064] laptop 814. Also, landlords may live in locations far from the property they own, possibly in a different state; thus, the landlord may use the data to determine at what rate each tenant is consuming power and directly or, via alert to the consumer, adjust their power use accordingly. Further, landlords may use such information from the computer 110 to automatically adjust or charge for the rent, common area expenses or utility charges accordingly.
  • By having remote access to control power-consuming devices, the landlord or [0065] utility company 806 or, both acting together under contract, might regulate the rate of power consumption while not physically going there. For example; the landlord may control the temperature of the common area of the building from his home computer 814 or even programming the lights to turn off at certain times during the day when sunlight is adequate. The utility company 806 may raise the temperature of thermostats for HVAC systems in summer periods when the power-grid is approaching maximum capacity.
  • FIG. 9 illustrates an alternative embodiment of the present invention. Unless specifically stated, all elements, of FIG. 9 have a one-to-one functional correspondence with those of FIG. 1. FIG. 9 differs from FIG. 1 in that the serial cable [0066] 120 (from FIG. 1) that connects the reader 104 and the data-collection unit 106 is replaced with a wireless communication channel. A transmitter 906 for sending wireless communications may be attached to the reader 104 using a shorter serial cable. A receiver 908 may be attached via another shorter serial cable to the data-collection unit 106 for accepting the transmitted communications from the transmitter 906. The transmitter 906 may send data via a wireless carrier frequency, such as 433 MHz, which is standard for garage door openers. It will be apparent, however that another frequency (e.g., 900 MHz) could be used. The signals sent via the transmitter 906, may be in the format of pulses that are created directly from the intervals of lower levels of reflected light sensed by the sensor 210. Thus, each pulse formed by the reader may result in a pulse at the carrier frequency communicated by the transmitter 906. To communicate the pulse to the data-collection unit 106, the transmitter 906 may send a burst of the carrier frequency to represent each revolution of the rotating disk 502. The wireless signal from the transmitter 906 may be encoded with identification information placed on the carrier frequency to prevent interference from other sources. It will be apparent that a number of different schemes may be used for communicating the revolution of the rotating disk 502 via the transmitter 906 and receiver 908. The transmitter 906 and the receiver 908 may receive operating power from a battery or a wall-mounted AC to DC converter.
  • Similarly to the embodiment of FIG. 1, the [0067] reader 104 may communicate directly with the computer 110. In which case, the receiver and cable 904 may be mounted to the computer 110 rather than the data collection unit 106. In addition, the data collection unit 106 may be omitted.
  • Wireless communication may be used to help eliminate routing problems when using serial cables such as length of the cable needed and outdoor to indoor routing. The wireless communication device would also be helpful for small businesses in which there are multiple readers which all have to be connected to a [0068] monitoring device 110.
  • While the foregoing has been with reference to particular embodiments of the invention, it will be appreciated by those skilled in the art that changes in these embodiments may be made without departing from the principles and spirit of the invention, the scope of which is defined by the appended claims. [0069]

Claims (68)

What is claimed is:
1. A system for monitoring and controlling utility-based consumption comprising:
a reader for obtaining utility consumption data from a utility meter; and
a computer system for collecting the data from the reader wherein the computer system computes a forecast of consumption for one or more predetermined periods of time and wherein the computer system signals for the control of consumption through the controlling of one or more devices that consume utility-based product based on the forecast.
2. The system according to claim 1, wherein the data is electric power consumption data.
3. The system according to claim 1, wherein the data is natural gas consumption data.
4. The system according to claim 1, wherein the data is water consumption data.
5. The system according to claim 1, wherein the forecast of consumption is based on usage for a portion of the predetermined period of time.
6. The system according to claim 1, wherein the computer system repeatedly computes the forecast.
7. The system according to claim 1, wherein the computer system signals for the control the one or more devices so that usage for the predetermined time period falls below a predetermined amount.
8. The system according to claim 7, wherein the computer system signals for the control of one or more of the devices through the decreasing of the amount of time that one or more one of the devices run.
9. The system according to claim 1, wherein one or more of the devices includes a climate control device.
10. The system according to claim 9, wherein the climate control device is an air conditioning unit.
11. The system according to claim 7, wherein the predetermined amount represents a baseline above which the cost of electricity increases.
12. The system according to claim 7, wherein the predetermined amount represents a target and when usage falls below the target for the predetermined time period the user becomes entitled to a rebate.
13. The system according to claim 1, further comprising a user interface at the computer system wherein the user interface displays indicia related to consumption to the user.
14. The system according to claim 13, wherein the indicia related to consumption is representative of historical usage.
15. The system according to claim 13, wherein the indicia related to consumption is representative of then-current usage in real time.
16. The system according to claim 15, wherein the indicia related to consumption includes a moving picture.
17. The system according to claim 16, wherein the moving picture includes a chart of usage.
18. The system according to claim 1, further comprising means for accessing the user interface from a location remote from the computer system for providing the user input.
19. The system according to claim 18, further comprising means for displaying indicia related to power consumption at the remote location.
20. The system according to claim 1, wherein the utility company sends the alerts to the computer system to reduce consumption during a crisis situation.
21. The system according to claim 1, wherein the utility company communicates with the computer system via the Internet.
22. The system according to claim 1, wherein the utility company sends the alerts to the computer system via the Internet.
23. The system according to claim 1, wherein the alerts from the utility company are based on forecasts of how much power will be consumed.
24. The system according to claim 1, wherein the utility company communicates with the computer system to obtain data on power usage for billing purposes.
25. The system according to claim 1, wherein the utility company instructs the computer system to adjust the consumption of one or more devices.
26. The system according to claim 1, wherein the reader monitors a value displayed by a seven-segment numeric indicator by monitoring the state of seven segments associated with said indicator and determining the value displayed by said indicator by associating each value that said indicator can display with the state of each segment associated with said indicator.
27. The system according to claim 1, wherein the system includes multiple readers for reading utility consumption data from multiple meters and wherein the computer computes the forecast based on the data from multiple ones of the readers.
28. A method of monitoring and controlling utility-based consumption comprising:
reading consumption data from an utility meter using an automatic reader;
collecting the data from the reader in a computer memory device;
computing a forecast of consumption for one or more predetermined periods of time using a computer system; and
controlling an amount of consumption by the computer system signaling for the control of one or more devices that consume utility-based product based on the forecast.
29. The method according to claim 28, wherein the data is electric power consumption data.
30. The method according to claim 28, wherein the data is natural gas consumption data.
31. The method according to claim 28, wherein the data is water consumption data.
32. The method according to claim 28, wherein the forecast of consumption is based on power usage for a portion of the predetermined period of time.
33. The method according to claim 28, wherein said controlling controls the one or more devices so that usage for the predetermined time period falls below a predetermined amount.
34. The method according to claim 28, wherein the predetermined amount represents a baseline above which cost of the utility supplied product increases.
35. The method according to claim 28, wherein the predetermined amount represents a target and when usage falls below the target for the predetermined time period the user becomes entitled to a rebate.
36. The method according to claim 28, further comprising displaying indicia related to consumption.
37. The method according to claim 36, wherein the indicia related to consumption is representative of historical usage.
38. The method according to claim 36, wherein the indicia related to consumption is representative of then-current usage in real time.
39. The method according to claim 38, wherein the indicia related to consumption includes a moving picture.
40. The method according to claim 39, wherein the moving picture includes a chart of usage.
41. The system according to claim 28, wherein the utility company sends the alerts to the computer system to reduce power consumption during a crisis situation.
42. The system according to claim 28, wherein the utility company communicates with the computer system via the Internet.
43. The system according to claim 28, wherein the utility company sends the alerts to the computer system via the Internet.
44. The system according to claim 28, wherein the alerts from the utility company are based on forecasts of consumption.
45. The system according to claim 28, wherein the utility company communicates with the computer system to obtain data on power usage for billing purposes.
46. The system according to claim 28, wherein the utility company instructs the computer system to adjust the consumption of one or more devices.
47. The system according to claim 28, wherein the reader, monitors a value displayed by a seven-segment numeric indicator by monitoring the state of seven segments associated with said indicator and determining the value displayed by said indicator by associating each value that said indicator can display with the state of each segment associated with said indicator.
48. The system according to claim 28, wherein said controlling comprises adjusting a thermostat to provide additional cooling during a non-peak use period leading up to a peak use period and further adjusts the thermostat to provide lesser cooling during the peak use period.
49. The system according to claim 28, wherein said controlling comprises adjusting the use of one or more devices according to at least one calculated formula agreed to between the consumer and the utility.
50. A system for monitoring and controlling power consumption comprising:
one or more readers for obtaining power consumption data from one or more electric utility meters; and
a computer system for collecting the data from the one or more readers wherein the computer system makes forecasts of electric power consumption based on the data and signals for the control of power consumption by controlling one or more devices that consume electricity.
51. The system according to claim 50, wherein the computer system is located at the utility company.
52. The system according to claim 50, wherein the computer system repeatedly computes the forecast.
53. The system according to claim 50, wherein the computer system controls one or more devices so that usage falls below a predetermined amount.
54. The system according to claim 50, further comprising a user interface at the computer system wherein the user interface displays indicia related to power consumption to the user.
55. The system according to claim 54, further comprising means for accessing the user interface from a location remote from the computer system for providing the user input.
56. The system according to claim 50, wherein the utility company sends alerts to the computer system to reduce power consumption during a crisis situation.
57. The system according to claim 50, wherein the utility company communicates with the computer system to obtain data on power usage for billing purposes.
58. The system according to claim 50, wherein the utility company instructs the computer system to adjust the consumption of one or more devices.
59. The system according to claim 50, wherein the reader, monitors a value displayed by a seven-segment numeric indicator by monitoring the state of seven segments associated with said indicator and determining the value displayed by said indicator by associating each value that said indicator can display with the state of each segment associated with said indicator.
60. A method for monitoring the value displayed by a segmented numeric indicator, comprising:
monitoring the state of segments associated with said indicator; and
determining a value displayed by said indicator by associating each value that said indicator displays with the state of each monitored segment.
61. The method according to claim 60, wherein a plurality of segmented indicators together indicate a present utility consumption.
62. The method according to claim 60, wherein the state of six segments are monitored and one segment is not monitored, wherein said one segment is selected from the group of segments consisting of: a top-right segment, a bottom-right segment, a bottom segment, a bottom-left segment and a top-left segment.
63. The method according to claim 60, wherein the state of five segments are monitored and a bottom segment and one other segment is not monitored, and wherein the said one other segment is selected from the group consisting of: a top-right segment and a bottom-right segment.
64. The method according to claim 60, wherein the states of the segments are monitored by an optical sensor.
65. The method according to claim 60, wherein the states of the segments are monitored by a detector selected from the group of detectors consisting of a two-dimensional array of detectors and multiple linear array detectors.
66. A method for monitoring the value displayed by a segmented numeric indicator, comprising:
monitoring the state of five segments associated with said indicator wherein the five segments are not a bottom segment and one other segment and wherein the said one other segment is selected from the group consisting of: a top-right segment and a bottom-right segment; and
determining a value displayed by said indicator by associating each value that said indicator displays with the state of each monitored segment.
67. A method for monitoring the value displayed by a segmented numeric indicator of a utility meter, comprising:
obtaining data by optically monitoring a plurality of segmented indicators which together indicate a present utility consumption; and
determining a value displayed by said indicator by performing optical character recognition on the obtained data.
68. The method according to claim 67, wherein the plurality of segmented indicators are optically monitored by an integrated array of optical sensors.
US10/615,572 2001-06-28 2003-07-08 Method and apparatus for reading and controlling utility consumption Abandoned US20040006439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/615,572 US20040006439A1 (en) 2001-06-28 2003-07-08 Method and apparatus for reading and controlling utility consumption
US10/683,928 US7039532B2 (en) 2001-06-28 2003-10-10 Method and apparatus for reading and controlling utility consumption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/896,159 US6622097B2 (en) 2001-06-28 2001-06-28 Method and apparatus for reading and controlling electric power consumption
US10/615,572 US20040006439A1 (en) 2001-06-28 2003-07-08 Method and apparatus for reading and controlling utility consumption

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/896,159 Continuation-In-Part US6622097B2 (en) 2001-06-28 2001-06-28 Method and apparatus for reading and controlling electric power consumption

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/683,928 Continuation-In-Part US7039532B2 (en) 2001-06-28 2003-10-10 Method and apparatus for reading and controlling utility consumption

Publications (1)

Publication Number Publication Date
US20040006439A1 true US20040006439A1 (en) 2004-01-08

Family

ID=25405724

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/896,159 Expired - Lifetime US6622097B2 (en) 2001-06-28 2001-06-28 Method and apparatus for reading and controlling electric power consumption
US10/481,611 Expired - Lifetime US7263450B2 (en) 2001-06-28 2002-06-28 Method and apparatus for reading and controlling electric power consumption
US10/615,572 Abandoned US20040006439A1 (en) 2001-06-28 2003-07-08 Method and apparatus for reading and controlling utility consumption

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/896,159 Expired - Lifetime US6622097B2 (en) 2001-06-28 2001-06-28 Method and apparatus for reading and controlling electric power consumption
US10/481,611 Expired - Lifetime US7263450B2 (en) 2001-06-28 2002-06-28 Method and apparatus for reading and controlling electric power consumption

Country Status (5)

Country Link
US (3) US6622097B2 (en)
EP (1) EP1444527A4 (en)
AU (1) AU2002316511A2 (en)
CA (1) CA2451671A1 (en)
WO (1) WO2003003029A2 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060001414A1 (en) * 2004-02-06 2006-01-05 Angerame Richard A Electric power usage and demand reporting system
US20060038672A1 (en) * 2004-07-02 2006-02-23 Optimal Licensing Corporation System and method for delivery and management of end-user services
GB2420863A (en) * 2004-12-08 2006-06-07 Bewire Facilities Man Ltd Energy management display system
US20060168479A1 (en) * 2005-01-25 2006-07-27 Seagate Technology Llc Real time event logging and analysis in a software system
US20060187200A1 (en) * 2003-11-05 2006-08-24 E.G.O. Elektro-Geraetebau Gmbh Optically based operating device for a household appliance
US20070038563A1 (en) * 2005-08-15 2007-02-15 Eric Ryzerski Systems and methods for managing buildings and finances
US20070124109A1 (en) * 2005-11-29 2007-05-31 Elster Electricity, Llc Fuzzy time-of-use metering and consumption monitoring using load profile data from relative time transmit-only devices
WO2008092268A1 (en) * 2007-02-02 2008-08-07 Aztech Associates Inc. Utility monitoring device, system and method
US20080218319A1 (en) * 2007-03-07 2008-09-11 Optimal Licensing Corporation Systems and methods for linking utility control devices
US20080275802A1 (en) * 2007-05-03 2008-11-06 Verfuerth Neal R System and method for a utility financial model
US20090058185A1 (en) * 2007-08-31 2009-03-05 Optimal Innovations Inc. Intelligent Infrastructure Power Supply Control System
US20090063228A1 (en) * 2007-08-28 2009-03-05 Forbes Jr Joseph W Method and apparatus for providing a virtual electric utility
US20090243517A1 (en) * 2008-03-27 2009-10-01 Orion Energy Systems, Inc. System and method for controlling lighting
US20090248217A1 (en) * 2008-03-27 2009-10-01 Orion Energy Systems, Inc. System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering high intensity fluorescent lighting in a facility
US20100061088A1 (en) * 2007-06-29 2010-03-11 Orion Energy Systems, Inc. Lighting device
US20100064001A1 (en) * 2007-10-10 2010-03-11 Power Takeoff, L.P. Distributed Processing
US20100100253A1 (en) * 2008-04-17 2010-04-22 Demi Energy, Inc. Systems and Methods for Controlling Energy Consumption
US20100145544A1 (en) * 2007-08-28 2010-06-10 Forbes Jr Joseph W System and method for selective disconnection of electrical service to end customers
US20100145534A1 (en) * 2007-08-28 2010-06-10 Forbes Jr Joseph W System and method for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US20100179670A1 (en) * 2007-08-28 2010-07-15 Forbes Jr Joseph W Method and apparatus for actively managing consumption of electric power supplied by one or more electric utilities
US20100191862A1 (en) * 2007-08-28 2010-07-29 Forbes Jr Joseph W System and method for priority delivery of load management messages on ip-based networks
US20100198713A1 (en) * 2007-08-28 2010-08-05 Forbes Jr Joseph W System and method for manipulating controlled energy using devices to manage customer bills
US20100222935A1 (en) * 2007-08-28 2010-09-02 Forbes Jr Joseph W System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US20100302061A1 (en) * 2003-06-13 2010-12-02 Arad Measuring Technologies Ltd. Meter Register and Remote Meter Reader Utilizing a Stepper Motor
US20110029655A1 (en) * 2007-08-28 2011-02-03 Forbes Jr Joseph W Apparatus and Method for Controlling Communications to and from Utility Service Points
US20110060701A1 (en) * 2009-09-04 2011-03-10 Orion Energy Systems, Inc. Outdoor fluorescent lighting fixtures and related systems and methods
US20110172841A1 (en) * 2007-08-28 2011-07-14 Forbes Jr Joseph W Method and Apparatus for Actively Managing Consumption of Electric Power Supplied by One or More Electric Utilities
US20110172837A1 (en) * 2007-08-28 2011-07-14 Forbes Jr Joseph W System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US20110172836A1 (en) * 2010-01-08 2011-07-14 International Business Machines Corporation Power profile management method and system
WO2012012882A1 (en) * 2010-07-26 2012-02-02 Gerald Michael O'brien System and method for on-location resource consumption monitoring and management
US20130116953A1 (en) * 2011-11-03 2013-05-09 Gary B. Pollard Wireless Home Energy Monitoring System
US8445826B2 (en) 2007-06-29 2013-05-21 Orion Energy Systems, Inc. Outdoor lighting systems and methods for wireless network communications
US8450670B2 (en) 2007-06-29 2013-05-28 Orion Energy Systems, Inc. Lighting fixture control systems and methods
US8458312B2 (en) 2006-03-16 2013-06-04 Us Beverage Net Inc. Distributed intelligent systems and methods therefor
US8476565B2 (en) 2007-06-29 2013-07-02 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US8527107B2 (en) 2007-08-28 2013-09-03 Consert Inc. Method and apparatus for effecting controlled restart of electrical servcie with a utility service area
US20130262280A1 (en) * 2006-11-16 2013-10-03 Keith Voysey Building Optimization Platform And Web-Based Invoicing System
US8586902B2 (en) 2007-06-29 2013-11-19 Orion Energy Systems, Inc. Outdoor lighting fixture and camera systems
US8729446B2 (en) 2007-06-29 2014-05-20 Orion Energy Systems, Inc. Outdoor lighting fixtures for controlling traffic lights
US8806239B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US8805552B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US8849715B2 (en) 2012-10-24 2014-09-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8884203B2 (en) 2007-05-03 2014-11-11 Orion Energy Systems, Inc. Lighting systems and methods for displacing energy consumption using natural lighting fixtures
US8890505B2 (en) 2007-08-28 2014-11-18 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US20140343741A1 (en) * 2011-08-17 2014-11-20 Apm Terminals Management B.V. Management system for refrigerated containers
US20150227992A1 (en) * 2006-11-16 2015-08-13 Genea Energy Partners, Inc. Building Optimization Platform And Web-Based Invoicing System
US9130402B2 (en) 2007-08-28 2015-09-08 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US9177323B2 (en) 2007-08-28 2015-11-03 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US20150330818A1 (en) * 2011-03-18 2015-11-19 Soneter, Inc. Methods and apparatus for fluid flow measurement
US9207698B2 (en) 2012-06-20 2015-12-08 Causam Energy, Inc. Method and apparatus for actively managing electric power over an electric power grid
US9513648B2 (en) 2012-07-31 2016-12-06 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9563215B2 (en) 2012-07-14 2017-02-07 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US20170364734A1 (en) * 2016-06-17 2017-12-21 Water Pigeon Inc. Systems and methods for automated meter reading
US9852486B2 (en) 2007-02-02 2017-12-26 Aztech Associates Inc. Utility monitoring device, system and method
US9959180B1 (en) * 2012-05-31 2018-05-01 Veritas Technologies Llc Systems and methods for shipping an I/O operation to prevent replication failure
CN108364451A (en) * 2018-04-26 2018-08-03 东阳市善水环境工程有限公司 Garden electricity energy consumption harvester
US10295969B2 (en) 2007-08-28 2019-05-21 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US10310534B2 (en) 2012-07-31 2019-06-04 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US20200024784A1 (en) * 2018-07-17 2020-01-23 Haier Us Appliance Solutions, Inc. Systems and methods for controlling an appliance using another appliance communicatively coupled thereto
US10547178B2 (en) 2012-06-20 2020-01-28 Causam Energy, Inc. System and methods for actively managing electric power over an electric power grid
US10768653B2 (en) 2012-06-20 2020-09-08 Causam Holdings, LLC System and methods for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US10861112B2 (en) 2012-07-31 2020-12-08 Causam Energy, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
US11004160B2 (en) 2015-09-23 2021-05-11 Causam Enterprises, Inc. Systems and methods for advanced energy network

Families Citing this family (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668240B2 (en) 2001-05-03 2003-12-23 Emerson Retail Services Inc. Food quality and safety model for refrigerated food
US7039532B2 (en) * 2001-06-28 2006-05-02 Hunter Robert R Method and apparatus for reading and controlling utility consumption
US6622097B2 (en) * 2001-06-28 2003-09-16 Robert R. Hunter Method and apparatus for reading and controlling electric power consumption
US7460347B2 (en) * 2001-07-06 2008-12-02 Schweitzer Engineering Laboratories, Inc. Systems and methods for performing a redundancy check using intelligent electronic devices in an electric power system
US20030156565A1 (en) * 2002-02-18 2003-08-21 Taisto Gregory T. Method of transmitting data
US7256709B2 (en) * 2002-04-01 2007-08-14 Electro Industries/Gauge Tech Meter with IrDA port
US7049976B2 (en) * 2002-04-15 2006-05-23 Hunt Power, L.P. User-installable power consumption monitoring system
JP2003345641A (en) * 2002-05-29 2003-12-05 Ricoh Co Ltd Storage medium and program
EP1367685A1 (en) * 2002-05-31 2003-12-03 Whirlpool Corporation Electronic system for power consumption management of appliances
US20040034484A1 (en) * 2002-06-24 2004-02-19 Solomita Michael V. Demand-response energy management system
GB2394077B (en) * 2002-10-07 2005-11-30 Abb Ltd Consumption meter
US20040083112A1 (en) * 2002-10-25 2004-04-29 Horst Gale R. Method and apparatus for managing resources of utility providers
US6889173B2 (en) * 2002-10-31 2005-05-03 Emerson Retail Services Inc. System for monitoring optimal equipment operating parameters
US6957157B2 (en) * 2002-11-12 2005-10-18 Flow Metrix, Inc. Tracking vibrations in a pipeline network
US7891246B2 (en) * 2002-11-12 2011-02-22 Itron, Inc. Tracking vibrations in a pipeline network
US6956500B1 (en) * 2002-11-29 2005-10-18 M & M Systems, Inc. Real-time residential energy monitor
ES2538484T3 (en) * 2003-01-21 2015-06-22 Whirlpool Corporation A process to manage and reduce the power demand of household appliances and their components, and the system that uses said process
US7167102B2 (en) * 2003-06-03 2007-01-23 Crichlow Henry B System with replacement meter cover
US7346483B2 (en) * 2003-10-10 2008-03-18 Synopsys, Inc. Dynamic FIFO for simulation
US7240225B2 (en) * 2003-11-10 2007-07-03 Dell Products L.P. System and method for throttling power in one or more information handling systems
US7251302B2 (en) * 2003-12-05 2007-07-31 Dell Products L.P. Method, system and apparatus for quantifying the contribution of inter-symbol interference jitter on timing skew budget
US20050194456A1 (en) * 2004-03-02 2005-09-08 Tessier Patrick C. Wireless controller with gateway
US7174260B2 (en) * 2004-04-01 2007-02-06 Blue Line Innovations Inc. System and method for reading power meters
TW200535602A (en) * 2004-04-16 2005-11-01 Hon Hai Prec Ind Co Ltd A system and method for testing motherboards automatically
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US20060007016A1 (en) * 2004-07-09 2006-01-12 Centerpoint Energy, Inc. Utilities and communication integrator
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
US7603571B2 (en) * 2004-10-08 2009-10-13 Dell Products L.P. System and method for regulating the power consumption of a computer system
CA2589959C (en) * 2004-12-14 2010-05-04 Comverge Inc. Hvac communication system
EP1854064A4 (en) * 2005-01-18 2009-03-25 Mc Energy Inc Method and system for tracking and budgeting energy usage
US7309979B2 (en) * 2005-02-04 2007-12-18 Utility Programs And Metering Ii Inc. Utility services usage and demand reporting system
GB2439490B (en) 2005-03-08 2008-12-17 Radio Usa Inc E Systems and methods for modifying power usage
US7606639B2 (en) * 2005-09-07 2009-10-20 Comverge, Inc. Local power consumption load control
WO2007030471A2 (en) * 2005-09-07 2007-03-15 Comverge, Inc. Method and system for local load control
US7623043B2 (en) * 2005-12-19 2009-11-24 General Electric Company Method and system for metering consumption of energy
US9557723B2 (en) 2006-07-19 2017-01-31 Power Analytics Corporation Real-time predictive systems for intelligent energy monitoring and management of electrical power networks
US9092593B2 (en) 2007-09-25 2015-07-28 Power Analytics Corporation Systems and methods for intuitive modeling of complex networks in a digital environment
US20160246905A1 (en) 2006-02-14 2016-08-25 Power Analytics Corporation Method For Predicting Arc Flash Energy And PPE Category Within A Real-Time Monitoring System
US20170046458A1 (en) 2006-02-14 2017-02-16 Power Analytics Corporation Systems and methods for real-time dc microgrid power analytics for mission-critical power systems
US20070239317A1 (en) * 2006-04-07 2007-10-11 Bogolea Bradley D Artificial-Intelligence-Based Energy Auditing, Monitoring and Control
GB2440961A (en) * 2006-05-30 2008-02-20 Save Energy Plc 2 Wireless monitoring of utility usage within the home
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US8076503B2 (en) * 2006-09-04 2011-12-13 Meiji Seika Pharma Co., Ltd. Process for production of optically active aminophosphinylbutanoic acids
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
US20080091770A1 (en) * 2006-10-12 2008-04-17 Schweitzer Engineering Laboratories, Inc. Data transfer device for use with an intelligent electronic device (IED)
US20080103993A1 (en) * 2006-10-26 2008-05-01 Officepower, L.L.C. Method for providing energy to a building using utility-compatible distributed generation equipment
US20080154802A1 (en) * 2006-11-29 2008-06-26 Chalupsky Larry K Utility product usage internet access
US7865252B2 (en) * 2007-01-26 2011-01-04 Autani Corporation Upgradeable automation devices, systems, architectures, and methods
US7983795B2 (en) 2007-03-08 2011-07-19 Kurt Josephson Networked electrical interface
US7705484B2 (en) * 2007-04-10 2010-04-27 Whirlpool Corporation Energy management system and method
NL2000710C2 (en) * 2007-06-15 2008-12-16 Oohlsee B V Device for reading a consumption meter for electricity, gas and / or water.
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
US7908117B2 (en) 2007-08-03 2011-03-15 Ecofactor, Inc. System and method for using a network of thermostats as tool to verify peak demand reduction
US8085009B2 (en) 2007-08-13 2011-12-27 The Powerwise Group, Inc. IGBT/FET-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US8619443B2 (en) 2010-09-29 2013-12-31 The Powerwise Group, Inc. System and method to boost voltage
US8120307B2 (en) 2007-08-24 2012-02-21 The Powerwise Group, Inc. System and method for providing constant loading in AC power applications
US8085010B2 (en) 2007-08-24 2011-12-27 The Powerwise Group, Inc. TRIAC/SCR-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US20100235008A1 (en) * 2007-08-28 2010-09-16 Forbes Jr Joseph W System and method for determining carbon credits utilizing two-way devices that report power usage data
US8698447B2 (en) 2007-09-14 2014-04-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
US8810190B2 (en) 2007-09-14 2014-08-19 The Powerwise Group, Inc. Motor controller system and method for maximizing energy savings
US8019567B2 (en) 2007-09-17 2011-09-13 Ecofactor, Inc. System and method for evaluating changes in the efficiency of an HVAC system
US7848900B2 (en) 2008-09-16 2010-12-07 Ecofactor, Inc. System and method for calculating the thermal mass of a building
US8094034B2 (en) * 2007-09-18 2012-01-10 Georgia Tech Research Corporation Detecting actuation of electrical devices using electrical noise over a power line
US8712732B2 (en) 2007-09-18 2014-04-29 Belkin International, Inc. Electrical event detection device and method of detecting and classifying electrical power usage
GB2453325A (en) * 2007-10-01 2009-04-08 Npower Monitoring utility consumption
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
AU2008356120A1 (en) * 2007-11-07 2009-11-12 Edsa Micro Corporation Systems and methods for real-time forecasting and predicting of electrical peaks and managing the energy, health, reliability, and performance of electrical power systems based on an artificial adaptive neural network
DE102007062058A1 (en) * 2007-12-21 2009-06-25 Robert Bosch Gmbh Method and device for analyzing the energy consumption of a machine
US8000913B2 (en) * 2008-01-21 2011-08-16 Current Communications Services, Llc System and method for providing power distribution system information
US20090207753A1 (en) * 2008-02-15 2009-08-20 Paul Bieganski Systems and methods for power consumption data networks
US20090210178A1 (en) * 2008-02-15 2009-08-20 Paul Bieganski Systems and methods for producing power consumption data
US20090216382A1 (en) * 2008-02-26 2009-08-27 Howard Ng Direct Load Control System and Method with Comfort Temperature Setting
US20100031324A1 (en) * 2008-03-07 2010-02-04 Strich Ronald F Apparatus and method for dynamic licensing access to wireless network information
DE102008016034A1 (en) * 2008-03-28 2009-10-08 Abb Ag Arrangement for energy acquisition and display in building system technology
GB0809126D0 (en) * 2008-05-20 2008-06-25 Pilot Systems London Ltd Metering energy use
US20090307573A1 (en) * 2008-06-06 2009-12-10 Enthenergy, Llc Energy management system
US20090307034A1 (en) * 2008-06-06 2009-12-10 Enthenergy, Llc Energy information management system
US8010237B2 (en) 2008-07-07 2011-08-30 Ecofactor, Inc. System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency
US8180492B2 (en) 2008-07-14 2012-05-15 Ecofactor, Inc. System and method for using a networked electronic device as an occupancy sensor for an energy management system
US8004255B2 (en) 2008-08-07 2011-08-23 The Powerwise Group, Inc. Power supply for IGBT/FET drivers
US9722813B2 (en) * 2008-09-08 2017-08-01 Tendril Networks, Inc. Consumer directed energy management systems and methods
US8977404B2 (en) * 2008-09-08 2015-03-10 Tendril Networks, Inc. Collaborative energy benchmarking systems and methods
US8086356B2 (en) * 2008-10-28 2011-12-27 Al-Mutawa Mahmoud E System for monitoring and controlling the consumption of a utility
US9542658B2 (en) 2008-11-06 2017-01-10 Silver Spring Networks, Inc. System and method for identifying power usage issues
GB2465629A (en) * 2008-11-28 2010-06-02 Darren Murphy A temperature control system with wireless communication to a remote user interface.
US8732501B1 (en) * 2009-02-09 2014-05-20 Cisco Technology, Inc. System and method for intelligent energy management in a network environment
US8352769B1 (en) * 2009-02-09 2013-01-08 Cisco Technology, Inc. System and method for querying for energy data in a network environment
US8970705B2 (en) * 2009-03-20 2015-03-03 Sony Corporation Graphical power meter for consumer televisions
US8498753B2 (en) * 2009-05-08 2013-07-30 Ecofactor, Inc. System, method and apparatus for just-in-time conditioning using a thermostat
US8740100B2 (en) 2009-05-11 2014-06-03 Ecofactor, Inc. System, method and apparatus for dynamically variable compressor delay in thermostat to reduce energy consumption
US8596550B2 (en) 2009-05-12 2013-12-03 Ecofactor, Inc. System, method and apparatus for identifying manual inputs to and adaptive programming of a thermostat
AU2010253739B2 (en) 2009-05-29 2015-07-16 Emerson Climate Technologies Retail Solutions, Inc. System and method for monitoring and evaluating equipment operating parameter modifications
US9026261B2 (en) * 2009-06-08 2015-05-05 Tendril Networks, Inc. Methods and systems for managing energy usage in buildings
GB0911902D0 (en) * 2009-07-09 2009-08-19 Remote Energy Monitoring Holding Near real time commodity display system
BR112012001315A2 (en) * 2009-07-20 2017-07-11 American Power Conv Corp techniques for energy analysis
BR112012005097A2 (en) 2009-09-08 2016-05-03 Powerwise Group Inc energy saving system and method for alternating or rotating mass devices
US8698446B2 (en) 2009-09-08 2014-04-15 The Powerwise Group, Inc. Method to save energy for devices with rotating or reciprocating masses
EP2295892A1 (en) 2009-09-10 2011-03-16 SMA Solar Technology AG Method and Apparatus for determining possible deliverable power for given irradiation conditions
US9471045B2 (en) 2009-09-11 2016-10-18 NetESCO LLC Controlling building systems
US8843416B2 (en) 2009-09-11 2014-09-23 NetESCO LLC Determining energy consumption in a structure
US9766277B2 (en) 2009-09-25 2017-09-19 Belkin International, Inc. Self-calibrating contactless power consumption sensing
US20110082597A1 (en) 2009-10-01 2011-04-07 Edsa Micro Corporation Microgrid model based automated real time simulation for market based electric power system optimization
US20110093221A1 (en) * 2009-10-16 2011-04-21 Savraj Singh Dhanjal System to monitor energy use
US8352082B2 (en) * 2009-12-31 2013-01-08 Schneider Electric USA, Inc. Methods and apparatuses for displaying energy savings from an HVAC system
US9177348B2 (en) * 2010-01-05 2015-11-03 Lg Electronics Inc. Network system
US8996900B2 (en) * 2010-02-04 2015-03-31 Cisco Technology, Inc. System and method for managing power consumption in data propagation environments
WO2011101476A1 (en) * 2010-02-22 2011-08-25 Adriaan Johannes Hoeven Limiter for supply of utility under control of consumption-profile
US10584890B2 (en) 2010-05-26 2020-03-10 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US8556188B2 (en) 2010-05-26 2013-10-15 Ecofactor, Inc. System and method for using a mobile electronic device to optimize an energy management system
US9026812B2 (en) 2010-06-29 2015-05-05 Cisco Technology, Inc. System and method for providing intelligent power management in a network environment
US8972211B2 (en) 2010-07-02 2015-03-03 Belkin International, Inc. System for monitoring electrical power usage of a structure and method of same
US9291694B2 (en) 2010-07-02 2016-03-22 Belkin International, Inc. System and method for monitoring electrical power usage in an electrical power infrastructure of a building
US8090477B1 (en) 2010-08-20 2012-01-03 Ecofactor, Inc. System and method for optimizing use of plug-in air conditioners and portable heaters
DK2429060T3 (en) * 2010-09-09 2014-08-11 Racktivity Nv POWER DISTRIBUTOR UNIT WITH OSCILLOSCOPE FUNCTION
FI20106105A0 (en) 2010-10-25 2010-10-25 Osakeyhtioe Lamit Fi A sensor system to improve the energy performance of a building
CN102539909A (en) * 2010-12-21 2012-07-04 珠海威瀚科技发展有限公司 Electric energy metering module
US20120166233A1 (en) * 2010-12-22 2012-06-28 Alcatel-Lucent Usa Inc. Method And Apparatus For Enhancing Consumer Awareness Of Utility Consumption And Cost Data
WO2012115636A1 (en) * 2011-02-23 2012-08-30 Hewlett-Packard Development Company, L.P. Method and apparatus for managing devices
CN105910247B (en) 2011-02-28 2018-12-14 艾默生电气公司 The monitoring and diagnosis of the HVAC of house solution
EP3001149B1 (en) * 2011-05-06 2017-09-13 Greenwave Systems PTE. LTD. Smart utility meter emulation
US8849473B2 (en) 2011-08-17 2014-09-30 Cisco Technology, Inc. System and method for notifying and for controlling power demand
US9058167B2 (en) 2011-09-06 2015-06-16 Cisco Technology, Inc. Power conservation in a distributed digital video recorder/content delivery network system
US8660868B2 (en) * 2011-09-22 2014-02-25 Sap Ag Energy benchmarking analytics
US8862279B2 (en) 2011-09-28 2014-10-14 Causam Energy, Inc. Systems and methods for optimizing microgrid power generation and management with predictive modeling
US9225173B2 (en) 2011-09-28 2015-12-29 Causam Energy, Inc. Systems and methods for microgrid power generation and management
US8751036B2 (en) 2011-09-28 2014-06-10 Causam Energy, Inc. Systems and methods for microgrid power generation management with selective disconnect
US8771367B2 (en) 2011-09-30 2014-07-08 DePuy Synthes Products, LLC Self centering, anti-seizing acetabular liner
US20130132745A1 (en) 2011-11-22 2013-05-23 Cisco Technology Inc. System and method for network enabled wake for networks
JP5537535B2 (en) * 2011-12-06 2014-07-02 シャープ株式会社 Power consumption display device and power consumption display method
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9141169B2 (en) 2012-01-20 2015-09-22 Cisco Technology, Inc. System and method to conserve power in an access network without loss of service quality
WO2013136295A1 (en) 2012-03-15 2013-09-19 Northstar Telemetrics, S. L. Method for automatically reading a utility meter, retrofittable meter reader and automatic meter reading system using the same
US10048706B2 (en) 2012-06-14 2018-08-14 Ecofactor, Inc. System and method for optimizing use of individual HVAC units in multi-unit chiller-based systems
US10678279B2 (en) 2012-08-01 2020-06-09 Tendril Oe, Llc Optimization of energy use through model-based simulations
IN2015DN01415A (en) * 2012-08-20 2015-07-03 Naturalia Ingredients S R L
US10921835B1 (en) * 2012-09-06 2021-02-16 EnTouch Controls Inc. Wirelessly connected thermostat with flexible and scalable energy reporting
CN102830279B (en) * 2012-09-14 2015-06-03 北京华鑫志和科技有限公司 Data processing device used for electric energy meter and power consumption collector
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9576472B2 (en) 2013-02-06 2017-02-21 Tendril Networks, Inc. Real-time monitoring and dissemination of energy consumption and production data
US8964360B2 (en) 2013-02-06 2015-02-24 Jonathan D. Trout System to connect and multiplex sensor signals
US9423779B2 (en) 2013-02-06 2016-08-23 Tendril Networks, Inc. Dynamically adaptive personalized smart energy profiles
US9310815B2 (en) 2013-02-12 2016-04-12 Tendril Networks, Inc. Setpoint adjustment-based duty cycling
WO2014144446A1 (en) 2013-03-15 2014-09-18 Emerson Electric Co. Hvac system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
CN106030221B (en) 2013-04-05 2018-12-07 艾默生环境优化技术有限公司 Heat pump system with refrigerant charging diagnostic function
US20140324227A1 (en) 2013-04-30 2014-10-30 Honeywell International Inc. Hvac controller having a fixed segment display with an interactive message center
US9454173B2 (en) 2013-05-22 2016-09-27 Utility Programs And Metering Ii, Inc. Predictive alert system for building energy management
US9109922B2 (en) 2013-07-11 2015-08-18 Honeywell International Inc. Magnetically-impervious retrofit kit for a metered-commodity consumption meter
US9958924B2 (en) 2013-08-28 2018-05-01 Cisco Technology, Inc. Configuration of energy savings
US10949923B1 (en) 2013-09-16 2021-03-16 Allstate Insurance Company Home device sensing
TWM482780U (en) * 2013-11-08 2014-07-21 Ace Dragon Corp Data collecting system and data collector
US10430887B1 (en) 2014-02-21 2019-10-01 Allstate Insurance Company Device sensing
US10380692B1 (en) * 2014-02-21 2019-08-13 Allstate Insurance Company Home device sensing
US10467701B1 (en) 2014-03-10 2019-11-05 Allstate Insurance Company Home event detection and processing
US9503623B2 (en) 2014-06-03 2016-11-22 Applied Minds, Llc Color night vision cameras, systems, and methods thereof
JP6765365B2 (en) 2014-09-04 2020-10-07 ユニヴァーシティ オブ ワシントン Detection of user-driven operating state of electrical devices from a single sensing point
US10116560B2 (en) 2014-10-20 2018-10-30 Causam Energy, Inc. Systems, methods, and apparatus for communicating messages of distributed private networks over multiple public communication networks
FR3033898B1 (en) * 2015-03-18 2018-07-27 Electricite De France DEVICE AND METHOD FOR TRANSMITTING DATA FROM AN ELECTRIC COUNTER
TWI549088B (en) * 2015-03-19 2016-09-11 Electricity charging method
US20170090427A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Utility provisioning with iot analytics
GB2545498B (en) 2015-12-18 2021-03-03 Stark Software Int Ltd Meter reader and meter reading system
WO2017173406A1 (en) 2016-04-01 2017-10-05 Tendril Networks, Inc. Orchestrated energy
US10235516B2 (en) 2016-05-10 2019-03-19 Cisco Technology, Inc. Method for authenticating a networked endpoint using a physical (power) challenge
CN107167172A (en) * 2017-04-17 2017-09-15 江苏大学 A kind of on-line monitoring method of bus type automobile digital instrument pointer functionality
US10948132B2 (en) 2017-05-08 2021-03-16 64Seconds, Inc. Integrity assessment of a pipeline network
CA3147754A1 (en) 2019-07-24 2021-01-28 Adriana KNATCHBULL-HUGESSEN Adaptive thermal comfort learning for optimized hvac control
CN112858779B (en) * 2021-01-20 2022-05-20 国网浙江省电力有限公司营销服务中心 Metering method and system for medium and low voltage direct current transmission system

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132981A (en) * 1976-10-21 1979-01-02 Rockwell International Corporation Self-powered system for measuring and storing consumption of utility meter
US4216384A (en) * 1977-12-09 1980-08-05 Directed Energy Systems, Inc. System for monitoring and controlling electric power consumption
US4291375A (en) * 1979-03-30 1981-09-22 Westinghouse Electric Corp. Portable programmer-reader unit for programmable time registering electric energy meters
US4322842A (en) * 1979-10-23 1982-03-30 Altran Electronics Broadcast system for distribution automation and remote metering
US4327362A (en) * 1978-10-23 1982-04-27 Rockwell International Corporation Meter rotor rotation optical sensor
US4350980A (en) * 1980-02-21 1982-09-21 Energy Optics, Inc. Electric meter consumption and demand communicator
US4390876A (en) * 1980-07-25 1983-06-28 Southern California Edison Co., Inc. Electric utility demand limiting device and method
US4399510A (en) * 1979-04-03 1983-08-16 Nuclear Systems, Inc. System for monitoring utility usage
US4463354A (en) * 1981-12-09 1984-07-31 Sears Lawrence M Apparatus for communicating utility usage related information from a utility usage location to a portable utility usage registering device
US4467434A (en) * 1981-09-18 1984-08-21 Mcgraw-Edison Co. Solid state watt-hour meter
US4646084A (en) * 1985-06-21 1987-02-24 Energy Innovations, Inc. Meter reading methods and apparatus
US4652877A (en) * 1983-07-01 1987-03-24 Rockwell International Corporation Meter data gathering and transmission system
US4707852A (en) * 1981-10-09 1987-11-17 Systems And Support, Incorporated Utility usage data and event data acquisition system
US4747041A (en) * 1983-06-27 1988-05-24 Unisys Corporation Automatic power control system which automatically activates and deactivates power to selected peripheral devices based upon system requirement
US4758836A (en) * 1983-06-20 1988-07-19 Rockwell International Corporation Inductive coupling system for the bi-directional transmission of digital data
US4782341A (en) * 1983-07-01 1988-11-01 Rockwell International Corporation Meter data gathering and transmission system
US4783623A (en) * 1986-08-29 1988-11-08 Domestic Automation Company Device for use with a utility meter for recording time of energy use
US4803632A (en) * 1986-05-09 1989-02-07 Utility Systems Corporation Intelligent utility meter system
US4804957A (en) * 1985-11-27 1989-02-14 Triad Communications, Inc. Utility meter and submetering system
US4833618A (en) * 1986-02-20 1989-05-23 Net Laboratories, Inc. System for automatically reading utility meters from a remote location
US4884021A (en) * 1987-04-24 1989-11-28 Transdata, Inc. Digital power metering
US4939728A (en) * 1987-11-10 1990-07-03 Echelon Systems Corp. Network and intelligent cell for providing sensing bidirectional communications and control
US4973901A (en) * 1990-04-05 1990-11-27 General Electric Company Compensating for power outrage in electric energy meter
US5002226A (en) * 1990-01-16 1991-03-26 Honeywell, Inc. Thermostat with mechanical heat anticipation and droop control
US5086385A (en) * 1989-01-31 1992-02-04 Custom Command Systems Expandable home automation system
US5111407A (en) * 1989-08-25 1992-05-05 Arad Ltd. System for measuring and recording a utility consumption
US5214587A (en) * 1990-11-28 1993-05-25 Green Richard G Device for monitoring utility usage
US5252967A (en) * 1990-05-25 1993-10-12 Schlumberger Industries, Inc. Reader/programmer for two and three wire utility data communications system
US5278551A (en) * 1989-03-20 1994-01-11 Nitto Kohki Co., Ltd. Meter reading system
US5298894A (en) * 1992-06-17 1994-03-29 Badger Meter, Inc. Utility meter transponder/antenna assembly for underground installations
US5333183A (en) * 1992-03-13 1994-07-26 Moscom Corporation Universal MDR data record collection and reporting system
US5384712A (en) * 1991-08-15 1995-01-24 Eaton Corporation Energy monitoring system for a plurality of local stations with snapshot polling from a central station
US5391983A (en) * 1991-10-08 1995-02-21 K C Corp. Solid state electric power usage meter and method for determining power usage
US5446677A (en) * 1994-04-28 1995-08-29 Johnson Service Company Diagnostic system for use in an environment control network
US5493287A (en) * 1994-03-07 1996-02-20 Motorola, Inc. Method of remotely reading a group of meters
US5495239A (en) * 1994-08-02 1996-02-27 General Electric Company Method and apparatus for communicating with a plurality of electrical metering devices and a system control center with a mobile node
US5502339A (en) * 1989-09-07 1996-03-26 The Trustees Of Boston University Subscriber electric power load control system
US5506404A (en) * 1993-09-08 1996-04-09 Milan-Kamski; W. J. Retrofitting device providing automatic reading capability for metering systems
US5511188A (en) * 1990-01-30 1996-04-23 Johnson Service Company Networked facilities management system with time stamp comparison for data base updates
US5523751A (en) * 1993-04-22 1996-06-04 Thames Water Utilities Limited Reading of meters
US5541589A (en) * 1994-12-15 1996-07-30 Delaney; Patrick J. Power meter data acquisition and control system
US5550988A (en) * 1994-03-01 1996-08-27 Intel Corporation Apparatus and method for performing error correction in a multi-processor system
US5553609A (en) * 1995-02-09 1996-09-10 Visiting Nurse Service, Inc. Intelligent remote visual monitoring system for home health care service
US5555195A (en) * 1994-07-22 1996-09-10 Johnson Service Company Controller for use in an environment control network capable of storing diagnostic information
US5559894A (en) * 1993-06-28 1996-09-24 Lubliner; David J. Automated meter inspection and reading
US5572438A (en) * 1995-01-05 1996-11-05 Teco Energy Management Services Engery management and building automation system
US5602744A (en) * 1994-09-29 1997-02-11 Meek; Jean L. Universal send/receive utility usage data gathering system
US5619192A (en) * 1994-06-14 1997-04-08 Logicon, Inc. Apparatus and method for reading utility meters
US5669276A (en) * 1996-06-04 1997-09-23 Spacek; Timothy Apparatus for cable stripping
US5678042A (en) * 1993-11-15 1997-10-14 Seagate Technology, Inc. Network management system having historical virtual catalog snapshots for overview of historical changes to files distributively stored across network domain
US5684826A (en) * 1996-02-08 1997-11-04 Acex Technologies, Inc. RS-485 multipoint power line modem
US5721934A (en) * 1994-06-29 1998-02-24 Intel Corporation Retrofit external power saving system and method for use
US5721659A (en) * 1996-04-25 1998-02-24 Rabun Labs, Inc. Apparatus for protecting electrical and electronic equipment and associated method
US5742762A (en) * 1995-05-19 1998-04-21 Telogy Networks, Inc. Network management gateway
US5767790A (en) * 1996-03-07 1998-06-16 Jovellana; Bartolome D. Automatic utility meter monitor
US5805458A (en) * 1993-08-11 1998-09-08 First Pacific Networks System for utility demand monitoring and control
US5804802A (en) * 1996-02-14 1998-09-08 United Parcel Service Of America, Inc. Two-way data communication manager
US5880464A (en) * 1997-06-09 1999-03-09 Diablo Research Corporation Optical meter reader using a shadow
US5913036A (en) * 1996-06-28 1999-06-15 Mci Communications Corporation Raw performance monitoring correlated problem alert signals
US5924486A (en) * 1997-10-29 1999-07-20 Tecom, Inc. Environmental condition control and energy management system and method
US5926486A (en) * 1997-11-25 1999-07-20 Fairchild Semiconductor Corporation Automated system for determining the dynamic thresholds of digital logic devices
US5926776A (en) * 1997-06-04 1999-07-20 Gas Research Institute Smart thermostat having a transceiver interface
US5968176A (en) * 1997-05-29 1999-10-19 3Com Corporation Multilayer firewall system
US5994892A (en) * 1996-07-31 1999-11-30 Sacramento Municipal Utility District Integrated circuit design automatic utility meter: apparatus & method
US6012152A (en) * 1996-11-27 2000-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Software fault management system
US6087959A (en) * 1998-05-26 2000-07-11 Diablo Research Company, Llc Optically coupled gas meter
US6098893A (en) * 1998-10-22 2000-08-08 Honeywell Inc. Comfort control system incorporating weather forecast data and a method for operating such a system
US6118269A (en) * 1997-03-26 2000-09-12 Comverge Technologies, Inc. Electric meter tamper detection circuit for sensing electric meter removal
US6134655A (en) * 1992-05-13 2000-10-17 Comverge Technologies, Inc. Method and apparatus for initializing a microprocessor to insure fault-free operation
US6178362B1 (en) * 1998-09-24 2001-01-23 Silicon Energy Corp. Energy management system and method
US6181257B1 (en) * 1994-09-29 2001-01-30 Kemp-Meek Manufacturing, Inc. Universal utility usage data gathering system
US6208266B1 (en) * 1995-08-23 2001-03-27 Scientific Telemetry Corporation Remote data acquisition and processing system
US6226600B1 (en) * 1998-08-03 2001-05-01 Rodenberg, Iii Ernest A. Programmable electricity consumption monitor
US6262672B1 (en) * 1998-08-14 2001-07-17 General Electric Company Reduced cost automatic meter reading system and method using locally communicating utility meters
US6301674B1 (en) * 1996-09-13 2001-10-09 Kabushiki Kaisha Toshiba Power control method, power control system and computer program product for supplying power to a plurality of electric apparatuses connected to a power line
US6311105B1 (en) * 1998-05-29 2001-10-30 Powerweb, Inc. Multi-utility energy control system
US6351693B1 (en) * 1999-01-22 2002-02-26 Honeywell International Inc. Computerized system for controlling thermostats
US6363422B1 (en) * 1998-06-24 2002-03-26 Robert R. Hunter Multi-capability facilities monitoring and control intranet for facilities management system
US6429642B1 (en) * 1997-05-08 2002-08-06 Vicente Rodilla Sala Programmable monitoring device for electric consumption
US6476728B1 (en) * 1998-11-16 2002-11-05 Canon Kabushiki Kaisha Power consumption management apparatus and method
US6483291B1 (en) * 2000-05-26 2002-11-19 Chander P. Bhateja Apparatus for measuring electrical power consumption
US6542791B1 (en) * 1998-05-21 2003-04-01 The Research Foundation Of State University Of New York Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading
US6574104B2 (en) * 2001-10-05 2003-06-03 Hewlett-Packard Development Company L.P. Smart cooling of data centers
US6577962B1 (en) * 2000-09-28 2003-06-10 Silicon Energy, Inc. System and method for forecasting energy usage load
US6618709B1 (en) * 1998-04-03 2003-09-09 Enerwise Global Technologies, Inc. Computer assisted and/or implemented process and architecture for web-based monitoring of energy related usage, and client accessibility therefor
US6619055B1 (en) * 2002-03-20 2003-09-16 Honeywell International Inc. Security system with wireless thermostat and method of operation thereof
US6622097B2 (en) * 2001-06-28 2003-09-16 Robert R. Hunter Method and apparatus for reading and controlling electric power consumption
US6636893B1 (en) * 1998-09-24 2003-10-21 Itron, Inc. Web bridged energy management system and method
US6639893B1 (en) * 1998-03-30 2003-10-28 Kabushiki Kaisha Toshiba Communication network system including ring network that performs communication through multiple switching devices
US6728646B2 (en) * 1998-02-23 2004-04-27 Enerwise Global Technologies, Inc. Energy information system and sub-measurement board for use therewith
US6747571B2 (en) * 1999-03-08 2004-06-08 Comverge Technologies, Inc. Utility meter interface system
US6772052B1 (en) * 1998-04-07 2004-08-03 It & Process As System for controlling power consumption at a user of electric power
US6826695B1 (en) * 2000-01-04 2004-11-30 International Business Machines Corporation Method and system for grouping of systems in heterogeneous computer network

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549274A (en) * 1983-07-11 1985-10-22 Honeywell Inc. Distributed electric power demand control
US4680704A (en) * 1984-12-28 1987-07-14 Telemeter Corporation Optical sensor apparatus and method for remotely monitoring a utility meter or the like
US4881070A (en) * 1985-06-21 1989-11-14 Energy Innovations, Inc. Meter reading methods and apparatus
US4792677A (en) * 1986-08-29 1988-12-20 Domestic Automation Company, Inc. System for use with a utility meter for recording time of energy use
US5140351A (en) * 1987-08-24 1992-08-18 Tel-Transfer Systems, Inc. Remote meter reading method and apparatus
US4987363A (en) * 1989-09-25 1991-01-22 Landis & Gyr Metering, Inc. Electric energy meter with power outage recovery circuit
DE69128304T2 (en) 1990-06-04 1998-06-18 Canarias Union Electrica Autonomous system for reading and recording pulses
US5589764A (en) 1991-03-05 1996-12-31 Lee; Graham S. Meter for measuring accumulated power consumption of an electrical appliance during operation of the appliance
US5414640A (en) * 1991-07-05 1995-05-09 Johnson Service Company Method and apparatus for adaptive demand limiting electric consumption through load shedding
US5699276A (en) 1995-12-15 1997-12-16 Roos; Charles E. Utility meter providing an interface between a digital network and home electronics
US6150955A (en) * 1996-10-28 2000-11-21 Tracy Corporation Ii Apparatus and method for transmitting data via a digital control channel of a digital wireless network
US6167389A (en) 1996-12-23 2000-12-26 Comverge Technologies, Inc. Method and apparatus using distributed intelligence for applying real time pricing and time of use rates in wide area network including a headend and subscriber
US5852658A (en) * 1997-06-12 1998-12-22 Knight; Nelson E. Remote meter reading system
US6828695B1 (en) 2001-04-09 2004-12-07 Rick L. Hansen System, apparatus and method for energy distribution monitoring and control and information transmission
US20030009401A1 (en) * 2001-04-27 2003-01-09 Enerwise Global Technologies, Inc. Computerized utility cost estimation method and system

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132981A (en) * 1976-10-21 1979-01-02 Rockwell International Corporation Self-powered system for measuring and storing consumption of utility meter
US4216384A (en) * 1977-12-09 1980-08-05 Directed Energy Systems, Inc. System for monitoring and controlling electric power consumption
US4327362A (en) * 1978-10-23 1982-04-27 Rockwell International Corporation Meter rotor rotation optical sensor
US4291375A (en) * 1979-03-30 1981-09-22 Westinghouse Electric Corp. Portable programmer-reader unit for programmable time registering electric energy meters
US4399510A (en) * 1979-04-03 1983-08-16 Nuclear Systems, Inc. System for monitoring utility usage
US4322842A (en) * 1979-10-23 1982-03-30 Altran Electronics Broadcast system for distribution automation and remote metering
US4350980A (en) * 1980-02-21 1982-09-21 Energy Optics, Inc. Electric meter consumption and demand communicator
US4390876A (en) * 1980-07-25 1983-06-28 Southern California Edison Co., Inc. Electric utility demand limiting device and method
US4467434A (en) * 1981-09-18 1984-08-21 Mcgraw-Edison Co. Solid state watt-hour meter
US4707852A (en) * 1981-10-09 1987-11-17 Systems And Support, Incorporated Utility usage data and event data acquisition system
US4463354A (en) * 1981-12-09 1984-07-31 Sears Lawrence M Apparatus for communicating utility usage related information from a utility usage location to a portable utility usage registering device
US4758836A (en) * 1983-06-20 1988-07-19 Rockwell International Corporation Inductive coupling system for the bi-directional transmission of digital data
US4747041A (en) * 1983-06-27 1988-05-24 Unisys Corporation Automatic power control system which automatically activates and deactivates power to selected peripheral devices based upon system requirement
US4652877A (en) * 1983-07-01 1987-03-24 Rockwell International Corporation Meter data gathering and transmission system
US4782341A (en) * 1983-07-01 1988-11-01 Rockwell International Corporation Meter data gathering and transmission system
US4646084A (en) * 1985-06-21 1987-02-24 Energy Innovations, Inc. Meter reading methods and apparatus
US4804957A (en) * 1985-11-27 1989-02-14 Triad Communications, Inc. Utility meter and submetering system
US4833618A (en) * 1986-02-20 1989-05-23 Net Laboratories, Inc. System for automatically reading utility meters from a remote location
US4803632A (en) * 1986-05-09 1989-02-07 Utility Systems Corporation Intelligent utility meter system
US4783623A (en) * 1986-08-29 1988-11-08 Domestic Automation Company Device for use with a utility meter for recording time of energy use
US4884021A (en) * 1987-04-24 1989-11-28 Transdata, Inc. Digital power metering
US4939728A (en) * 1987-11-10 1990-07-03 Echelon Systems Corp. Network and intelligent cell for providing sensing bidirectional communications and control
US5086385A (en) * 1989-01-31 1992-02-04 Custom Command Systems Expandable home automation system
US5278551A (en) * 1989-03-20 1994-01-11 Nitto Kohki Co., Ltd. Meter reading system
US5111407A (en) * 1989-08-25 1992-05-05 Arad Ltd. System for measuring and recording a utility consumption
US5502339A (en) * 1989-09-07 1996-03-26 The Trustees Of Boston University Subscriber electric power load control system
US5002226A (en) * 1990-01-16 1991-03-26 Honeywell, Inc. Thermostat with mechanical heat anticipation and droop control
US5522044A (en) * 1990-01-30 1996-05-28 Johnson Service Company Networked facilities management system
US5511188A (en) * 1990-01-30 1996-04-23 Johnson Service Company Networked facilities management system with time stamp comparison for data base updates
US4973901A (en) * 1990-04-05 1990-11-27 General Electric Company Compensating for power outrage in electric energy meter
US5252967A (en) * 1990-05-25 1993-10-12 Schlumberger Industries, Inc. Reader/programmer for two and three wire utility data communications system
US5214587A (en) * 1990-11-28 1993-05-25 Green Richard G Device for monitoring utility usage
US5384712A (en) * 1991-08-15 1995-01-24 Eaton Corporation Energy monitoring system for a plurality of local stations with snapshot polling from a central station
US5548209A (en) * 1991-10-08 1996-08-20 Kc Corporation Solid state electric power usage meter and method for determining power usage
US5391983A (en) * 1991-10-08 1995-02-21 K C Corp. Solid state electric power usage meter and method for determining power usage
US5333183A (en) * 1992-03-13 1994-07-26 Moscom Corporation Universal MDR data record collection and reporting system
US6134655A (en) * 1992-05-13 2000-10-17 Comverge Technologies, Inc. Method and apparatus for initializing a microprocessor to insure fault-free operation
US5298894A (en) * 1992-06-17 1994-03-29 Badger Meter, Inc. Utility meter transponder/antenna assembly for underground installations
US5523751A (en) * 1993-04-22 1996-06-04 Thames Water Utilities Limited Reading of meters
US5559894A (en) * 1993-06-28 1996-09-24 Lubliner; David J. Automated meter inspection and reading
US5805458A (en) * 1993-08-11 1998-09-08 First Pacific Networks System for utility demand monitoring and control
US5506404A (en) * 1993-09-08 1996-04-09 Milan-Kamski; W. J. Retrofitting device providing automatic reading capability for metering systems
US5678042A (en) * 1993-11-15 1997-10-14 Seagate Technology, Inc. Network management system having historical virtual catalog snapshots for overview of historical changes to files distributively stored across network domain
US5550988A (en) * 1994-03-01 1996-08-27 Intel Corporation Apparatus and method for performing error correction in a multi-processor system
US5493287A (en) * 1994-03-07 1996-02-20 Motorola, Inc. Method of remotely reading a group of meters
US5446677A (en) * 1994-04-28 1995-08-29 Johnson Service Company Diagnostic system for use in an environment control network
US5619192A (en) * 1994-06-14 1997-04-08 Logicon, Inc. Apparatus and method for reading utility meters
US5721934A (en) * 1994-06-29 1998-02-24 Intel Corporation Retrofit external power saving system and method for use
US5555195A (en) * 1994-07-22 1996-09-10 Johnson Service Company Controller for use in an environment control network capable of storing diagnostic information
US5495239A (en) * 1994-08-02 1996-02-27 General Electric Company Method and apparatus for communicating with a plurality of electrical metering devices and a system control center with a mobile node
US5602744A (en) * 1994-09-29 1997-02-11 Meek; Jean L. Universal send/receive utility usage data gathering system
US6181257B1 (en) * 1994-09-29 2001-01-30 Kemp-Meek Manufacturing, Inc. Universal utility usage data gathering system
US5808558A (en) * 1994-09-29 1998-09-15 Kemp Meek Manufacturing, Inc. Remote universal send/receive utility usage data gathering system
US5541589A (en) * 1994-12-15 1996-07-30 Delaney; Patrick J. Power meter data acquisition and control system
US5684710A (en) * 1995-01-05 1997-11-04 Tecom Inc. System for measuring electrical power interruptions
US5572438A (en) * 1995-01-05 1996-11-05 Teco Energy Management Services Engery management and building automation system
US5553609A (en) * 1995-02-09 1996-09-10 Visiting Nurse Service, Inc. Intelligent remote visual monitoring system for home health care service
US5742762A (en) * 1995-05-19 1998-04-21 Telogy Networks, Inc. Network management gateway
US6208266B1 (en) * 1995-08-23 2001-03-27 Scientific Telemetry Corporation Remote data acquisition and processing system
US5684826A (en) * 1996-02-08 1997-11-04 Acex Technologies, Inc. RS-485 multipoint power line modem
US5804802A (en) * 1996-02-14 1998-09-08 United Parcel Service Of America, Inc. Two-way data communication manager
US5767790A (en) * 1996-03-07 1998-06-16 Jovellana; Bartolome D. Automatic utility meter monitor
US5721659A (en) * 1996-04-25 1998-02-24 Rabun Labs, Inc. Apparatus for protecting electrical and electronic equipment and associated method
US5669276A (en) * 1996-06-04 1997-09-23 Spacek; Timothy Apparatus for cable stripping
US5913036A (en) * 1996-06-28 1999-06-15 Mci Communications Corporation Raw performance monitoring correlated problem alert signals
US5994892A (en) * 1996-07-31 1999-11-30 Sacramento Municipal Utility District Integrated circuit design automatic utility meter: apparatus & method
US6301674B1 (en) * 1996-09-13 2001-10-09 Kabushiki Kaisha Toshiba Power control method, power control system and computer program product for supplying power to a plurality of electric apparatuses connected to a power line
US6012152A (en) * 1996-11-27 2000-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Software fault management system
US6118269A (en) * 1997-03-26 2000-09-12 Comverge Technologies, Inc. Electric meter tamper detection circuit for sensing electric meter removal
US6362745B1 (en) * 1997-03-26 2002-03-26 Comverge Technologies, Inc. Method of detecting tamper of an electric meter
US6429642B1 (en) * 1997-05-08 2002-08-06 Vicente Rodilla Sala Programmable monitoring device for electric consumption
US5968176A (en) * 1997-05-29 1999-10-19 3Com Corporation Multilayer firewall system
US5926776A (en) * 1997-06-04 1999-07-20 Gas Research Institute Smart thermostat having a transceiver interface
US5880464A (en) * 1997-06-09 1999-03-09 Diablo Research Corporation Optical meter reader using a shadow
US5924486A (en) * 1997-10-29 1999-07-20 Tecom, Inc. Environmental condition control and energy management system and method
US6216956B1 (en) * 1997-10-29 2001-04-17 Tocom, Inc. Environmental condition control and energy management system and method
US5926486A (en) * 1997-11-25 1999-07-20 Fairchild Semiconductor Corporation Automated system for determining the dynamic thresholds of digital logic devices
US6728646B2 (en) * 1998-02-23 2004-04-27 Enerwise Global Technologies, Inc. Energy information system and sub-measurement board for use therewith
US6639893B1 (en) * 1998-03-30 2003-10-28 Kabushiki Kaisha Toshiba Communication network system including ring network that performs communication through multiple switching devices
US6618709B1 (en) * 1998-04-03 2003-09-09 Enerwise Global Technologies, Inc. Computer assisted and/or implemented process and architecture for web-based monitoring of energy related usage, and client accessibility therefor
US6772052B1 (en) * 1998-04-07 2004-08-03 It & Process As System for controlling power consumption at a user of electric power
US6542791B1 (en) * 1998-05-21 2003-04-01 The Research Foundation Of State University Of New York Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading
US6087959A (en) * 1998-05-26 2000-07-11 Diablo Research Company, Llc Optically coupled gas meter
US6311105B1 (en) * 1998-05-29 2001-10-30 Powerweb, Inc. Multi-utility energy control system
US6363422B1 (en) * 1998-06-24 2002-03-26 Robert R. Hunter Multi-capability facilities monitoring and control intranet for facilities management system
US6226600B1 (en) * 1998-08-03 2001-05-01 Rodenberg, Iii Ernest A. Programmable electricity consumption monitor
US6262672B1 (en) * 1998-08-14 2001-07-17 General Electric Company Reduced cost automatic meter reading system and method using locally communicating utility meters
US6636893B1 (en) * 1998-09-24 2003-10-21 Itron, Inc. Web bridged energy management system and method
US6178362B1 (en) * 1998-09-24 2001-01-23 Silicon Energy Corp. Energy management system and method
US6098893A (en) * 1998-10-22 2000-08-08 Honeywell Inc. Comfort control system incorporating weather forecast data and a method for operating such a system
US6476728B1 (en) * 1998-11-16 2002-11-05 Canon Kabushiki Kaisha Power consumption management apparatus and method
US6351693B1 (en) * 1999-01-22 2002-02-26 Honeywell International Inc. Computerized system for controlling thermostats
US6747571B2 (en) * 1999-03-08 2004-06-08 Comverge Technologies, Inc. Utility meter interface system
US6826695B1 (en) * 2000-01-04 2004-11-30 International Business Machines Corporation Method and system for grouping of systems in heterogeneous computer network
US6483291B1 (en) * 2000-05-26 2002-11-19 Chander P. Bhateja Apparatus for measuring electrical power consumption
US6577962B1 (en) * 2000-09-28 2003-06-10 Silicon Energy, Inc. System and method for forecasting energy usage load
US6622097B2 (en) * 2001-06-28 2003-09-16 Robert R. Hunter Method and apparatus for reading and controlling electric power consumption
US6574104B2 (en) * 2001-10-05 2003-06-03 Hewlett-Packard Development Company L.P. Smart cooling of data centers
US6619055B1 (en) * 2002-03-20 2003-09-16 Honeywell International Inc. Security system with wireless thermostat and method of operation thereof

Cited By (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8448845B2 (en) 2003-06-13 2013-05-28 Arad Measuring Technologies Ltd. Meter register and remote meter reader utilizing a stepper motor
US8157160B2 (en) * 2003-06-13 2012-04-17 Arad Measuring Technologies Ltd. Meter register and remote meter reader utilizing a stepper motor
US20100302061A1 (en) * 2003-06-13 2010-12-02 Arad Measuring Technologies Ltd. Meter Register and Remote Meter Reader Utilizing a Stepper Motor
US7265747B2 (en) * 2003-11-05 2007-09-04 E.G.O. Elektro-Geraetebau Gmbh Optically based operating device for a household appliance
US20060187200A1 (en) * 2003-11-05 2006-08-24 E.G.O. Elektro-Geraetebau Gmbh Optically based operating device for a household appliance
US7215109B2 (en) 2004-02-06 2007-05-08 Utility Programs And Metering, Inc. Electric power usage and demand reporting system
US20060001414A1 (en) * 2004-02-06 2006-01-05 Angerame Richard A Electric power usage and demand reporting system
US20060038672A1 (en) * 2004-07-02 2006-02-23 Optimal Licensing Corporation System and method for delivery and management of end-user services
GB2420863A (en) * 2004-12-08 2006-06-07 Bewire Facilities Man Ltd Energy management display system
US20060168479A1 (en) * 2005-01-25 2006-07-27 Seagate Technology Llc Real time event logging and analysis in a software system
US20070038563A1 (en) * 2005-08-15 2007-02-15 Eric Ryzerski Systems and methods for managing buildings and finances
US20070124109A1 (en) * 2005-11-29 2007-05-31 Elster Electricity, Llc Fuzzy time-of-use metering and consumption monitoring using load profile data from relative time transmit-only devices
US7236908B2 (en) 2005-11-29 2007-06-26 Elster Electricity, Llc Fuzzy time-of-use metering and consumption monitoring using load profile data from relative time transmit-only devices
US8458312B2 (en) 2006-03-16 2013-06-04 Us Beverage Net Inc. Distributed intelligent systems and methods therefor
US20130262280A1 (en) * 2006-11-16 2013-10-03 Keith Voysey Building Optimization Platform And Web-Based Invoicing System
US20150227992A1 (en) * 2006-11-16 2015-08-13 Genea Energy Partners, Inc. Building Optimization Platform And Web-Based Invoicing System
US8325057B2 (en) 2007-02-02 2012-12-04 Aztech Associates, Inc. Utility monitoring device, system and method
US9558655B2 (en) * 2007-02-02 2017-01-31 Aztech Associates, Inc. Utility monitoring device, system and method
US9171458B2 (en) 2007-02-02 2015-10-27 Aztech Associates, Inc. Utility monitoring device, system and method
US9852486B2 (en) 2007-02-02 2017-12-26 Aztech Associates Inc. Utility monitoring device, system and method
WO2008092268A1 (en) * 2007-02-02 2008-08-07 Aztech Associates Inc. Utility monitoring device, system and method
US20150204691A1 (en) * 2007-02-02 2015-07-23 Aztech Associates, Inc. Utility monitoring device, system and method
US20080218319A1 (en) * 2007-03-07 2008-09-11 Optimal Licensing Corporation Systems and methods for linking utility control devices
US20080275802A1 (en) * 2007-05-03 2008-11-06 Verfuerth Neal R System and method for a utility financial model
US9521726B2 (en) 2007-05-03 2016-12-13 Orion Energy Systems, Inc. Lighting systems and methods for displacing energy consumption using natural lighting fixtures
US8884203B2 (en) 2007-05-03 2014-11-11 Orion Energy Systems, Inc. Lighting systems and methods for displacing energy consumption using natural lighting fixtures
US8626643B2 (en) 2007-05-03 2014-01-07 Orion Energy Systems, Inc. System and method for a utility financial model
US11202355B2 (en) 2007-06-29 2021-12-14 Orion Energy Systems, Inc. Outdoor lighting fixture and camera systems
US9146012B2 (en) 2007-06-29 2015-09-29 Orion Energy Systems, Inc. Lighting device
US11432390B2 (en) 2007-06-29 2022-08-30 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US8445826B2 (en) 2007-06-29 2013-05-21 Orion Energy Systems, Inc. Outdoor lighting systems and methods for wireless network communications
US8921751B2 (en) 2007-06-29 2014-12-30 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US11026302B2 (en) 2007-06-29 2021-06-01 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US8779340B2 (en) 2007-06-29 2014-07-15 Orion Energy Systems, Inc. Lighting fixture control systems and methods
US8729446B2 (en) 2007-06-29 2014-05-20 Orion Energy Systems, Inc. Outdoor lighting fixtures for controlling traffic lights
US10098213B2 (en) 2007-06-29 2018-10-09 Orion Energy Systems, Inc. Lighting fixture control systems and methods
US8586902B2 (en) 2007-06-29 2013-11-19 Orion Energy Systems, Inc. Outdoor lighting fixture and camera systems
US20100061088A1 (en) * 2007-06-29 2010-03-11 Orion Energy Systems, Inc. Lighting device
US10187557B2 (en) 2007-06-29 2019-01-22 Orion Energy Systems, Inc. Outdoor lighting fixture and camera systems
US8476565B2 (en) 2007-06-29 2013-07-02 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US10206265B2 (en) 2007-06-29 2019-02-12 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US8450670B2 (en) 2007-06-29 2013-05-28 Orion Energy Systems, Inc. Lighting fixture control systems and methods
US10694594B2 (en) 2007-06-29 2020-06-23 Orion Energy Systems, Inc. Lighting fixture control systems and methods
US10694605B2 (en) 2007-06-29 2020-06-23 Orion Energy Systems, Inc. Outdoor lighting fixtures control systems and methods
US8376600B2 (en) 2007-06-29 2013-02-19 Orion Energy Systems, Inc. Lighting device
US20110172837A1 (en) * 2007-08-28 2011-07-14 Forbes Jr Joseph W System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US9899836B2 (en) 2007-08-28 2018-02-20 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US11735915B2 (en) 2007-08-28 2023-08-22 Causam Enterprises, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US8396606B2 (en) 2007-08-28 2013-03-12 Consert Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US10396592B2 (en) 2007-08-28 2019-08-27 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US8315717B2 (en) 2007-08-28 2012-11-20 Consert Inc. Method and apparatus for actively managing consumption of electric power supplied by an electric utility
US8307225B2 (en) 2007-08-28 2012-11-06 Consert Inc. Method and apparatus for actively managing consumption of electric power supplied by one or more electric utilities
US8260470B2 (en) 2007-08-28 2012-09-04 Consert, Inc. System and method for selective disconnection of electrical service to end customers
US8527107B2 (en) 2007-08-28 2013-09-03 Consert Inc. Method and apparatus for effecting controlled restart of electrical servcie with a utility service area
US8542685B2 (en) 2007-08-28 2013-09-24 Consert, Inc. System and method for priority delivery of load management messages on IP-based networks
US10389115B2 (en) 2007-08-28 2019-08-20 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US20090063228A1 (en) * 2007-08-28 2009-03-05 Forbes Jr Joseph W Method and apparatus for providing a virtual electric utility
US8145361B2 (en) 2007-08-28 2012-03-27 Consert, Inc. System and method for manipulating controlled energy using devices to manage customer bills
US8131403B2 (en) 2007-08-28 2012-03-06 Consert, Inc. System and method for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US10833504B2 (en) 2007-08-28 2020-11-10 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US8700187B2 (en) 2007-08-28 2014-04-15 Consert Inc. Method and apparatus for actively managing consumption of electric power supplied by one or more electric utilities
US10985556B2 (en) 2007-08-28 2021-04-20 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US8032233B2 (en) 2007-08-28 2011-10-04 Consert Inc. Method and apparatus for actively managing consumption of electric power supplied by an electric utility
US10303194B2 (en) 2007-08-28 2019-05-28 Causam Energy, Inc System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US8806239B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US8805552B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US11733726B2 (en) 2007-08-28 2023-08-22 Causam Enterprises, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US8855279B2 (en) 2007-08-28 2014-10-07 Consert Inc. Apparatus and method for controlling communications to and from utility service points
US10295969B2 (en) 2007-08-28 2019-05-21 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US8010812B2 (en) * 2007-08-28 2011-08-30 Forbes Jr Joseph W Method and apparatus for actively managing consumption of electric power supplied by one or more electric utilities
US8890505B2 (en) 2007-08-28 2014-11-18 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US10116134B2 (en) 2007-08-28 2018-10-30 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US11022995B2 (en) 2007-08-28 2021-06-01 Causam Enterprises, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US8996183B2 (en) 2007-08-28 2015-03-31 Consert Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US9069337B2 (en) 2007-08-28 2015-06-30 Consert Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US10394268B2 (en) 2007-08-28 2019-08-27 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US20110172841A1 (en) * 2007-08-28 2011-07-14 Forbes Jr Joseph W Method and Apparatus for Actively Managing Consumption of Electric Power Supplied by One or More Electric Utilities
US9130402B2 (en) 2007-08-28 2015-09-08 Causam Energy, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US11025057B2 (en) 2007-08-28 2021-06-01 Causam Enterprises, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US20110029655A1 (en) * 2007-08-28 2011-02-03 Forbes Jr Joseph W Apparatus and Method for Controlling Communications to and from Utility Service Points
US9177323B2 (en) 2007-08-28 2015-11-03 Causam Energy, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US9881259B2 (en) 2007-08-28 2018-01-30 Landis+Gyr Innovations, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US11650612B2 (en) 2007-08-28 2023-05-16 Causam Enterprises, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US20100145544A1 (en) * 2007-08-28 2010-06-10 Forbes Jr Joseph W System and method for selective disconnection of electrical service to end customers
US9305454B2 (en) 2007-08-28 2016-04-05 Consert Inc. Apparatus and method for controlling communications to and from fixed position communication devices over a fixed bandwidth communication link
US11108263B2 (en) 2007-08-28 2021-08-31 Causam Enterprises, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US11119521B2 (en) 2007-08-28 2021-09-14 Causam Enterprises, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
US20100145534A1 (en) * 2007-08-28 2010-06-10 Forbes Jr Joseph W System and method for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US11651295B2 (en) 2007-08-28 2023-05-16 Causam Enterprises, Inc. Systems and methods for determining and utilizing customer energy profiles for load control for individual structures, devices, and aggregation of same
US9651973B2 (en) 2007-08-28 2017-05-16 Causam Energy, Inc. System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US20100222935A1 (en) * 2007-08-28 2010-09-02 Forbes Jr Joseph W System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US20100198713A1 (en) * 2007-08-28 2010-08-05 Forbes Jr Joseph W System and method for manipulating controlled energy using devices to manage customer bills
US20100191862A1 (en) * 2007-08-28 2010-07-29 Forbes Jr Joseph W System and method for priority delivery of load management messages on ip-based networks
US20100179670A1 (en) * 2007-08-28 2010-07-15 Forbes Jr Joseph W Method and apparatus for actively managing consumption of electric power supplied by one or more electric utilities
US20090058185A1 (en) * 2007-08-31 2009-03-05 Optimal Innovations Inc. Intelligent Infrastructure Power Supply Control System
US20100064001A1 (en) * 2007-10-10 2010-03-11 Power Takeoff, L.P. Distributed Processing
US8344665B2 (en) 2008-03-27 2013-01-01 Orion Energy Systems, Inc. System and method for controlling lighting
US9351381B2 (en) 2008-03-27 2016-05-24 Orion Energy Systems, Inc. System and method for controlling lighting
US9215780B2 (en) 2008-03-27 2015-12-15 Orion Energy Systems, Inc. System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering lighting in a facility
US10334704B2 (en) 2008-03-27 2019-06-25 Orion Energy Systems, Inc. System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering lighting in a facility
US8666559B2 (en) 2008-03-27 2014-03-04 Orion Energy Systems, Inc. System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering high intensity fluorescent lighting in a facility
US8406937B2 (en) 2008-03-27 2013-03-26 Orion Energy Systems, Inc. System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering high intensity fluorescent lighting in a facility
US9504133B2 (en) 2008-03-27 2016-11-22 Orion Energy Systems, Inc. System and method for controlling lighting
US20090243517A1 (en) * 2008-03-27 2009-10-01 Orion Energy Systems, Inc. System and method for controlling lighting
US20090248217A1 (en) * 2008-03-27 2009-10-01 Orion Energy Systems, Inc. System and method for reducing peak and off-peak electricity demand by monitoring, controlling and metering high intensity fluorescent lighting in a facility
US8793029B2 (en) 2008-04-17 2014-07-29 Asoka Usa Corporation Systems and methods for controlling energy consumption
US20100100253A1 (en) * 2008-04-17 2010-04-22 Demi Energy, Inc. Systems and Methods for Controlling Energy Consumption
US8239073B2 (en) * 2008-04-17 2012-08-07 Asoka Usa Corporation Systems and methods for controlling energy consumption
US11676079B2 (en) 2009-05-08 2023-06-13 Causam Enterprises, Inc. System and method for generating and providing dispatchable operating reserve energy capacity through use of active load management
US9951933B2 (en) 2009-09-04 2018-04-24 Orion Energy Systems, Inc. Outdoor lighting fixtures and related systems and methods
US20110060701A1 (en) * 2009-09-04 2011-03-10 Orion Energy Systems, Inc. Outdoor fluorescent lighting fixtures and related systems and methods
US8866582B2 (en) 2009-09-04 2014-10-21 Orion Energy Systems, Inc. Outdoor fluorescent lighting fixtures and related systems and methods
US20110172836A1 (en) * 2010-01-08 2011-07-14 International Business Machines Corporation Power profile management method and system
US10168684B2 (en) 2010-01-08 2019-01-01 International Business Machines Corporation Power profile management
US9330425B2 (en) 2010-01-08 2016-05-03 International Business Machines Corporation Power profile management
US8543247B2 (en) 2010-01-08 2013-09-24 International Business Machines Corporation Power profile management method and system
WO2012012882A1 (en) * 2010-07-26 2012-02-02 Gerald Michael O'brien System and method for on-location resource consumption monitoring and management
US20150330818A1 (en) * 2011-03-18 2015-11-19 Soneter, Inc. Methods and apparatus for fluid flow measurement
US9874466B2 (en) * 2011-03-18 2018-01-23 Reliance Worldwide Corporation Methods and apparatus for ultrasonic fluid flow measurement and fluid flow data analysis
US9410833B1 (en) 2011-03-18 2016-08-09 Soneter, Inc. Methods and apparatus for fluid flow measurement
US9766600B2 (en) * 2011-08-17 2017-09-19 Apm Terminals Management B.V. Management system for refrigerated containers
US20140343741A1 (en) * 2011-08-17 2014-11-20 Apm Terminals Management B.V. Management system for refrigerated containers
US20130116953A1 (en) * 2011-11-03 2013-05-09 Gary B. Pollard Wireless Home Energy Monitoring System
US9479847B2 (en) * 2011-11-03 2016-10-25 Schneider Electric USA, Inc. Wireless home energy monitoring system
US9959180B1 (en) * 2012-05-31 2018-05-01 Veritas Technologies Llc Systems and methods for shipping an I/O operation to prevent replication failure
US10547178B2 (en) 2012-06-20 2020-01-28 Causam Energy, Inc. System and methods for actively managing electric power over an electric power grid
US11703902B2 (en) 2012-06-20 2023-07-18 Causam Enterprises, Inc. System and methods for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US11899483B2 (en) 2012-06-20 2024-02-13 Causam Exchange, Inc. Method and apparatus for actively managing electric power over an electric power grid
US9207698B2 (en) 2012-06-20 2015-12-08 Causam Energy, Inc. Method and apparatus for actively managing electric power over an electric power grid
US11899482B2 (en) 2012-06-20 2024-02-13 Causam Exchange, Inc. System and method for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US11703903B2 (en) 2012-06-20 2023-07-18 Causam Enterprises, Inc. Method and apparatus for actively managing electric power over an electric power grid
US11262779B2 (en) 2012-06-20 2022-03-01 Causam Enterprises, Inc. Method and apparatus for actively managing electric power over an electric power grid
US11228184B2 (en) 2012-06-20 2022-01-18 Causam Enterprises, Inc. System and methods for actively managing electric power over an electric power grid
US10831223B2 (en) 2012-06-20 2020-11-10 Causam Energy, Inc. System and method for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US10088859B2 (en) 2012-06-20 2018-10-02 Causam Energy, Inc. Method and apparatus for actively managing electric power over an electric power grid
US10768653B2 (en) 2012-06-20 2020-09-08 Causam Holdings, LLC System and methods for actively managing electric power over an electric power grid and providing revenue grade data usable for settlement
US11625058B2 (en) 2012-07-14 2023-04-11 Causam Enterprises, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US11782470B2 (en) 2012-07-14 2023-10-10 Causam Enterprises, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US10768654B2 (en) 2012-07-14 2020-09-08 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US9563215B2 (en) 2012-07-14 2017-02-07 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US11126213B2 (en) 2012-07-14 2021-09-21 Causam Enterprises, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US10429871B2 (en) 2012-07-14 2019-10-01 Causam Energy, Inc. Method and apparatus for actively managing electric power supply for an electric power grid
US11095151B2 (en) 2012-07-31 2021-08-17 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11681317B2 (en) 2012-07-31 2023-06-20 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10985609B2 (en) 2012-07-31 2021-04-20 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10996706B2 (en) 2012-07-31 2021-05-04 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10998764B2 (en) 2012-07-31 2021-05-04 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11782471B2 (en) 2012-07-31 2023-10-10 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10429872B2 (en) 2012-07-31 2019-10-01 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US11774996B2 (en) 2012-07-31 2023-10-03 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11747849B2 (en) 2012-07-31 2023-09-05 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10938236B2 (en) 2012-07-31 2021-03-02 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10523050B2 (en) 2012-07-31 2019-12-31 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9806563B2 (en) 2012-07-31 2017-10-31 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10861112B2 (en) 2012-07-31 2020-12-08 Causam Energy, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
US10310534B2 (en) 2012-07-31 2019-06-04 Causam Energy, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10852760B2 (en) 2012-07-31 2020-12-01 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10381870B2 (en) 2012-07-31 2019-08-13 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10651682B2 (en) 2012-07-31 2020-05-12 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10320227B2 (en) 2012-07-31 2019-06-11 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11650613B2 (en) 2012-07-31 2023-05-16 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US10559976B2 (en) 2012-07-31 2020-02-11 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11307602B2 (en) 2012-07-31 2022-04-19 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US11316367B2 (en) 2012-07-31 2022-04-26 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US9513648B2 (en) 2012-07-31 2016-12-06 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11501389B2 (en) 2012-07-31 2022-11-15 Causam Enterprises, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
US11561564B2 (en) 2012-07-31 2023-01-24 Causam Enterprises, Inc. System, method, and apparatus for electric power grid and network management of grid elements
US11561565B2 (en) 2012-07-31 2023-01-24 Causam Enterprises, Inc. System, method, and data packets for messaging for electric power grid elements over a secure internet protocol network
US10529037B2 (en) 2012-10-24 2020-01-07 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10497074B2 (en) 2012-10-24 2019-12-03 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11270392B2 (en) 2012-10-24 2022-03-08 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10497073B2 (en) 2012-10-24 2019-12-03 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11263710B2 (en) 2012-10-24 2022-03-01 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11195239B2 (en) 2012-10-24 2021-12-07 Causam Enterprises, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US10521868B2 (en) 2012-10-24 2019-12-31 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11823292B2 (en) 2012-10-24 2023-11-21 Causam Enterprises, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US8849715B2 (en) 2012-10-24 2014-09-30 Causam Energy, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11288755B2 (en) 2012-10-24 2022-03-29 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11816744B2 (en) 2012-10-24 2023-11-14 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11803921B2 (en) 2012-10-24 2023-10-31 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11798103B2 (en) 2012-10-24 2023-10-24 Causam Exchange, Inc. System, method, and apparatus for settlement for participation in an electric power grid
US11004160B2 (en) 2015-09-23 2021-05-11 Causam Enterprises, Inc. Systems and methods for advanced energy network
US10346707B2 (en) * 2016-06-17 2019-07-09 Water Pigeon Inc. Systems and methods for automated meter reading
US20170364734A1 (en) * 2016-06-17 2017-12-21 Water Pigeon Inc. Systems and methods for automated meter reading
CN108364451A (en) * 2018-04-26 2018-08-03 东阳市善水环境工程有限公司 Garden electricity energy consumption harvester
CN108364451B (en) * 2018-04-26 2021-04-20 江苏智格高科技有限公司 Garden electric quantity energy consumption collection system
US10745841B2 (en) * 2018-07-17 2020-08-18 Haier Us Appliance Solutions, Inc. Systems and methods for controlling an appliance using another appliance communicatively coupled thereto
US20200024784A1 (en) * 2018-07-17 2020-01-23 Haier Us Appliance Solutions, Inc. Systems and methods for controlling an appliance using another appliance communicatively coupled thereto

Also Published As

Publication number Publication date
EP1444527A2 (en) 2004-08-11
US20050096857A1 (en) 2005-05-05
US7263450B2 (en) 2007-08-28
US20030004660A1 (en) 2003-01-02
EP1444527A4 (en) 2006-04-19
US6622097B2 (en) 2003-09-16
WO2003003029A3 (en) 2003-02-27
WO2003003029A2 (en) 2003-01-09
CA2451671A1 (en) 2003-01-09
AU2002316511A2 (en) 2003-03-03

Similar Documents

Publication Publication Date Title
US20040006439A1 (en) Method and apparatus for reading and controlling utility consumption
US7039532B2 (en) Method and apparatus for reading and controlling utility consumption
US7049976B2 (en) User-installable power consumption monitoring system
US6122603A (en) Multi-utility energy control system with dashboard
US7502698B2 (en) Power consumption measuring device and power control system
US7541941B2 (en) System and method for monitoring and estimating energy resource consumption
US8103465B2 (en) System and method for monitoring and managing energy performance
US6801865B2 (en) Meter monitoring and tamper protection system and method
US20060106741A1 (en) Utility monitoring system and method for relaying personalized real-time utility consumption information to a consumer
US6311105B1 (en) Multi-utility energy control system
US20170199503A1 (en) Computer based energy management
US20140163761A1 (en) Utility monitoring systems and methods of use
US20120022709A1 (en) Energy delivery control systems and methods
US20020161536A1 (en) Internet ready, energy meter business methods
RU108611U1 (en) INTELLIGENT SYSTEM OF AUTOMATION OF MEANS OF LIFE SUPPORT
US6476592B1 (en) Device and a method of metering and displaying energy consumption and a method of calibrating the device
GB2462006A (en) Device for optically reading a utility meter, with pass-through communication
AU2007214297B2 (en) Method and apparatus for reading and controlling electric power consumption
KR101922606B1 (en) Profit-return system through energy saving considering user environment
KR20110127974A (en) Apparatus, system and method for energy management
US20040124828A1 (en) Device and method for continuously monitoring energy usage
US20040010453A1 (en) Method and system for trade of goods, in particular electricity, water, fuel gas and the like
Golinsky Bi-directional communication for remote metering and sophisticated tariffication
Rahbek et al. New end-user services based on an advanced tariff computer system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION