US20010008391A1 - Transmitting device, receiving device, and receiving method - Google Patents

Transmitting device, receiving device, and receiving method Download PDF

Info

Publication number
US20010008391A1
US20010008391A1 US09/748,551 US74855100A US2001008391A1 US 20010008391 A1 US20010008391 A1 US 20010008391A1 US 74855100 A US74855100 A US 74855100A US 2001008391 A1 US2001008391 A1 US 2001008391A1
Authority
US
United States
Prior art keywords
channel
data
receiving
communication
usage period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/748,551
Other versions
US6396393B2 (en
Inventor
Naoki Yuasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YUASA, NAOKI
Publication of US20010008391A1 publication Critical patent/US20010008391A1/en
Application granted granted Critical
Publication of US6396393B2 publication Critical patent/US6396393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2838Distribution of signals within a home automation network, e.g. involving splitting/multiplexing signals to/from different paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/20Circuits for coupling gramophone pick-up, recorder output, or microphone to receiver
    • H04B1/207Circuits for coupling gramophone pick-up, recorder output, or microphone to receiver with an audio or audio/video bus for signal distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/545Audio/video application, e.g. interphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/284Home automation networks characterised by the type of medium used
    • H04L2012/2843Mains power line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to a receiving device and a receiving method for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power, in which a communication channel used to receive the data is selected on the basis of channel usage periods measured for the respective communication channels.
  • the present invention also relates to a transmitting method for transmitting data such that transmission data is generated by converting input data into packets and outputting each same packet repeatedly a plurality of times, and the transmission data is transmitted via a plurality of communication channels at the same time by means of superposition on AC power.
  • a power line transmission/reception system for transmitting/receiving information such as an audio or video signal via a power line used to distribute commercial AC power to rooms in a home.
  • An example of a power line transmission technique is disclosed in U.S. patent application Ser. No. 09/247,943 field on Feb. 11, 1999, which is incorporated herein by reference.
  • a transmission signal is generated by modulating an audio signal or a video signal, and the resultant transmission signal is superimposed on commercial AC power distributed via a power line.
  • the transmission signal component superimposed on the commercial AC power is extracted and then demodulated thereby reproducing the original audio signal or video signal.
  • One known technique of avoiding the above problem in the power line transmission/reception systems is to transmit the same information via a plurality of channels.
  • the same audio or video signal is modulated using a plurality of carriers having different frequencies and transmitted via different channels corresponding to the carrier frequencies. That is, the same information is transmitted from a transmitting device via a plurality of channels which are obtained in the above-described manner.
  • a channel which provides a best reception that is, which has a highest channel quality, is selected from the plurality of channels and is used for transmission of the information.
  • the receiving device can receive the information under a good condition by selecting a channel with another frequency which is not influenced by the noise.
  • the channel selection may be performed manually by a user. It is also known in the art to construct a receiving device such that the channel is automatically switched without needing a manual operation when degradation in the condition of the current channel is detected.
  • FIG. 1 illustrates an example of a manner in which the channel is switched in a receiving device having such an automatic channel switching capability.
  • transmission is performed using three channels # 1 , # 2 , and # 3 .
  • the receiving device When the channel # 1 is used for reception, if a reception error is detected, that is, if the reception condition of the channel # 1 becomes worse than an allowable level, the receiving device automatically switches the reception channel to the channel # 2 . If a reception error is detected during the reception using the channel # 2 , the reception channel is switched to the channel # 3 .
  • the reception channel is switched to channel # 1 which was used first.
  • the channel is switched in a predetermined fixed order, such as # 1 ⁇ # 2 ⁇ # 3 ⁇ # 1 . . . , each time a reception error occurs.
  • the current channel having the best reception quality can temporarily fall into a bad reception state due to sudden noise. However, in such a case, the channel should not be switched to another channel, and the current channel should be maintained.
  • detection of a reception error always causes switching from the current channel to a predetermined next channel, and thus, in this specific example, the current channel which provides the best reception is switched to the next channel which is steadily in the bad state and further to another bad channel. Thus, it takes a long time to return to the best channel.
  • the conventional technique has the problem that the simple channel switching in the fixed order does not allow the channel to be properly switched depending upon the actual reception conditions of the respective channels.
  • a receiving device for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power
  • the receiving device comprising: receiving means for extracting data superimposed on AC power from a particular channel of the network thereby receiving said data; timer means for measuring a channel usage period during which a communication channel is used by the receiving means to receive data; storage means for storing the channel usage period measured by the timer means, for each communication channel; calculation means for calculating the mean channel usage period of each communication channel from the channel usage periods stored in the storage means; and control means which controls the storage means so as to store the channel usage period measured by said timer means for each communication channel, and which controls the receiving means so as to select a communication channel used to receive data on the basis of the mean channel usage periods of the respective communication channels calculated by the calculation means and so as to receive the data using the selected channel.
  • a transmitting device for transmitting input data via a power line transmission network which has a plurality of communication channels and which transmits data by means of superimposing data upon AC power, the transmitting device comprising: compression means for compressing the input data; packet conversion means for converting the data compressed by the compression means into packets each having a predetermined length of data; transmitting means for transmitting the data converted into packets by the packet conversion means via the plurality of communication channels at the same time.
  • a receiving method for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power comprising the steps of: extracting data superimposed on AC power from a particular channel of the network thereby receiving the data, and measuring a channel usage period during which a communication channel is used to receive the data; when a communication failure is detected during the reception of the data, calculating the mean channel usage period of the particular channel from the channel usage period measured during the current receiving operation and from the channel usage periods of the particular channel measured in the past; selecting a communication channel to be used, on the basis of the calculated mean channel usage period and the mean channel usage periods calculated for the other respective communication channels.
  • FIG. 1 is a schematic diagram illustrating an automatic channel switching operation according to a conventional technique
  • FIG. 2 is a schematic diagram illustrating an example of the general configuration of a transmitting and receiving system according to an embodiment of the present invention
  • FIG. 3 is a block diagram illustrating an example of the internal configuration of a server
  • FIG. 4 is a block diagram illustrating an example of the internal configuration of a client
  • FIG. 5 is a schematic diagram illustrating the format of encoded data generated by an encoding process performed by the server and also illustrating the format of decoded data generated by a decoding process performed by the client;
  • FIGS. 6A and 6B are time charts illustrating a specific example of the channel switching operation according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating changes in the content of a history table, corresponding to the automatic channel switching operation shown in FIG. 6;
  • FIG. 8 is a flow chart illustrating the automatic channel switching operation according to the embodiment of the present invention.
  • FIG. 9 is a flow chart illustrating the operation of determining an initial channel.
  • a receiving device serves as a client in a transmission/reception system for transmitting/receiving, via a power line, an audio or video signal output from an AV (audio visual) device.
  • AV audio visual
  • FIG. 2 illustrates an example of the general configuration of the system of the present embodiment.
  • the system of the present embodiment includes at least two electronic devices, that is, a server 100 serving as a transmitting device, and a client 200 serving as a receiving device.
  • a CD (Compact Disc (TM)) player 300 serving as an AV device is connected to the server 100 .
  • An audio signal recorded on a CD is read by the CD player 300 and input to the server 100 .
  • the server 100 is connected to a power line 2 via an outlet 3 so that commercial AC power 1 required for the operation of the server 100 is supplied to the server 100 .
  • the server 100 performs signal processing such as modulation upon the audio signal received from the CD player 300 , as described later, and superimposes the resultant signal upon the power line thereby transmitting the signal to the client 200 .
  • the client 200 is also connected to the power line 2 via an outlet 3 so that commercial AC power 1 required for the operation of the client 200 is supplied to the client 200 .
  • the client 200 is capable of receiving and demodulating the audio signal which is transmitted from the server 100 via the power line 2 .
  • the resultant audio signal is output from the client 200 and supplied to a speaker 400 connected to the client 200 .
  • the audio signal recorded on the CD is transmitted from the server 100 and a corresponding audio sound is output from the speaker 400 .
  • the server 100 and the client 200 may be placed in different rooms.
  • an audio set serving as the server 100 is placed in a living room
  • the client 200 may be placed in a bedroom so that the audio sound played back by the audio set serving as the server can be listened to via the client 200 in the bedroom.
  • FIG. 3 illustrates an example of the internal configuration of the server 100 .
  • the server 100 has an external audio input terminal 101 which is designed, for the purpose of general versatility, to accept an analog audio signal.
  • the analog audio signal output terminal of the CD player 300 is connected to the external audio input terminal 101 so that the audio signal output from the CD player 300 is input to the server 100 .
  • the analog audio signal which is read from the CD and input via the external audio input terminal 101 , is first applied to an A/D converter 102 .
  • a digital audio signal (digital audio data) is output from the A/D converter 102 and applied to a buffer memory 103 .
  • the A/D converter 102 also outputs a clock CLK synchronized with the digital audio data converted from the analog audio signal.
  • the clock CLK is input to a timing generator 108 .
  • the timing generator 108 On the basis of the clock CLK, the timing generator 108 generates a clock used to control the timing of the operation of the buffer memory 103 and a compression circuit 104 , which will be described later.
  • the generated clock is supplied to the buffer memory 103 and the compression circuit 104 .
  • the buffer memory 103 temporarily stores the input digital audio data.
  • the digital audio data is then read from the buffer memory 103 and supplied to the compression circuit 104 .
  • the compression circuit 104 compresses the received audio data according to a predetermined scheme and outputs the resultant compressed data to an encoder 105 .
  • the encoder 105 adds an error detection code and a synchronization pattern to the compressed audio data and encodes the audio data into a form suitable for transmission over a power line.
  • An feature of the present embodiment is in that the encoder 105 performs rearrangement of the audio data in terms of time as shown in FIG. 5A.
  • the audio data is divided into a plurality of packets, and the packets are arranged in the order D 1 ⁇ D 1 ⁇ D 2 ⁇ D 2 ⁇ D 3 ⁇ D 3 and so on.
  • Packet data D 1 , D 2 , and D 3 each include a fixed length of audio data corresponding to a predetermined length of playback time. If the packets are concatenated in the order D 1 ⁇ D 2 ⁇ D 3 , the obtained audio data becomes correctly continuous in terms of time.
  • the encoder 105 transmits each same packet of the audio data twice successively such that that a succession of two packets having the same content is transmitted.
  • the reason which the encoder 105 can transmit each same packet of the audio data twice successively is that the compression of the audio data performed by the encoder 105 results in a reduction in the time required for transmission.
  • the number of packets including the same content is determined depending upon the compression ratio of the compression process performed by the encoder 105 . For example, if the data is compressed by the encoder 105 to a data size one-fifth the original data size, the compressed data can be transmitted, via each channel, with a transmission efficiency improved by a factor of five. This means that each channel is not used for 4 ⁇ 5of unit time.
  • the same packet of the compressed data can be transmitted successively a plurality of times, as long as the number of repetition times that each same packet is transmitted is equal to or less than the reciprocal of the compression ratio, that is, equal to or less than 5 in this specific example. That is, the number of repetition times that the same packet is transmitted is determined depending upon the compression ratio of the data compressed by the encoder 105 .
  • the client 200 When the client 200 receives the data arranged as shown in FIG. 5A, the client 200 performs decoding by selecting one of the two successive packets including the same content. The selected packets are then concatenated as shown in FIG. 5B.
  • data is transmitted in the order D 1 ⁇ D 1 ⁇ D 2 ⁇ D 2 ⁇ D 3 ⁇ D 3 as shown in FIG. 5A.
  • a packet D 1 located at the first position of the succession of packets D 1 and D 1 is first selected.
  • a packet D 2 at the second position of the succession of packets D 2 and D 2 is then selected.
  • a packet D 3 at the first position of the succession of packets D 3 and D 3 is selected.
  • the selected packets D 1 , D 2 , and D 3 are then combined in this order so as to obtain a series of packets placed at correct positions, in terms of time, corresponding to the original audio data.
  • the determination as to which of the two successive packets having the same content should be selected is made depending upon the reception condition under which the packets are received. More specifically, for example, the selection is made depending upon the quality of the received signal. If the first packet of two successive packets having the same content is better in signal quality, the first packet is employed. Conversely, if the second packet is better, the second packet is employed.
  • a modulator 106 modulates the encoded data output from the encoder 105 .
  • three carrier generators 107 a , 107 b , and 107 c are connected to the modulator 106 .
  • the carrier generators 107 a , 107 b , and 107 c generates carries with different frequencies f 1 , f 2 , and f 3 .
  • the modulator 106 modulates the carries generated by these carrier generators 107 a , 107 b , and 107 c , in accordance with the encoded data output from the encoder 105 .
  • the modulating signal is a digital signal
  • FSK Frequency Shift Keying
  • carrier frequencies f 1 , f 2 , and f 3 are transmitted in a multiplexed fashion.
  • the same data is transmitted via three channels. More specifically, the same data encoded as shown in FIG. 5A is transmitted at the same time via the three channels.
  • the modulation performed by the modulator 106 may be performed according to a method other than the FSK.
  • PSK Phase Shift Keying, spread spectrum modulation, or other digital modulation techniques may also be employed.
  • the modulation signal may be an analog signal. In this case, frequency modulation or amplitude modulation may be employed.
  • the data signal modulated by the modulator 106 is superimposed on the power line 2 such that the data signal is transmitted as a power line signal.
  • a controller 112 including a microcomputer, ROM, and RAM, controls the operation of various functional circuits of the server.
  • a control command input unit 113 includes various command buttons for inputting various commands to the server 100 .
  • a command output from the control command input unit 113 is applied to the controller 112 .
  • the controller 112 performs a control operation.
  • a display 114 displays, under the control the controller 112 , information corresponding to the current operation status.
  • FIG. 4 illustrates an example of the internal configuration of the client 200 .
  • the power line signal received via the power line 2 is applied to a channel selector 214 .
  • the same audio data is received in parallel via the thee channels.
  • the channel selector 214 selects, under the control of a controller 210 , one of the three channels.
  • the channel selector 214 includes a bandpass filter (not shown) whose passband can be switched among the thee carrier frequencies f 1 , f 2 , and f 3 .
  • the passband of the bandpass filter is switched so as to pass only one of carrier frequencies f 1 , f 2 , and f 3 thereby selecting a desired channel.
  • the received signal of the channel selected by the channel selector 214 is then applied to an RF amplifier 201 .
  • the RF amplifier 201 extracts a signal component superimposed on the power signal.
  • the resultant signal is then detected by a detector 202 and thus a data signal is extracted.
  • the data signal transmitted from the server 100 to the client is audio data.
  • various command signals and control information are also transmitted.
  • the audio data is applied to a decoder 203 , while the command signal is applied to the controller 210 .
  • the audio data output from the detector is also supplied to a timing generator 208 .
  • the timing generator 208 detects, for example, the synchronization pattern added to the audio data and generates a clock on the basis of the detected synchronization pattern.
  • the generated clock is output to a decoder 203 , a buffer memory 204 , and a decompression circuit 205 , which will be described later, thereby controlling the timing of the operation of the decoder 203 the buffer memory 204 , and the decompression circuit 205 .
  • the audio data supplied to the decoder 203 is first subjected to error detection performed by an error detection circuit 203 a . FSK-decoding process is then performed.
  • the decoded data is temporarily stored in the buffer memory 204 and then output to the decompression circuit 205 .
  • the decoded data output from the decoder has the form described above with reference to FIG. 5B. That is, in the case of audio data, compressed audio data in the form of a correct time series is obtained.
  • the error detection circuit 203 a determines that an error occurs and outputs an error notification signal Ser indicating the occurrence of the error to the controller 210 .
  • the controller 210 performs an automatic channel switching operation as will be described in detail later.
  • the data supplied to the decompression circuit 205 is decompressed, and the resultant data is applied to a D/A converter 206 .
  • the D/A converter 206 converts the applied audio data into an analog audio signal and outputs the resultant signal to an amplifier 207 .
  • the amplifier 207 amplifies the received audio signal and outputs the amplified audio signal to a speaker.
  • the controller 210 includes, for example, a microcomputer, a ROM, and a RAM, and controls the operation of various parts of the client.
  • a history table 211 used by the controller 210 .
  • channel quality information representing the history about the reception condition of channels is recorded in the history table 211 .
  • the controller 210 updates the channel quality information described in the history table 211 .
  • the controller 210 selects a channel on the basis of the content of the history table 211 and switched the reception channel to the selected channel.
  • the history table 211 may be stored in a particular memory area of the RAM in the controller 210 .
  • a control command input unit 213 includes various command buttons for inputting various commands to the client 200 .
  • a display 213 displays, under the control the controller 210 , information corresponding to the current operation status.
  • information is transmitted using a plurality of channels, for example, three channels.
  • the receiving device serving as the client 200 selects one of the plurality of channels and receives the information via the selected channel.
  • a channel having high channel quality from the plurality of channels it becomes possible for the receiving device to substantially always output a high-quality audio or video signal.
  • the receiving device serving as the client 200 is constructed so as to automatically switch the channel depending upon the reception condition of the respective channels thereby making it possible to maintain a better reception condition than can be achieved by the conventional technique in which the channel is simply switched in the fixed order.
  • FIGS. 6A and 6B are time charts illustrating a specific example of the channel switching operation performed by the client 200 .
  • the automatic channel switching operation consists of an operation for determining an initial channel which is first selected when the client 200 is started up and a normal operation performed after the determination of the initial channel.
  • FIG. 6A illustrates the operation for determining the initial channel.
  • the respective three channels are distinguished by channel number and represented such as channel # 1 , channel # 2 , and channel # 3 .
  • the electric power of the client 200 is turned on and thus the operation of the client 200 is started.
  • the client 200 first selects, for example, the channel # 1 for a predetermined period of time, for example a sec, and counts the number of errors which occur during the period in which the channel # 1 is selected.
  • the decision as to whether an error has occurred is made by the controller 210 on the basis of the error notification signal Ser received from the error detection circuit 203 a described earlier with reference to FIG. 4.
  • the channel # 2 is selected for a period having the same length of time, a sec, from t 1 to t 2 , and the number of errors which occur during that period is counted.
  • the channel # 3 is selected for a period having the same length of time, a sec, from t 2 to t 3 , and the number of errors which occur during that period is counted.
  • noise generated by a device connected to a power line generally has frequency components limited in a particular fixed frequency band, depending upon the type of the device. In such a case, only a fixed channel is influenced and degraded by the noise.
  • the channel is automatically switched depending upon the condition in terms of the error occurrence, as will be described later. If the normal operation is started using a predetermined channel without performing the initial channel selection described above, it takes a long time to reach a high-quality channel, and a high-quality reception is impossible until reaching the high-quality channel. In contrast, if the initial channel is selected in the manner described above with reference to FIG. 6A, it is possible to start the normal operation under the good reception condition.
  • the reception condition of the channel that is, the channel quality changes due to a change in the environment or a change in the operation condition of the device itself or due to other factors.
  • the channel is switched during the normal operation, as will be described in detail later.
  • the channel to be employed next is determined on the basis of the content of the history table 211 .
  • FIGS. 7A to 7 H An example of a change in the content of the history table 211 is shown in FIGS. 7A to 7 H. An example of the normal operation is described below with reference to FIG. 6B and FIGS. 7A to 7 H.
  • the initial channel # 1 is also employed as the channel for reception.
  • the controller starts the measurement of the length of the channel usage period during which the currently selected channel (current channel) is continuously used.
  • the measured channel usage period is described in the history table 211 and stored in a memory.
  • the content of the history table 211 at time t 2 is shown in FIG. 7A.
  • the mapping structure of the history table 211 is described below.
  • rows 1, 2, and 3 are assigned to the channel # 1 , # 2 , and # 3 , as shown in FIG. 7A.
  • the length of the channel usage period is described row by row, in the order of row number, each time the same channel is employed.
  • the mean channel usage period calculated from the values currently described in the first to third rows for each channel is described. That is, in the history table 211 , the channel usage periods for the last three usages of each channel and the mean value thereof are described as the history information representing the history of the reception condition or the channel quality.
  • the channel usage period for the channel # 1 employed as the initial channel is measured as 5 sec.
  • the value of 5 is described in the first row in the column corresponding to the channel # 1 , as shown in FIG. 7A.
  • no valid values are described in the second and third row for the channel # 1 .
  • the absence of the valid value is represented by a symbol “-”.
  • the mean channel usage period of the channel # 1 is also 5 sec, and thus the value of 5 is described in the fourth row.
  • the channels # 2 and # 3 have not been used at all, and thus no valid values are described in the history table 211 for the channel # 2 and # 3 .
  • the channel to be employed for the operation after time t 12 cannot be determined from the content of the history table 211 because the channels other than channel # 1 have not been used and no information about the channels # 2 and # 3 is described in the history table 211 . For the above reason, at this point of time, the channel is switched to channel # 2 having a channel number immediately following that of the current channel # 1 .
  • the channel # 3 having a channel number following that of the channel # 2 remains unused.
  • the channel is switched to the channel # 3 .
  • an error occurs at time t 14 after the passage of time of 4 sec from t 13 at which the channel # 3 was selected.
  • a value of 4 is described in the first row for the channel # 3 in the history table 211 as shown in FIG. 7C, to indicate that the measured channel usage period of the channel # 3 is 4 sec, and a value corresponding to 4 sec is described as the mean value for the channel # 3 .
  • the channel to be employed for the next usage is determined on the basis of the mean channel usage periods described in the history table 211 , as described below.
  • a greater value of the mean channel usage period indicates a better reception condition or better channel quality. Conversely, a small value of the mean channel usage period indicates that the channel quality has been bad. Therefore, in the present embodiment, a channel having the greatest mean channel usage period in the history table 211 is selected for the next usage.
  • the history table 211 indicates that the channel # 2 has the greatest mean channel usage period at this point of time.
  • the channel # 2 is employed in the operation after time t 14 .
  • FIG. 6B an error occurs at time t 15 after the passage of time of 2 sec from t 14 at which the channel # 2 was selected.
  • the content of the history table 211 is updated as shown in FIG. 7D. That is, in addition to the channel usage periods of the respective channels described in the first row, a value of 2 corresponding to the channel usage period of 2 sec from t 14 to t 15 for the channel # 2 is described in the second row.
  • the channel usage periods are described in both first and second rows for the channel # 2 .
  • the history table 211 indicates that, among all channels, the channel # 1 has the largest mean channel usage period.
  • the channel # 1 is employed in the following operation after time t 15 .
  • the history table 211 shown in FIG. 7E indicates that the channel # 1 has the greatest mean channel usage period at this point of time.
  • the content of the history table shown in FIG., 7 E indicates that the channel # 1 , which was used in the operation before time t 16 , is still best in channel quality. Therefore, the channel # 1 is maintained without being switched to another channel. Thus, in FIG. 6B, the channel # 1 is further used in the operation after time t 16 .
  • a value of 2 indicating the channel usage period of 2 sec is described in the history table 211 , in the third row in the column corresponding to the channel # 1 , as shown in FIG. 7F.
  • the content of the history table indicates, as can be seen from FIG. 7F, that all channels have the same mean channel usage period, that is, 4 sec. In this case, there are a plurality of channels having the maximum mean channel usage period, and the current channel is one of such channels.
  • the current channel is switched to another channel.
  • the current channel is switched to that channel.
  • the current channel is switched to one of such channels in accordance with a predetermined rule. For example, the switching may be performed in the ascending order of channel numbers.
  • the channel # 1 which has been used till time t 17 is switched to the channel # 2 .
  • a value corresponding to the channel usage period of 2 sec is described in the third row in the column corresponding to the channel # 2 , as shown in FIG. 7G.
  • the mean channel usage period of the channel # 2 is calculated as (6+2+2)/3 ⁇ 3.3, and thus the values of the mean channel usage period of the channel # 2 is replaced with 3.3.
  • the history table 211 indicates that the channels # 1 and # 3 both have a mean channel usage period of 4 and the channel # 2 has a mean channel usage period of 3.3.
  • the channel # 2 is switched to the channel # 1 or # 3 .
  • a channel having a smaller channel number that is, the channel # 1 is selected.
  • the channel # 1 is used in the operation after time t 18 .
  • the channel # 3 may be selected instead of the channel # 1 .
  • the value of the channel usage period in the first row in the column corresponding to the channel # 1 is replaced with a new value of 3 sec.
  • the mean channel usage period of the channel # 1 is recalculated.
  • the content of the history table 211 shown in FIG. 7H indicates that the channel # 3 has the greatest mean channel usage period. As a result, the channel # 3 is selected for the use after time t 19 .
  • the channel switching is automatically performed in the manner described above.
  • the automatic channel switching is performed on the basis of the values of channel usage periods which indicate the channel quality. This makes it possible to switch the channel on the basis of the actual channel quality of the respective channels so as to obtain a better reception condition than can be achieved by the conventional technique in which the channel is simply switched in a predetermined order.
  • the values of the channel usage periods in a predetermined number of usages (three usages in the example shown in FIG. 7) in the past are stored thereby making it possible to select a still better channel on the basis of the mean channel usage values indicating the channel quality of the respective channels.
  • the values of the channel usage periods in the last three usages for each channel are stored in the history table, and the mean value of the channel usage periods in the last three usages is calculated, the number of values used to calculate the mean channel usage period is not limited to three.
  • FIGS. 8 and 9 The channel switching operation according to the present embodiment described above with reference to FIGS. 6A and 6B and FIGS. 7A to 7 H is described in further detail with reference to the flow charts shown in FIGS. 8 and 9.
  • the operation shown in FIGS. 8 and 9 is performed by the controller 210 of the client 200 .
  • step S 101 If the power of the client 200 is turned on, the operation of the controller 210 is started in step S 101 in FIG. 8. In the next step S 102 , the initial channel is determined in the manner described above with reference to FIG. 6A.
  • step 102 for determining the initial channel is described in further detail below with reference to FIG. 9.
  • step S 203 the channel selector 214 is controlled such that a channel #n corresponding to the current value of the variable n is selected.
  • step S 204 it is determined whether a predetermined length of time (a sec) defined as the initial channel usage period for each channel has elapsed. If the decision in step S 204 is negative, the process goes to step S 205 .
  • a predetermined length of time a sec
  • step S 205 it is determined whether an error has occurred on the basis of an error notification signal Ser output from the error detection circuit 203 a in the decoder 203 .
  • steps S 204 to S 206 the number of occurrences of errors during the predetermined channel usage period with a length of a sec is counted for each channel.
  • step S 204 If it is determined in step S 204 that the predetermined length of time has elapsed, the process goes to step S 207 .
  • step S 207 the current value of the variable m is stored as the number of occurrences of errors for the currently used channel #n. More specifically, the number of occurrences of errors, m, is stored in a predetermined memory area of an internal RAM.
  • step S 208 if the decision in step S 208 is affirmative, the process goes to step S 210 .
  • step S 210 the value of m representing the number of occurrences of errors, which has been measured and stored in the internal RAM, is compared among the channels # 1 to # 3 , and the channel selector 214 is controlled such that a channel having the smallest value is selected. Thus, in step S 210 , the channel is switched to the initial channel.
  • step S 103 in FIG. 8 After determining the initial channel in the process shown in FIG. 9, the process goes to step S 103 in FIG. 8 to start a normal receiving operation in which the channel is switched as required. That is, the process, an example of which is shown in FIG. 6B, is started.
  • step S 104 The process then waits in step S 104 until an error occurs. If an error is detected in step S 104 , the process goes to step S 105 .
  • step S 105 the measured timer time T is employed as the channel usage period of the current channel and is written in a particular field of the history table 211 wherein the field is determined in the manner described above with reference to FIG. 7.
  • the mean channel usage period of the current channel is calculated from the values of channel usage periods described in the history table 211 .
  • the calculated mean value is written in the history table 211 , in the field corresponding to the current channel.
  • step S 108 the current values of the mean channel usage periods of the respective channels # 1 to # 3 , described in the history table 211 , are compared with each other. If the comparison indicates that there is no channel having a mean channel usage period greater than that of the current channel, that is, if only the current channel has the maximum mean channel usage period, the process returns to step 103 . In this case, the currently used channel is further used without being switched to another channel, as is the case at time t 1 in FIG. 6B.
  • step S 109 when the comparison in step S 108 indicates one of the following results: 1) there is another channel, other than the current channel, which has the maximum mean channel usage period; 2) the current channel and another channel have the same maximum mean channel usage period; and 3) there is a channel which has not been used yet.
  • the current channel is switched to another channel depending upon which of results 1) to 3) is obtained in the comparison in step S 108 , as described below.
  • the current channel is switched to another channel having the maximum mean channel usage period.
  • the current channel is switched to another channel having the maximum mean channel usage period.
  • one of such channels is selected in accordance with a predetermined rule.
  • one of channels which are detected as having not been used yet is selected in accordance with a predetermined rule.
  • step S 109 After completion of step S 109 , the process returns to step S 103 .
  • Steps S 103 to S 109 are performed repeatedly during the normal operation thereby automatically switching the channel in response to an occurrence of error, as described earlier with reference to FIG. 6B.
  • information indicating which channel is currently selected may be displayed on the display 114 so as to notify the user of the current status in terms of the usage of the channel.
  • the automatic channel switching operation is not limited to that described above with reference to the specific embodiment. For example, only the process of determining and selecting the initial channel described earlier with reference to FIG. 6A may be performed, and the automatic channel switching operation described earlier with reference to FIG. 6B may not be performed. In usual power lines, because channels having bad quality are generally fixed, the execution of only the process of selecting the initial channel can provide great benefits.
  • the details of the automatic channel switching operation according to the present embodiment may be modified as required. For example, when an error is detected, if there are a plurality of channels, including the current channel, which have the same maximum mean channel usage period, the current channel may be further used without being switched to another channel, or one of such the plurality of channels may be selected in a random fashion and the current channel may be switched to the selected channel.
  • the server may have a receiving capability and the client may have a transmitting capability so that various kinds of data such as control data may be transmitted between the server and the client.
  • an amplifier is disposed in the inside of the client.
  • an output terminal for outputting a source signal in an analog or digital form may be provided on the client and another external amplifier or an audio device may be coupled to the client via the output terminal so that an audio/video signal is output from a speaker or a monitor device connected to the external amplifier or the audio device.
  • the source signal transmitted from the server is not limited to a signal output from a CD player.
  • a signal output from another type of digital audio device such as an MD (Mini Disc) player or a DAT (Digital Audio Taperecorder) may also be transmitted.
  • a signal output from a conventional cassette tape recorder or a tuner may also be transmitted.
  • the type of the signal transmitted from the server is not limited to the audio signal, but another signal such as a video signal may also be transmitted.
  • various types of AV devices such as a VTR (Video Tape Recorder), a DVD player for reproducing a video signal recorded on a DVD, and a television set may be connected to the server.
  • the same information is transmitted via a plurality of channels (a plurality of different carriers) over a power line, and a receiving device obtains channel quality information representing the channel quality of the respective channels and selects a channel having the best channel quality on the basis of the channel quality information.
  • the channel quality information is represented on the basis of a period from a time when a channel is selected to a time when degradation in the channel quality (error) occurs.
  • the representation of the channel quality information on the basis such a period of time makes it possible to easily obtain the channel quality information by simple processing without having to perform complicated calculations.
  • the channel quality information includes information about the period from a time at which a channel is selected to a time at which degradation in channel quality due to an error occurs, and the mean period is calculated from the values of the periods stored in the memory.
  • the change in the channel quality can be evaluated from the above mean period. On the basis of the mean periods of the respective channels, a channel to which the current channel is to be switched is selected. Thus, it is possible to precisely select a proper channel by simply calculating the mean period.
  • the use of the current channel can be maintained without being switched to another channel which worse in channel quality. Also in this sense, the channel can be selected in a more adequate fashion, and a better reception condition can be steadily obtained.
  • the starting-up operation is performed such that channels are selected one by one in fixed intervals, and the channel quality of each channel is evaluated. On the basis of the obtained channel quality information, a channel having the best channel quality is selected as an initial channel.
  • noise In practical power line transmission/reception systems, noise generally has frequency components limited in a particular fixed frequency band. Therefore, if the initial channel has good channel quality, it is seldom necessary to switch the channel to another channel during the following operation. That is, good reception can be obtained for a long period of time immediately after starting the operation.

Abstract

In a power line transmission/reception system, when a receiving device receives data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power, the reception of the data is performed using a communication channel selected on the basis of the mean channel usage periods measured for the respective communication channels, thereby assuring high-quality communication. Transmission data is generated by converting Input data into packets and outputting each same packet repeatedly a plurality of times. The transmission data is transmitted via the plurality of communication channels at the same time by means of superposition on AC power thereby assuring high-quality data communication.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a receiving device and a receiving method for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power, in which a communication channel used to receive the data is selected on the basis of channel usage periods measured for the respective communication channels. [0002]
  • The present invention also relates to a transmitting method for transmitting data such that transmission data is generated by converting input data into packets and outputting each same packet repeatedly a plurality of times, and the transmission data is transmitted via a plurality of communication channels at the same time by means of superposition on AC power. [0003]
  • 2. Description of the Related Art [0004]
  • In recent years, a power line transmission/reception system has been proposed and realized, for transmitting/receiving information such as an audio or video signal via a power line used to distribute commercial AC power to rooms in a home. An example of a power line transmission technique is disclosed in U.S. patent application Ser. No. 09/247,943 field on Feb. 11, 1999, which is incorporated herein by reference. In such a power line system, for example, a transmission signal is generated by modulating an audio signal or a video signal, and the resultant transmission signal is superimposed on commercial AC power distributed via a power line. In a receiving device, the transmission signal component superimposed on the commercial AC power is extracted and then demodulated thereby reproducing the original audio signal or video signal. [0005]
  • In general, not only a power line transmission/reception system but also other devices such as an electric lamp and various types of electronic devices are connected to a power line. In the power line transmission/reception systems, therefore, there is a rather high possibility that noise generated from electronic devices connected to the power line interferes with reception/reception. [0006]
  • One known technique of avoiding the above problem in the power line transmission/reception systems is to transmit the same information via a plurality of channels. In this technique, the same audio or video signal is modulated using a plurality of carriers having different frequencies and transmitted via different channels corresponding to the carrier frequencies. That is, the same information is transmitted from a transmitting device via a plurality of channels which are obtained in the above-described manner. [0007]
  • In a receiving device, a channel which provides a best reception, that is, which has a highest channel quality, is selected from the plurality of channels and is used for transmission of the information. [0008]
  • In this technique in which the same information is transmitted via the plurality of channels, even when a channel with a certain frequency is influenced by noise generated by another device, the receiving device can receive the information under a good condition by selecting a channel with another frequency which is not influenced by the noise. [0009]
  • The channel selection may be performed manually by a user. It is also known in the art to construct a receiving device such that the channel is automatically switched without needing a manual operation when degradation in the condition of the current channel is detected. [0010]
  • FIG. 1 illustrates an example of a manner in which the channel is switched in a receiving device having such an automatic channel switching capability. [0011]
  • In this example shown in FIG. 1, transmission is performed using three [0012] channels # 1, #2, and #3.
  • When the [0013] channel # 1 is used for reception, if a reception error is detected, that is, if the reception condition of the channel # 1 becomes worse than an allowable level, the receiving device automatically switches the reception channel to the channel # 2. If a reception error is detected during the reception using the channel # 2, the reception channel is switched to the channel # 3.
  • If a further reception error is detected during the reception using the [0014] channel # 3, the reception channel is switched to channel # 1 which was used first.
  • That is, the channel is switched in a predetermined fixed order, such as #[0015] 1→#2→#3→#1 . . . , each time a reception error occurs.
  • However, the conventional channel switching technique described above with reference to FIG. 1 has the following problems. [0016]
  • When a channel is switched to another channel in response to detection of a reception error, it is not assured that a good reception condition is obtained in the new channel. If the new channel does not provide good reception, the channel is further switched to another channel until a good reception condition is obtained. Thus, in some cases, it takes a long time to reach a good channel. That is, a communication error or a bad communication condition can often occur over a rather long period of time. [0017]
  • Herein, let us assume that a channel which provides the best reception quality is now being used and all the other channels are under steady bad reception conditions. [0018]
  • The current channel having the best reception quality can temporarily fall into a bad reception state due to sudden noise. However, in such a case, the channel should not be switched to another channel, and the current channel should be maintained. [0019]
  • However, in the channel switching technique shown in FIG. 1, detection of a reception error always causes switching from the current channel to a predetermined next channel, and thus, in this specific example, the current channel which provides the best reception is switched to the next channel which is steadily in the bad state and further to another bad channel. Thus, it takes a long time to return to the best channel. [0020]
  • As described above, the conventional technique has the problem that the simple channel switching in the fixed order does not allow the channel to be properly switched depending upon the actual reception conditions of the respective channels. [0021]
  • SUMMARY OF THE INVENTION
  • According to an aspect of the present invention, there is provided a receiving device for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power, the receiving device comprising: receiving means for extracting data superimposed on AC power from a particular channel of the network thereby receiving said data; timer means for measuring a channel usage period during which a communication channel is used by the receiving means to receive data; storage means for storing the channel usage period measured by the timer means, for each communication channel; calculation means for calculating the mean channel usage period of each communication channel from the channel usage periods stored in the storage means; and control means which controls the storage means so as to store the channel usage period measured by said timer means for each communication channel, and which controls the receiving means so as to select a communication channel used to receive data on the basis of the mean channel usage periods of the respective communication channels calculated by the calculation means and so as to receive the data using the selected channel. [0022]
  • According to another aspect of the present invention, there is provided a transmitting device for transmitting input data via a power line transmission network which has a plurality of communication channels and which transmits data by means of superimposing data upon AC power, the transmitting device comprising: compression means for compressing the input data; packet conversion means for converting the data compressed by the compression means into packets each having a predetermined length of data; transmitting means for transmitting the data converted into packets by the packet conversion means via the plurality of communication channels at the same time. [0023]
  • According to still another aspect of the present invention, there is provided a receiving method for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power, the receiving method comprising the steps of: extracting data superimposed on AC power from a particular channel of the network thereby receiving the data, and measuring a channel usage period during which a communication channel is used to receive the data; when a communication failure is detected during the reception of the data, calculating the mean channel usage period of the particular channel from the channel usage period measured during the current receiving operation and from the channel usage periods of the particular channel measured in the past; selecting a communication channel to be used, on the basis of the calculated mean channel usage period and the mean channel usage periods calculated for the other respective communication channels. [0024]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram illustrating an automatic channel switching operation according to a conventional technique; [0025]
  • FIG. 2 is a schematic diagram illustrating an example of the general configuration of a transmitting and receiving system according to an embodiment of the present invention; [0026]
  • FIG. 3 is a block diagram illustrating an example of the internal configuration of a server; [0027]
  • FIG. 4 is a block diagram illustrating an example of the internal configuration of a client; [0028]
  • FIG. 5 is a schematic diagram illustrating the format of encoded data generated by an encoding process performed by the server and also illustrating the format of decoded data generated by a decoding process performed by the client; [0029]
  • FIGS. 6A and 6B are time charts illustrating a specific example of the channel switching operation according to the embodiment of the present invention; [0030]
  • FIG. 7 is a schematic diagram illustrating changes in the content of a history table, corresponding to the automatic channel switching operation shown in FIG. 6; [0031]
  • FIG. 8 is a flow chart illustrating the automatic channel switching operation according to the embodiment of the present invention; and [0032]
  • FIG. 9 is a flow chart illustrating the operation of determining an initial channel. [0033]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The preferred embodiments of the present invention are described below in the following order: [0034]
  • 1. System Configuration [0035]
  • 1.1 General Configuration [0036]
  • 1.2 Server [0037]
  • 1.3 Client [0038]
  • 2. Channel Switching [0039]
  • 2.1 Specific Examples [0040]
  • 2.2 Process [0041]
  • 1. System Configuration [0042]
  • 1.1 General Configuration [0043]
  • A receiving device according to a present embodiment serves as a client in a transmission/reception system for transmitting/receiving, via a power line, an audio or video signal output from an AV (audio visual) device. The configuration of the transmission/reception system of the present embodiment is described first. [0044]
  • FIG. 2 illustrates an example of the general configuration of the system of the present embodiment. [0045]
  • As shown in FIG. 2, the system of the present embodiment includes at least two electronic devices, that is, a [0046] server 100 serving as a transmitting device, and a client 200 serving as a receiving device. A CD (Compact Disc (TM)) player 300 serving as an AV device is connected to the server 100. An audio signal recorded on a CD is read by the CD player 300 and input to the server 100.
  • The [0047] server 100 is connected to a power line 2 via an outlet 3 so that commercial AC power 1 required for the operation of the server 100 is supplied to the server 100. The server 100 performs signal processing such as modulation upon the audio signal received from the CD player 300, as described later, and superimposes the resultant signal upon the power line thereby transmitting the signal to the client 200.
  • The [0048] client 200 is also connected to the power line 2 via an outlet 3 so that commercial AC power 1 required for the operation of the client 200 is supplied to the client 200.
  • The [0049] client 200 is capable of receiving and demodulating the audio signal which is transmitted from the server 100 via the power line 2. The resultant audio signal is output from the client 200 and supplied to a speaker 400 connected to the client 200. Thus, the audio signal recorded on the CD is transmitted from the server 100 and a corresponding audio sound is output from the speaker 400.
  • When such a system is used in a home, the [0050] server 100 and the client 200 may be placed in different rooms. For example, an audio set serving as the server 100 is placed in a living room, while the client 200 may be placed in a bedroom so that the audio sound played back by the audio set serving as the server can be listened to via the client 200 in the bedroom.
  • 1.2 Server [0051]
  • FIG. 3 illustrates an example of the internal configuration of the [0052] server 100.
  • In this example, the [0053] server 100 has an external audio input terminal 101 which is designed, for the purpose of general versatility, to accept an analog audio signal. The analog audio signal output terminal of the CD player 300 is connected to the external audio input terminal 101 so that the audio signal output from the CD player 300 is input to the server 100.
  • The analog audio signal, which is read from the CD and input via the external [0054] audio input terminal 101, is first applied to an A/D converter 102.
  • A digital audio signal (digital audio data) is output from the A/[0055] D converter 102 and applied to a buffer memory 103. The A/D converter 102 also outputs a clock CLK synchronized with the digital audio data converted from the analog audio signal. The clock CLK is input to a timing generator 108. On the basis of the clock CLK, the timing generator 108 generates a clock used to control the timing of the operation of the buffer memory 103 and a compression circuit 104, which will be described later. The generated clock is supplied to the buffer memory 103 and the compression circuit 104.
  • The [0056] buffer memory 103 temporarily stores the input digital audio data. The digital audio data is then read from the buffer memory 103 and supplied to the compression circuit 104. The compression circuit 104 compresses the received audio data according to a predetermined scheme and outputs the resultant compressed data to an encoder 105. In accordance with a predetermined scheme, the encoder 105 adds an error detection code and a synchronization pattern to the compressed audio data and encodes the audio data into a form suitable for transmission over a power line.
  • An feature of the present embodiment is in that the [0057] encoder 105 performs rearrangement of the audio data in terms of time as shown in FIG. 5A.
  • More specifically, as shown in FIG. 5A, the audio data is divided into a plurality of packets, and the packets are arranged in the order D[0058] 1→D1→D2→D2→D3→D3 and so on. Packet data D1, D2, and D3 each include a fixed length of audio data corresponding to a predetermined length of playback time. If the packets are concatenated in the order D1→D2→D3, the obtained audio data becomes correctly continuous in terms of time.
  • The [0059] encoder 105 transmits each same packet of the audio data twice successively such that that a succession of two packets having the same content is transmitted.
  • The reason which the [0060] encoder 105 can transmit each same packet of the audio data twice successively is that the compression of the audio data performed by the encoder 105 results in a reduction in the time required for transmission. The number of packets including the same content is determined depending upon the compression ratio of the compression process performed by the encoder 105. For example, if the data is compressed by the encoder 105 to a data size one-fifth the original data size, the compressed data can be transmitted, via each channel, with a transmission efficiency improved by a factor of five. This means that each channel is not used for ⅘of unit time. Therefore, the same packet of the compressed data can be transmitted successively a plurality of times, as long as the number of repetition times that each same packet is transmitted is equal to or less than the reciprocal of the compression ratio, that is, equal to or less than 5 in this specific example. That is, the number of repetition times that the same packet is transmitted is determined depending upon the compression ratio of the data compressed by the encoder 105.
  • When the [0061] client 200 receives the data arranged as shown in FIG. 5A, the client 200 performs decoding by selecting one of the two successive packets including the same content. The selected packets are then concatenated as shown in FIG. 5B.
  • In this specific example, data is transmitted in the order D[0062] 1→D1→D2→D2→D3→D3 as shown in FIG. 5A. A packet D1 located at the first position of the succession of packets D1 and D1 is first selected. A packet D2 at the second position of the succession of packets D2 and D2 is then selected. Furthermore, a packet D3 at the first position of the succession of packets D3 and D3 is selected. The selected packets D1, D2, and D3 are then combined in this order so as to obtain a series of packets placed at correct positions, in terms of time, corresponding to the original audio data.
  • The determination as to which of the two successive packets having the same content should be selected is made depending upon the reception condition under which the packets are received. More specifically, for example, the selection is made depending upon the quality of the received signal. If the first packet of two successive packets having the same content is better in signal quality, the first packet is employed. Conversely, if the second packet is better, the second packet is employed. [0063]
  • The above-described manner in which the data is transmitted and received makes it possible that data is maintained in a correct time series even when the reception channel is switched during the normal operation, as will be described in detail later. [0064]
  • A [0065] modulator 106 modulates the encoded data output from the encoder 105.
  • In the present embodiment, three [0066] carrier generators 107 a, 107 b, and 107 c are connected to the modulator 106. The carrier generators 107 a, 107 b, and 107 c generates carries with different frequencies f1, f2, and f3.
  • The [0067] modulator 106 modulates the carries generated by these carrier generators 107 a, 107 b, and 107 c, in accordance with the encoded data output from the encoder 105.
  • Because the modulating signal is a digital signal, FSK (Frequency Shift Keying), which is one of digital modulation schemes, is employed as the modulation method for the modulation performed by the [0068] modulator 106. The three data modulated according to the FSK method using carrier frequencies f1, f2, and f3 are transmitted in a multiplexed fashion.
  • That is, in the present embodiment, the same data is transmitted via three channels. More specifically, the same data encoded as shown in FIG. 5A is transmitted at the same time via the three channels. [0069]
  • The modulation performed by the [0070] modulator 106 may be performed according to a method other than the FSK. For example, PSK (Phase Shift Keying, spread spectrum modulation, or other digital modulation techniques may also be employed. Furthermore, the modulation signal may be an analog signal. In this case, frequency modulation or amplitude modulation may be employed.
  • The data signal modulated by the [0071] modulator 106 is superimposed on the power line 2 such that the data signal is transmitted as a power line signal.
  • A [0072] controller 112, including a microcomputer, ROM, and RAM, controls the operation of various functional circuits of the server.
  • A control [0073] command input unit 113 includes various command buttons for inputting various commands to the server 100. A command output from the control command input unit 113 is applied to the controller 112. In response to the received command, the controller 112 performs a control operation.
  • A [0074] display 114 displays, under the control the controller 112, information corresponding to the current operation status.
  • 1.3 Client [0075]
  • FIG. 4 illustrates an example of the internal configuration of the [0076] client 200.
  • The power line signal received via the [0077] power line 2 is applied to a channel selector 214. In the present embodiment, as described above, the same audio data is received in parallel via the thee channels. The channel selector 214 selects, under the control of a controller 210, one of the three channels.
  • For the above purpose, the [0078] channel selector 214 includes a bandpass filter (not shown) whose passband can be switched among the thee carrier frequencies f1, f2, and f3. Under the control of the controller 210, the passband of the bandpass filter is switched so as to pass only one of carrier frequencies f1, f2, and f3 thereby selecting a desired channel.
  • The received signal of the channel selected by the [0079] channel selector 214 is then applied to an RF amplifier 201. The RF amplifier 201 extracts a signal component superimposed on the power signal. The resultant signal is then detected by a detector 202 and thus a data signal is extracted. In the present embodiment, the data signal transmitted from the server 100 to the client is audio data. However, in practice, various command signals and control information are also transmitted. The audio data is applied to a decoder 203, while the command signal is applied to the controller 210.
  • The audio data output from the detector is also supplied to a [0080] timing generator 208. The timing generator 208 detects, for example, the synchronization pattern added to the audio data and generates a clock on the basis of the detected synchronization pattern. The generated clock is output to a decoder 203, a buffer memory 204, and a decompression circuit 205, which will be described later, thereby controlling the timing of the operation of the decoder 203 the buffer memory 204, and the decompression circuit 205.
  • The audio data supplied to the [0081] decoder 203 is first subjected to error detection performed by an error detection circuit 203 a. FSK-decoding process is then performed. The decoded data is temporarily stored in the buffer memory 204 and then output to the decompression circuit 205. The decoded data output from the decoder has the form described above with reference to FIG. 5B. That is, in the case of audio data, compressed audio data in the form of a correct time series is obtained.
  • If the error rate detected during the error detection process performed by the [0082] error detection circuit 203 a is greater than a predetermined level, the error detection circuit 203 a determines that an error occurs and outputs an error notification signal Ser indicating the occurrence of the error to the controller 210. In response to the error notification signal Ser, the controller 210 performs an automatic channel switching operation as will be described in detail later.
  • The data supplied to the [0083] decompression circuit 205 is decompressed, and the resultant data is applied to a D/A converter 206.
  • The D/[0084] A converter 206 converts the applied audio data into an analog audio signal and outputs the resultant signal to an amplifier 207. The amplifier 207 amplifies the received audio signal and outputs the amplified audio signal to a speaker.
  • The controller [0085] 210 includes, for example, a microcomputer, a ROM, and a RAM, and controls the operation of various parts of the client.
  • In the present embodiment, there is provided a history table [0086] 211 used by the controller 210. As will be described in detail later, channel quality information representing the history about the reception condition of channels is recorded in the history table 211. In response to switching of the reception channel during the normal operation, the controller 210 updates the channel quality information described in the history table 211. When an error occurs, the controller 210 selects a channel on the basis of the content of the history table 211 and switched the reception channel to the selected channel.
  • The history table [0087] 211 may be stored in a particular memory area of the RAM in the controller 210.
  • A control [0088] command input unit 213 includes various command buttons for inputting various commands to the client 200. A display 213 displays, under the control the controller 210, information corresponding to the current operation status.
  • 2. Channel Switching [0089]
  • 2.1 Specific Examples [0090]
  • In the transmission/reception system according to the present embodiment, as described above, information is transmitted using a plurality of channels, for example, three channels. The receiving device serving as the [0091] client 200 selects one of the plurality of channels and receives the information via the selected channel. By selecting a channel having high channel quality from the plurality of channels, it becomes possible for the receiving device to substantially always output a high-quality audio or video signal.
  • In the present embodiment, the receiving device serving as the [0092] client 200 is constructed so as to automatically switch the channel depending upon the reception condition of the respective channels thereby making it possible to maintain a better reception condition than can be achieved by the conventional technique in which the channel is simply switched in the fixed order.
  • FIGS. 6A and 6B are time charts illustrating a specific example of the channel switching operation performed by the [0093] client 200.
  • In the present embodiment, the automatic channel switching operation consists of an operation for determining an initial channel which is first selected when the [0094] client 200 is started up and a normal operation performed after the determination of the initial channel.
  • FIG. 6A illustrates the operation for determining the initial channel. In the following description, the respective three channels are distinguished by channel number and represented such as [0095] channel # 1, channel # 2, and channel # 3.
  • At a time t[0096] 0 in FIG. 6A, the electric power of the client 200 is turned on and thus the operation of the client 200 is started. The client 200 first selects, for example, the channel # 1 for a predetermined period of time, for example a sec, and counts the number of errors which occur during the period in which the channel # 1 is selected. The decision as to whether an error has occurred is made by the controller 210 on the basis of the error notification signal Ser received from the error detection circuit 203 a described earlier with reference to FIG. 4.
  • At a time t[0097] 1 after the passage of time of a sec since the selection of the channel # 1 at time t0, the channel # 2 is selected for a period having the same length of time, a sec, from t1 to t2, and the number of errors which occur during that period is counted.
  • Similarly, at a time t[0098] 2, the channel # 3 is selected for a period having the same length of time, a sec, from t2 to t3, and the number of errors which occur during that period is counted.
  • Thus, at the time t[0099] 3, information about the number of errors for the same length of time, a sec, is obtained for the respective channels # 1, #2, and #3. In the present embodiment, the number of occurrences of errors is compared among the channels, and a channel having the smallest number of occurrences of errors is employed as the initial channel.
  • The employment of the channel having the smallest number of occurrences of errors is equivalent to the selection of a channel which is currently best in terms of the reception condition, that is, the selection of a channel having the highest channel quality. [0100]
  • The selection of the initial channel according to the present embodiment provides the following advantages. [0101]
  • In practice, noise generated by a device connected to a power line generally has frequency components limited in a particular fixed frequency band, depending upon the type of the device. In such a case, only a fixed channel is influenced and degraded by the noise. [0102]
  • Therefore, once a channel having the best initial channel quality is employed as the initial channel, it is not necessary, in many cases, to switch the channel to another channel during the operation after the determination of the initial channel. [0103]
  • In the present embodiment, during the normal operation, the channel is automatically switched depending upon the condition in terms of the error occurrence, as will be described later. If the normal operation is started using a predetermined channel without performing the initial channel selection described above, it takes a long time to reach a high-quality channel, and a high-quality reception is impossible until reaching the high-quality channel. In contrast, if the initial channel is selected in the manner described above with reference to FIG. 6A, it is possible to start the normal operation under the good reception condition. [0104]
  • Even in the normal operation after selecting the initial channel, there is a possibility that the reception condition of the channel, that is, the channel quality changes due to a change in the environment or a change in the operation condition of the device itself or due to other factors. In the present embodiment, in order to handle such a change, the channel is switched during the normal operation, as will be described in detail later. [0105]
  • In the channel switching during the normal operation, the channel to be employed next is determined on the basis of the content of the history table [0106] 211.
  • An example of a change in the content of the history table [0107] 211 is shown in FIGS. 7A to 7H. An example of the normal operation is described below with reference to FIG. 6B and FIGS. 7A to 7H.
  • Herein, let us assume that the [0108] channel # 1 is selected as the initial channel in the operation described above with reference to FIG. 6A.
  • When the normal operation is started at a time t[0109] 11 in FIG. 6B, the initial channel # 1 is also employed as the channel for reception. The controller starts the measurement of the length of the channel usage period during which the currently selected channel (current channel) is continuously used.
  • Immediately after the start of the normal operation at time t[0110] 11 in FIG. 6B, no history information is described in the history table 211.
  • Let us assume that an error occurs at a time t[0111] 12 when 5 sec has elapsed from time t11. When the first error occurs during the normal operation, the current channel is switched to another channel.
  • When the error occurs, the measured channel usage period is described in the history table [0112] 211 and stored in a memory. The content of the history table 211 at time t2 is shown in FIG. 7A. The mapping structure of the history table 211 is described below.
  • In the history table [0113] 211, rows 1, 2, and 3 are assigned to the channel # 1, #2, and #3, as shown in FIG. 7A. The length of the channel usage period is described row by row, in the order of row number, each time the same channel is employed. In the fourth row, the mean channel usage period calculated from the values currently described in the first to third rows for each channel is described. That is, in the history table 211, the channel usage periods for the last three usages of each channel and the mean value thereof are described as the history information representing the history of the reception condition or the channel quality.
  • In the example shown in FIG. 6B, at time t[0114] 12, the channel usage period for the channel # 1 employed as the initial channel is measured as 5 sec. Thus, the value of 5 is described in the first row in the column corresponding to the channel # 1, as shown in FIG. 7A. At this point of time, no valid values are described in the second and third row for the channel # 1. In FIG. 7A, the absence of the valid value is represented by a symbol “-”. The same representation is used also in FIGS. 7B to 7H. At this point of time, the mean channel usage period of the channel # 1 is also 5 sec, and thus the value of 5 is described in the fourth row. At this point of time, the channels # 2 and #3 have not been used at all, and thus no valid values are described in the history table 211 for the channel # 2 and #3.
  • The channel to be employed for the operation after time t[0115] 12 cannot be determined from the content of the history table 211 because the channels other than channel # 1 have not been used and no information about the channels # 2 and #3 is described in the history table 211. For the above reason, at this point of time, the channel is switched to channel # 2 having a channel number immediately following that of the current channel # 1.
  • Herein, let us assume that at time t[0116] 13 after the passage of time of 6 sec from t12, an error occurs in the channel # 2 selected at time t12. In this case, in the history table 211, a value of 6 is described in the first row for the channel # 2 as shown in FIG. 7B, to indicate that the measured channel usage period of the channel # 2 is 6 sec, and a value corresponding to 6 sec is described as the mean value for the channel # 2.
  • At this point of time, the [0117] channel # 3 having a channel number following that of the channel # 2 remains unused. Thus, the channel is switched to the channel # 3. Let us further assume that an error occurs at time t14 after the passage of time of 4 sec from t13 at which the channel # 3 was selected. In response to the occurrence of the error, a value of 4 is described in the first row for the channel # 3 in the history table 211 as shown in FIG. 7C, to indicate that the measured channel usage period of the channel # 3 is 4 sec, and a value corresponding to 4 sec is described as the mean value for the channel # 3.
  • At this point of time t[0118] 14, information about the mean channel usage period of all channels becomes available from the history table 211, as shown in FIG. 7C.
  • Therefore, in the operation after this point of time, the channel to be employed for the next usage is determined on the basis of the mean channel usage periods described in the history table [0119] 211, as described below.
  • A greater value of the mean channel usage period indicates a better reception condition or better channel quality. Conversely, a small value of the mean channel usage period indicates that the channel quality has been bad. Therefore, in the present embodiment, a channel having the greatest mean channel usage period in the history table [0120] 211 is selected for the next usage.
  • In the example shown in FIG. 7C, the history table [0121] 211 indicates that the channel # 2 has the greatest mean channel usage period at this point of time. Thus, the channel # 2 is employed in the operation after time t14.
  • In FIG. 6B, an error occurs at time t[0122] 15 after the passage of time of 2 sec from t14 at which the channel # 2 was selected. In response to the occurrence of the error at time t15, the content of the history table 211 is updated as shown in FIG. 7D. That is, in addition to the channel usage periods of the respective channels described in the first row, a value of 2 corresponding to the channel usage period of 2 sec from t14 to t15 for the channel # 2 is described in the second row.
  • At this point of time, the channel usage periods are described in both first and second rows for the [0123] channel # 2. Thus, the mean value calculated from the values of these two channel usage periods is described in the fourth row. More specifically, the mean value is calculated as (6+2)/2=4, and thus the mean value for the channel # 2 is replaced with 4.
  • In FIG. 7D, the history table [0124] 211 indicates that, among all channels, the channel # 1 has the largest mean channel usage period. Thus, the channel # 1 is employed in the following operation after time t15.
  • In FIG. 6B, an error occurs at time t[0125] 16 after the passage of time of 5 sec from t15 at which the channel # 1 was selected.
  • In response to the occurrence of the error at time t[0126] 16, a value of 5 indicating the channel usage period of 5 sec is described in the second row for the channel # 1. The mean channel usage period of the channel # 1 is calculated as (5+ 5)/2=5, and thus a value of 5 is described in the fourth row for the channel # 1.
  • The history table [0127] 211 shown in FIG. 7E indicates that the channel # 1 has the greatest mean channel usage period at this point of time.
  • That is, the content of the history table shown in FIG., [0128] 7E indicates that the channel # 1, which was used in the operation before time t16, is still best in channel quality. Therefore, the channel # 1 is maintained without being switched to another channel. Thus, in FIG. 6B, the channel # 1 is further used in the operation after time t16.
  • In the present embodiment, as described above, when an error occurs in the currently used channel, if the history information indicates that the current channel is still best in channel quality, the use of the current channel is maintained. The reason is described in further detail below. [0129]
  • For example, when an error due to momentary noise occurs in the current channel which have had a good reception condition for a long continuous period of time, further maintaining the use of the current channel without selecting another channel having a worse reception condition can result in achievement in a better reception condition. Thus, the above-described operation according to the present embodiment can provide a better reception condition. [0130]
  • Let us assume that, at time [0131] 17 after the passage of time of 2 sec since t16, an error occurs in the channel # 1 which was not switched to another channel at time t16 but has been further used.
  • In response to the occurrence of the error, a value of 2 indicating the channel usage period of 2 sec is described in the history table [0132] 211, in the third row in the column corresponding to the channel # 1, as shown in FIG. 7F. The mean channel usage period is calculated as (5+5+2)/3=4, and thus the value of the mean channel usage period in the history table 211 is replaced with a value of 4.
  • At this pint of time, the content of the history table indicates, as can be seen from FIG. 7F, that all channels have the same mean channel usage period, that is, 4 sec. In this case, there are a plurality of channels having the maximum mean channel usage period, and the current channel is one of such channels. [0133]
  • In this case, the current channel is switched to another channel. When there is only one channel, in addition to the current channel, that has the maximum mean channel usage period, the current channel is switched to that channel. However, when there are two or more such channels in addition to the current channel, the current channel is switched to one of such channels in accordance with a predetermined rule. For example, the switching may be performed in the ascending order of channel numbers. [0134]
  • Thus, in this specific example, the [0135] channel # 1 which has been used till time t17 is switched to the channel # 2.
  • In the example shown in FIG. 6B, an error occurs in the [0136] channel # 2 at time t18 after the passage of time of 2 sec from t17 at which the use of the channel # 2 was started.
  • In response to the occurrence of the error, a value corresponding to the channel usage period of 2 sec is described in the third row in the column corresponding to the [0137] channel # 2, as shown in FIG. 7G. The mean channel usage period of the channel # 2 is calculated as (6+2+2)/3≈ 3.3, and thus the values of the mean channel usage period of the channel # 2 is replaced with 3.3.
  • At this point of time, as shown in FIG. 7G, the history table [0138] 211 indicates that the channels # 1 and #3 both have a mean channel usage period of 4 and the channel # 2 has a mean channel usage period of 3.3.
  • In this case, the [0139] channel # 2 is switched to the channel # 1 or #3. In the present embodiment, a channel having a smaller channel number, that is, the channel # 1 is selected. Thus, the channel # 1 is used in the operation after time t18. Note that the channel # 3 may be selected instead of the channel # 1.
  • In the example shown in FIG. 6B, an error occurs at time t[0140] 19 after the passage of time of 3 sec from t18 at which the channel # 1 was selected. In response to the occurrence of the error, the history table 211 is updated as shown in FIG. 7H.
  • At time t[0141] 18, the values of the channel usage period of the channel # 1 in the past three usages were already described in the first to third rows of the history table 211. In such a case, the value is described again from the first row, and the value for the past usage is replaced with a new value each time the channel is used.
  • In the example shown in FIG. 7H, the value of the channel usage period in the first row in the column corresponding to the [0142] channel # 1 is replaced with a new value of 3 sec. In response, the mean channel usage period of the channel # 1 is recalculated. In this specific example, the mean channel usage period is calculated as (3+5+2)/3= 10/3≈3.3, and thus the mean channel usage period of the channel # 1 is replaced with 3.3.
  • At this point of time, the content of the history table [0143] 211 shown in FIG. 7H indicates that the channel # 3 has the greatest mean channel usage period. As a result, the channel # 3 is selected for the use after time t19.
  • In the present embodiment, the channel switching is automatically performed in the manner described above. [0144]
  • In the present embodiment, as described above, the automatic channel switching is performed on the basis of the values of channel usage periods which indicate the channel quality. This makes it possible to switch the channel on the basis of the actual channel quality of the respective channels so as to obtain a better reception condition than can be achieved by the conventional technique in which the channel is simply switched in a predetermined order. [0145]
  • Furthermore, in the present embodiment, the values of the channel usage periods in a predetermined number of usages (three usages in the example shown in FIG. 7) in the past are stored thereby making it possible to select a still better channel on the basis of the mean channel usage values indicating the channel quality of the respective channels. [0146]
  • Although in the specific example described above, the values of the channel usage periods in the last three usages for each channel are stored in the history table, and the mean value of the channel usage periods in the last three usages is calculated, the number of values used to calculate the mean channel usage period is not limited to three. [0147]
  • However, if the number of samples of the channel usage periods is too small, a momentary reduction in the channel usage period due to a rare error can cause the mean channel usage period to deviate from a value representing the real channel quality. [0148]
  • Conversely, if the number of samples of the channel usage periods is too large, when the channel quality of the respective channels changes with the passage of time, it takes a long time to obtain a mean channel usage period which corresponds correctly to the real channel quality. [0149]
  • Therefore, the number of samples of channel usage periods should be properly determined taking into account the factors described above. [0150]
  • 2.2 Process [0151]
  • The channel switching operation according to the present embodiment described above with reference to FIGS. 6A and 6B and FIGS. 7A to [0152] 7H is described in further detail with reference to the flow charts shown in FIGS. 8 and 9. The operation shown in FIGS. 8 and 9 is performed by the controller 210 of the client 200.
  • If the power of the [0153] client 200 is turned on, the operation of the controller 210 is started in step S101 in FIG. 8. In the next step S102, the initial channel is determined in the manner described above with reference to FIG. 6A.
  • The process of [0154] step 102 for determining the initial channel is described in further detail below with reference to FIG. 9.
  • In step S[0155] 201, a variable n representing the channel number is set such that n=1. In the next step S202, a variable m representing the number of occurrences of errors is set such that m=0.
  • In step S[0156] 203, the channel selector 214 is controlled such that a channel #n corresponding to the current value of the variable n is selected.
  • In the next step S[0157] 204, it is determined whether a predetermined length of time (a sec) defined as the initial channel usage period for each channel has elapsed. If the decision in step S204 is negative, the process goes to step S205.
  • In step S[0158] 205, it is determined whether an error has occurred on the basis of an error notification signal Ser output from the error detection circuit 203 a in the decoder 203.
  • If it is determined in step S[0159] 205 that there is no error, the process returns to step S204. However, if an error is detected in step S205, the process goes to step S206. In step S206, the variable m is incremented such that m=m+1, and then the process returns to step S204.
  • In steps S[0160] 204 to S206 the number of occurrences of errors during the predetermined channel usage period with a length of a sec is counted for each channel.
  • If it is determined in step S[0161] 204 that the predetermined length of time has elapsed, the process goes to step S207.
  • In step S[0162] 207, the current value of the variable m is stored as the number of occurrences of errors for the currently used channel #n. More specifically, the number of occurrences of errors, m, is stored in a predetermined memory area of an internal RAM. In the next step S208, it is determined whether the current value of the variable n is equal to the maximum allowable value. In this specific embodiment, it is determined whether n=3. If the decision in step S208 is negative, there is a channel which is to be evaluated in terms of the number of occurrences of errors, and thus the process goes to step S209. In step S209, the variable n is incremented such that n=n+1, and then the process returns to step S202.
  • On the other hand, if the decision in step S[0163] 208 is affirmative, the process goes to step S210.
  • In step S[0164] 210, the value of m representing the number of occurrences of errors, which has been measured and stored in the internal RAM, is compared among the channels # 1 to #3, and the channel selector 214 is controlled such that a channel having the smallest value is selected. Thus, in step S210, the channel is switched to the initial channel.
  • After determining the initial channel in the process shown in FIG. 9, the process goes to step S[0165] 103 in FIG. 8 to start a normal receiving operation in which the channel is switched as required. That is, the process, an example of which is shown in FIG. 6B, is started.
  • In step S[0166] 103, a timer disposed in the controller 210 is reset, that is, the timer time T is reset to the initial value such that T=0. The timer is then started.
  • The process then waits in step S[0167] 104 until an error occurs. If an error is detected in step S104, the process goes to step S105.
  • In step S[0168] 105, the measured timer time T is employed as the channel usage period of the current channel and is written in a particular field of the history table 211 wherein the field is determined in the manner described above with reference to FIG. 7.
  • In the next step S[0169] 106, the mean channel usage period of the current channel is calculated from the values of channel usage periods described in the history table 211. In the next step S107, the calculated mean value is written in the history table 211, in the field corresponding to the current channel.
  • In step S[0170] 108, the current values of the mean channel usage periods of the respective channels # 1 to #3, described in the history table 211, are compared with each other. If the comparison indicates that there is no channel having a mean channel usage period greater than that of the current channel, that is, if only the current channel has the maximum mean channel usage period, the process returns to step 103. In this case, the currently used channel is further used without being switched to another channel, as is the case at time t1 in FIG. 6B.
  • On the other hand, the process goes to step S[0171] 109 when the comparison in step S108 indicates one of the following results: 1) there is another channel, other than the current channel, which has the maximum mean channel usage period; 2) the current channel and another channel have the same maximum mean channel usage period; and 3) there is a channel which has not been used yet. In this case, the current channel is switched to another channel depending upon which of results 1) to 3) is obtained in the comparison in step S108, as described below.
  • If the comparison result is 1), the current channel is switched to another channel having the maximum mean channel usage period. When there are a plurality of channels, other than the current channel, which have the maximum mean channel usage periods, one of such channels is selected in accordance with a predetermined rule. [0172]
  • In the case of 2), if there is only one channel, other than the current channel, which has the same maximum channel usage period as that of the current channel, that one channel is selected. When there are three or more channels are used, as is the case in the present embodiment, there is a possibility that there are a plurality of channels which have the same maximum channel usage period as that of the current channel. Also in this case, one of such channels is selected in accordance with a predetermined rule. [0173]
  • In the case of 3), one of channels which are detected as having not been used yet is selected in accordance with a predetermined rule. [0174]
  • After completion of step S[0175] 109, the process returns to step S103.
  • Steps S[0176] 103 to S109 are performed repeatedly during the normal operation thereby automatically switching the channel in response to an occurrence of error, as described earlier with reference to FIG. 6B.
  • Although not described above, information indicating which channel is currently selected may be displayed on the [0177] display 114 so as to notify the user of the current status in terms of the usage of the channel.
  • In the present invention, the automatic channel switching operation is not limited to that described above with reference to the specific embodiment. For example, only the process of determining and selecting the initial channel described earlier with reference to FIG. 6A may be performed, and the automatic channel switching operation described earlier with reference to FIG. 6B may not be performed. In usual power lines, because channels having bad quality are generally fixed, the execution of only the process of selecting the initial channel can provide great benefits. [0178]
  • The details of the automatic channel switching operation according to the present embodiment may be modified as required. For example, when an error is detected, if there are a plurality of channels, including the current channel, which have the same maximum mean channel usage period, the current channel may be further used without being switched to another channel, or one of such the plurality of channels may be selected in a random fashion and the current channel may be switched to the selected channel. [0179]
  • The details of the server and the client may also be modified. For example, the server may have a receiving capability and the client may have a transmitting capability so that various kinds of data such as control data may be transmitted between the server and the client. [0180]
  • In the example shown in FIG. 4, an amplifier is disposed in the inside of the client. Alternatively, an output terminal for outputting a source signal in an analog or digital form may be provided on the client and another external amplifier or an audio device may be coupled to the client via the output terminal so that an audio/video signal is output from a speaker or a monitor device connected to the external amplifier or the audio device. [0181]
  • Furthermore, the source signal transmitted from the server is not limited to a signal output from a CD player. For example, a signal output from another type of digital audio device such as an MD (Mini Disc) player or a DAT (Digital Audio Taperecorder) may also be transmitted. A signal output from a conventional cassette tape recorder or a tuner may also be transmitted. The type of the signal transmitted from the server is not limited to the audio signal, but another signal such as a video signal may also be transmitted. In this case, various types of AV devices such as a VTR (Video Tape Recorder), a DVD player for reproducing a video signal recorded on a DVD, and a television set may be connected to the server. [0182]
  • In the present invention, as described above, the same information is transmitted via a plurality of channels (a plurality of different carriers) over a power line, and a receiving device obtains channel quality information representing the channel quality of the respective channels and selects a channel having the best channel quality on the basis of the channel quality information. [0183]
  • This capability of preferentially selecting the best channel depending upon the current reception condition prevents a long-time reception failure which often occurs in the conventional technique. In other words, the present invention assures a good reception condition over a long period of time. [0184]
  • The channel quality information is represented on the basis of a period from a time when a channel is selected to a time when degradation in the channel quality (error) occurs. The representation of the channel quality information on the basis such a period of time makes it possible to easily obtain the channel quality information by simple processing without having to perform complicated calculations. [0185]
  • By storing the channel quality information in a memory (storage means, memory area), it becomes possible to properly switch, when an error occurs, the channel to a better channel on the basis of the history of the channel quality information. [0186]
  • Using the channel quality information stored in the memory, it is possible to obtain information about the change in channel quality for each channel. On the basis of the information about the change in the channel quality, it is possible to properly select the channel to which the current channel is to be switched. This makes it possible to select the channel in a more adequate fashion. [0187]
  • The channel quality information includes information about the period from a time at which a channel is selected to a time at which degradation in channel quality due to an error occurs, and the mean period is calculated from the values of the periods stored in the memory. [0188]
  • The change in the channel quality can be evaluated from the above mean period. On the basis of the mean periods of the respective channels, a channel to which the current channel is to be switched is selected. Thus, it is possible to precisely select a proper channel by simply calculating the mean period. [0189]
  • On the basis of information about the channel quality of each channel in the past, which is obtained from the channel quality information of each channel stored in the memory, it is determined whether the current channel should be further used without being switched to another channel or the current channel should switched to another channel. [0190]
  • In the case where a momentary and rare error occurs in the current channel which is better in channel quality than the other channels, the use of the current channel can be maintained without being switched to another channel which worse in channel quality. Also in this sense, the channel can be selected in a more adequate fashion, and a better reception condition can be steadily obtained. [0191]
  • In the present invention, the starting-up operation is performed such that channels are selected one by one in fixed intervals, and the channel quality of each channel is evaluated. On the basis of the obtained channel quality information, a channel having the best channel quality is selected as an initial channel. [0192]
  • The selection of the initial channel in the above-described manner makes it unnecessary to select a best channel after starting the receiving operation and makes it possible to start the receiving operation using the channel having the best channel quality. [0193]
  • In practical power line transmission/reception systems, noise generally has frequency components limited in a particular fixed frequency band. Therefore, if the initial channel has good channel quality, it is seldom necessary to switch the channel to another channel during the following operation. That is, good reception can be obtained for a long period of time immediately after starting the operation. [0194]

Claims (19)

What is claimed is:
1. A receiving device for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power, said receiving device comprising:
receiving means for extracting data superimposed on AC power from a particular channel of said network thereby receiving said data;
timer means for measuring a channel usage period during which a communication channel is used by said receiving means to receive data;
storage means for storing the channel usage period measured by said timer means, for each communication channel;
calculation means for calculating the mean channel usage period of each communication channel from the channel usage periods stored in said storage means; and
control means which controls said storage means so as to store the channel usage period measured by said timer means for each communication channel, and which controls said receiving means so as to select a communication channel used to receive data on the basis of the mean channel usage periods of the respective communication channels calculated by said calculation means and so as to receive said data using the selected channel.
2. A receiving device according to
claim 1
, wherein said selection of the communication channel is performed when a communication failure occurs in a communication channel being used.
3. A receiving device according to
claim 2
, wherein it is determined that said communication failure occurs when an error rate is detected as being equal to or greater than a predetermined level.
4. A receiving device according to
claim 1
, wherein:
the transmission of said data via the network is performed in such a manner that said data is first converted into packets each having a predetermined amount of data, and then each same packet is transmitted a plurality of times; and
said receiving device selects one packet from each succession of the same packets and uses the selected packets.
5. A receiving device according to
claim 1
, further comprising storage control means for controlling said storage means so as to store the mean channel usage period measured by said calculation means for each communication channel.
6. A receiving device according to
claim 1
, wherein said selection of the communication channel is performed such that the mean channel usage periods stored in said storage means are evaluated and a communication channel having a greatest mean channel usage period is selected.
7. A receiving device according to
claim 1
, wherein:
said data transmitted via the network is compressed data;
said receiving device further comprises decoding mean for decompressing said compressed data; and
said receiving device decompresses, using said decoding means, the compressed data received by said receiving means.
8. A receiving device according to
claim 1
, wherein before starting the reception of data via the network, said receiving device measures the channel usage period from a time at which a communication channel is selected to a time at which a communication failure occurs for each communication channel, and said receiving device selects a communication channel having a greatest measured channel usage period.
9. A receiving device according to
claim 1
, wherein said data transmitted via the network is continuous in terms of time.
10. A transmitting device for transmitting input data via a power line transmission network which has a plurality of communication channels and which transmits data by means of superimposing data upon AC power, said transmitting device comprising:
compression means for compressing said input data;
packet conversion means for converting the data compressed by said compression means into packets each having a predetermined length of data; and
transmitting means for transmitting the data converted into packets by said packet conversion means via the plurality of communication channels at the same time.
11. A transmitting device according to
claim 10
, wherein said packet conversion means outputs each same packet repeatedly a plurality of times to said transmitting means such that said transmitting means receives a succession of a plurality of packets having the same content.
12. A transmitting device according to
claim 10
, wherein said plurality of packets having the same content are transmitted successively from said transmitting means.
13. A transmitting device according to
claim 11
, wherein the number of times that each same packet is output repeatedly is determined on the basis of the compression ratio of the data compressed by said compression means.
14. A transmitting device according to
claim 10
, wherein said plurality of communication channels transmit data using different carrier frequencies.
15. A receiving method for receiving data via a power line transmission network which transmits the same data with the same timing in parallel via a plurality of communication channels by means of superposition on AC power, said receiving method comprising the steps of:
extracting data superimposed on AC power from a particular channel of said network thereby receiving said data, and measuring a channel usage period during which a communication channel is used to receive said data;
when a communication failure is detected during the reception of said data, calculating the mean channel usage period of said particular channel from the channel usage period measured during the current receiving operation and from the channel usage periods of said particular channel measured in the past; and
selecting a communication channel to be used, on the basis of the calculated mean channel usage period and the mean channel usage periods calculated for the other respective communication channels.
16. A receiving method according to
claim 15
, wherein it is determined that said communication failure occurs when an error rate is detected as being equal to or greater than a predetermined level.
17. A receiving method according to
claim 15
, wherein the transmission of said data via the network is performed in such a manner that said data is first converted into packets each having a predetermined amount of data, and then each packet is transmitted a plurality of times;
said receiving method further comprising the step of selecting one packet from each succession of the same packets.
18. A receiving method according to
claim 15
, wherein in said communication channel selection step, a communication channel having a greatest calculated mean channel usage period is selected.
19. A receiving method according to
claim 15
, further comprising the steps of:
before starting the reception of data via the network, measuring the channel usage period from a time at which a communication channel is selected to a time at which a communication failure occurs for each communication channel; and
selecting a communication channel having a greatest channel usage period of the channel usage periods measured for the respective communication channels.
US09/748,551 1999-12-28 2000-12-26 Transmitting device, receiving device, and receiving method Expired - Lifetime US6396393B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP37418699 1999-12-28
JPP11-374186 1999-12-28
JPP12-352532 2000-11-14
JP2000352532A JP2001251225A (en) 1999-12-28 2000-11-14 Receiver, and reception method

Publications (2)

Publication Number Publication Date
US20010008391A1 true US20010008391A1 (en) 2001-07-19
US6396393B2 US6396393B2 (en) 2002-05-28

Family

ID=26582561

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/748,551 Expired - Lifetime US6396393B2 (en) 1999-12-28 2000-12-26 Transmitting device, receiving device, and receiving method

Country Status (4)

Country Link
US (1) US6396393B2 (en)
JP (1) JP2001251225A (en)
KR (1) KR100719621B1 (en)
CN (1) CN1205760C (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020117629A1 (en) * 2000-12-12 2002-08-29 Jeol Ltd. Electrospray ion source
US20030099256A1 (en) * 2001-11-28 2003-05-29 Feinberg Paul H. System and method for transmitting information over multiple channels
US20030185289A1 (en) * 2001-12-07 2003-10-02 Koninklijke Philips Electronics N.V. Cordless modem for portable computers
US20050020232A1 (en) * 2003-07-24 2005-01-27 Bonicatto Damian G. Data communication over power lines
US20050017847A1 (en) * 2003-07-24 2005-01-27 Bonicatto Damian G. Power line communication system having time server
US20050083925A1 (en) * 2003-07-24 2005-04-21 Bonicatto Damian G. Locating endpoints in a power line communication system
US20050138442A1 (en) * 2003-12-22 2005-06-23 International Business Machines Corporation Method and system for energy management in a simultaneous multi-threaded (SMT) processing system including per-thread device usage monitoring
US20050154952A1 (en) * 2003-10-07 2005-07-14 Kddi Corporation Apparatus for fault detection for parallelly transmitted audio signals and apparatus for delay difference detection and adjustment for parallelly transmitted audio signals
US20050162554A1 (en) * 2003-12-25 2005-07-28 Funai Electric Co., Ltd. Disk device integral type television receiver set and reproducing apparatus integral type television receiver set
US20070018850A1 (en) * 2003-07-24 2007-01-25 Hunt Technologies, Inc. Endpoint event processing system
WO2007031538A2 (en) * 2005-09-15 2007-03-22 Airbus Deutschland Gmbh Power supply and communication system for a passenger plane
WO2008048187A1 (en) * 2006-10-19 2008-04-24 Pioneer Electronics Asiacentre Pte Ltd Audio system
US20080123869A1 (en) * 2005-11-11 2008-05-29 Hansder Engineering Co., Ltd Broadcasting device having power frequency carrier
US20080181186A1 (en) * 2007-01-31 2008-07-31 Broadcom Corporation, A California Corporation Intra-device RF bus and control thereof
US20080278296A1 (en) * 2007-05-08 2008-11-13 Feelux Co., Ltd. Power line communication apparatus, and method and apparatus for controlling electric devices
US20090083802A1 (en) * 2005-09-28 2009-03-26 Mitsubishi Electric Corporation Broadcast Receiving Apparatus
US20090268922A1 (en) * 2005-08-31 2009-10-29 Mitsubishi Materials Corporation Personal computer adaptor device, personal computer signal reproducing system, personal computer reproducing method, personal computer signal reproducing program, output device control program, personal computer adaptor device control program, personal computer control program, power line communication connector device, cradle device using the same, and power line communication reproducing system
EP2129001A1 (en) * 2008-05-30 2009-12-02 Canon Kabushiki Kaisha Communication system and control method therefor, program and storage medium
US20090323571A1 (en) * 2006-05-12 2009-12-31 The University Court Of The University Of Edinburg Low Power Media Access Control Protocol
US20100123449A1 (en) * 2008-11-19 2010-05-20 System General Corp. Wall control interface with phase modulation and detection for power management
US20100313217A1 (en) * 2009-06-04 2010-12-09 Verizon Patent And Licensing Inc. Methods and systems for recovering from errors associated with advertisement streams
US20110243157A1 (en) * 2008-12-09 2011-10-06 Hirokazu Oishi Communication system and method, and communication apparatus
EP2446621A1 (en) * 2009-06-22 2012-05-02 Tangotec Ltd. Home network apparatus
US8917782B2 (en) 2012-02-10 2014-12-23 Denso Corporation Vehicular power line communication system
US20150381402A1 (en) * 2001-02-02 2015-12-31 Opentv, Inc. Service gateway for interactive television
US10231316B2 (en) 2013-02-01 2019-03-12 Philips Lighting Holding B.V. Communication via a power waveform
EP3734174A4 (en) * 2018-03-02 2021-03-24 Gree Electric Appliances, Inc. of Zhuhai Communication implementation method and device for air conditioning unit, storage medium and processor
US11477122B2 (en) * 2017-09-27 2022-10-18 Intel Corporation Technologies for selecting non-minimal paths and throttling port speeds to increase throughput in a network

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480510B1 (en) 1998-07-28 2002-11-12 Serconet Ltd. Local area network of serial intelligent cells
US6549616B1 (en) 2000-03-20 2003-04-15 Serconet Ltd. Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets
IL135744A (en) * 2000-04-18 2008-08-07 Mosaid Technologies Inc Telephone communication system over a single telephone line
US6842459B1 (en) 2000-04-19 2005-01-11 Serconet Ltd. Network combining wired and non-wired segments
DE10127649B4 (en) * 2001-06-07 2007-04-05 Infineon Technologies Ag Integrated digital circuit and method for operating an integrated digital circuit
IL144158A (en) 2001-07-05 2011-06-30 Mosaid Technologies Inc Outlet for connecting an analog telephone set to a digital data network carrying voice signals in digital form
IL161190A0 (en) * 2001-10-11 2004-08-31 Serconet Ltd Outlet with analog signal adapter, method for use thereof and a network using said outlet
IL152824A (en) 2002-11-13 2012-05-31 Mosaid Technologies Inc Addressable outlet and a network using same
IL154921A (en) 2003-03-13 2011-02-28 Mosaid Technologies Inc Telephone system having multiple distinct sources and accessories therefor
US7852837B1 (en) 2003-12-24 2010-12-14 At&T Intellectual Property Ii, L.P. Wi-Fi/BPL dual mode repeaters for power line networks
IL159838A0 (en) 2004-01-13 2004-06-20 Yehuda Binder Information device
IL160417A (en) 2004-02-16 2011-04-28 Mosaid Technologies Inc Outlet add-on module
US20050207367A1 (en) * 2004-03-22 2005-09-22 Onggosanusi Eko N Method for channel quality indicator computation and feedback in a multi-carrier communications system
US7091849B1 (en) 2004-05-06 2006-08-15 At&T Corp. Inbound interference reduction in a broadband powerline system
JP4514540B2 (en) * 2004-07-28 2010-07-28 中国電力株式会社 Speaker device, digital audio reproducing device, and digital audio reproducing system
US7873058B2 (en) 2004-11-08 2011-01-18 Mosaid Technologies Incorporated Outlet with analog signal adapter, a method for use thereof and a network using said outlet
US8462902B1 (en) 2004-12-01 2013-06-11 At&T Intellectual Property Ii, L.P. Interference control in a broadband powerline communication system
US9172429B2 (en) 2004-12-01 2015-10-27 At&T Intellectual Property Ii, L.P. Interference control in a broadband powerline communication system
US7199706B2 (en) * 2005-02-22 2007-04-03 Sony Corporation PLC intercom/monitor
US7319717B2 (en) * 2005-06-28 2008-01-15 International Broadband Electric Communications, Inc. Device and method for enabling communications signals using a medium voltage power line
US7414526B2 (en) * 2005-06-28 2008-08-19 International Broadband Communications, Inc. Coupling of communications signals to a power line
US7522812B2 (en) * 2005-07-15 2009-04-21 International Broadband Electric Communications, Inc. Coupling of communications signals to a power line
US7778514B2 (en) * 2005-07-15 2010-08-17 International Broadband Electric Communications, Inc. Coupling of communications signals to a power line
US7667344B2 (en) * 2005-07-15 2010-02-23 International Broadband Electric Communications, Inc. Coupling communications signals to underground power lines
JP4929054B2 (en) * 2006-10-02 2012-05-09 ミドリ電子株式会社 Earth return transportation system
US9350423B2 (en) * 2011-06-30 2016-05-24 The Boeing Company Methods and system for increasing data transmission rates across a three-phase power system
CN102710293B (en) * 2012-06-08 2015-12-16 北京福星晓程电子科技股份有限公司 Self-adapting multi-channel communications receiving equipment, system and communication means thereof
CN107769902A (en) * 2016-08-19 2018-03-06 北京信威通信技术股份有限公司 A kind of anti-disturbance method and device
US11323435B2 (en) 2019-05-08 2022-05-03 The Boeing Company Method and apparatus for advanced security systems over a power line connection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514594A (en) * 1982-09-30 1985-04-30 Astech, Inc. Power line carrier telephone extension system for full duplex conferencing between telephones and having telephone call hold capability
US4686641A (en) * 1985-03-18 1987-08-11 Detroit Edison Company Static programmable powerline carrier channel test structure and method
US5802467A (en) * 1995-09-28 1998-09-01 Innovative Intelcom Industries Wireless and wired communications, command, control and sensing system for sound and/or data transmission and reception
US6353613B1 (en) * 1996-07-02 2002-03-05 Sony Corporation Information transmitter device and transmitting method
US6157292A (en) * 1997-12-04 2000-12-05 Digital Security Controls Ltd. Power distribution grid communication system
US6040759A (en) * 1998-02-17 2000-03-21 Sanderson; Lelon Wayne Communication system for providing broadband data services using a high-voltage cable of a power system
FR2817223B1 (en) * 2000-11-28 2003-01-10 Bosch Gmbh Robert PNEUMATIC BRAKE ASSIST SERVOMOTOR WITH ENHANCED ASSISTANCE
JP4686641B2 (en) * 2010-04-19 2011-05-25 日立コンシューマエレクトロニクス株式会社 Digital broadcast receiving apparatus and digital broadcast receiving method
JP5802467B2 (en) * 2011-07-29 2015-10-28 タキロン株式会社 Stair covering material and stair covering method

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020117629A1 (en) * 2000-12-12 2002-08-29 Jeol Ltd. Electrospray ion source
US20150381402A1 (en) * 2001-02-02 2015-12-31 Opentv, Inc. Service gateway for interactive television
US10826748B2 (en) * 2001-02-02 2020-11-03 Opentv, Inc. Service gateway for interactive television
US7110421B2 (en) * 2001-11-28 2006-09-19 Sony Corporation System and method for transmitting information over multiple channels
US20060268935A1 (en) * 2001-11-28 2006-11-30 Sony Electronics Inc. System and method for transmitting information over multiple channels
US7940800B2 (en) 2001-11-28 2011-05-10 Sony Corporation System and method for transmitting information over multiple channels
US20030099256A1 (en) * 2001-11-28 2003-05-29 Feinberg Paul H. System and method for transmitting information over multiple channels
US20030185289A1 (en) * 2001-12-07 2003-10-02 Koninklijke Philips Electronics N.V. Cordless modem for portable computers
US7432824B2 (en) 2003-07-24 2008-10-07 Hunt Technologies, Inc. Endpoint event processing system
US20050020232A1 (en) * 2003-07-24 2005-01-27 Bonicatto Damian G. Data communication over power lines
US20050083925A1 (en) * 2003-07-24 2005-04-21 Bonicatto Damian G. Locating endpoints in a power line communication system
US20070018850A1 (en) * 2003-07-24 2007-01-25 Hunt Technologies, Inc. Endpoint event processing system
US20050017847A1 (en) * 2003-07-24 2005-01-27 Bonicatto Damian G. Power line communication system having time server
US7791468B2 (en) 2003-07-24 2010-09-07 Hunt Technologies, Inc. Power line communication system having time server
US7742393B2 (en) 2003-07-24 2010-06-22 Hunt Technologies, Inc. Locating endpoints in a power line communication system
US9998173B2 (en) 2003-07-24 2018-06-12 Landis+Gyr Technologies, Llc Data communication over power lines
US7236765B2 (en) * 2003-07-24 2007-06-26 Hunt Technologies, Inc. Data communication over power lines
US20070229305A1 (en) * 2003-07-24 2007-10-04 Bonicatto Damian G Data Communication Over Power Lines
US7738664B2 (en) * 2003-10-07 2010-06-15 Kddi Corporation Apparatus for fault detection for parallelly transmitted audio signals and apparatus for delay difference detection and adjustment for parallelly transmitted audio signals
US20050154952A1 (en) * 2003-10-07 2005-07-14 Kddi Corporation Apparatus for fault detection for parallelly transmitted audio signals and apparatus for delay difference detection and adjustment for parallelly transmitted audio signals
US20050138442A1 (en) * 2003-12-22 2005-06-23 International Business Machines Corporation Method and system for energy management in a simultaneous multi-threaded (SMT) processing system including per-thread device usage monitoring
US7197652B2 (en) * 2003-12-22 2007-03-27 International Business Machines Corporation Method and system for energy management in a simultaneous multi-threaded (SMT) processing system including per-thread device usage monitoring
US20050162554A1 (en) * 2003-12-25 2005-07-28 Funai Electric Co., Ltd. Disk device integral type television receiver set and reproducing apparatus integral type television receiver set
US20090268922A1 (en) * 2005-08-31 2009-10-29 Mitsubishi Materials Corporation Personal computer adaptor device, personal computer signal reproducing system, personal computer reproducing method, personal computer signal reproducing program, output device control program, personal computer adaptor device control program, personal computer control program, power line communication connector device, cradle device using the same, and power line communication reproducing system
WO2007031538A3 (en) * 2005-09-15 2007-05-18 Airbus Gmbh Power supply and communication system for a passenger plane
WO2007031538A2 (en) * 2005-09-15 2007-03-22 Airbus Deutschland Gmbh Power supply and communication system for a passenger plane
US8174145B2 (en) 2005-09-15 2012-05-08 Airbus Operations Gmbh Power supply and communications system for a passenger aircarft
US20090261651A1 (en) * 2005-09-15 2009-10-22 Rolf Godecke Power Supply and Communications System for a Passenger Aircarft
DE102005044195A1 (en) * 2005-09-15 2007-03-22 Airbus Deutschland Gmbh Power supply and communication system for a passenger aircraft
US20090083802A1 (en) * 2005-09-28 2009-03-26 Mitsubishi Electric Corporation Broadcast Receiving Apparatus
US20080123869A1 (en) * 2005-11-11 2008-05-29 Hansder Engineering Co., Ltd Broadcasting device having power frequency carrier
US20090323571A1 (en) * 2006-05-12 2009-12-31 The University Court Of The University Of Edinburg Low Power Media Access Control Protocol
US8787389B2 (en) * 2006-05-12 2014-07-22 The University Court Of The University Of Edinburgh Low power media access control protocol
WO2008048187A1 (en) * 2006-10-19 2008-04-24 Pioneer Electronics Asiacentre Pte Ltd Audio system
US20080181186A1 (en) * 2007-01-31 2008-07-31 Broadcom Corporation, A California Corporation Intra-device RF bus and control thereof
US8130085B2 (en) * 2007-05-08 2012-03-06 Feelux Co., Ltd. Power line communication apparatus, and method and apparatus for controlling electric devices
US20080278296A1 (en) * 2007-05-08 2008-11-13 Feelux Co., Ltd. Power line communication apparatus, and method and apparatus for controlling electric devices
EP2129001A1 (en) * 2008-05-30 2009-12-02 Canon Kabushiki Kaisha Communication system and control method therefor, program and storage medium
US20090296953A1 (en) * 2008-05-30 2009-12-03 Canon Kabushiki Kaisha Communication system and control method therefor, program, and storage medium
US8107641B2 (en) 2008-05-30 2012-01-31 Canon Kabushiki Kaisha Communication system and control method therefor, program, and storage medium
US8482391B2 (en) * 2008-11-19 2013-07-09 System General Corp. Wall control interface with phase modulation and detection for power management
US20100123449A1 (en) * 2008-11-19 2010-05-20 System General Corp. Wall control interface with phase modulation and detection for power management
TWI385893B (en) * 2008-11-19 2013-02-11 System General Corp A wall control interface with phase modulation and detection for power management
US20110243157A1 (en) * 2008-12-09 2011-10-06 Hirokazu Oishi Communication system and method, and communication apparatus
US8578406B2 (en) * 2009-06-04 2013-11-05 Verizon Patent And Licensing Inc. Methods and systems for recovering from errors associated with advertisement streams
US8141113B2 (en) * 2009-06-04 2012-03-20 Verizon Patent And Licensing Inc. Methods and systems for recovering from errors associated with advertisement streams
US20100313217A1 (en) * 2009-06-04 2010-12-09 Verizon Patent And Licensing Inc. Methods and systems for recovering from errors associated with advertisement streams
US20120151520A1 (en) * 2009-06-04 2012-06-14 Verizon Patent And Licensing Inc. Methods and systems for recovering from errors associated with advertisement streams
EP2446621A4 (en) * 2009-06-22 2013-05-01 Tangotec Ltd Home network apparatus
EP2446621A1 (en) * 2009-06-22 2012-05-02 Tangotec Ltd. Home network apparatus
US8917782B2 (en) 2012-02-10 2014-12-23 Denso Corporation Vehicular power line communication system
US10231316B2 (en) 2013-02-01 2019-03-12 Philips Lighting Holding B.V. Communication via a power waveform
US11477122B2 (en) * 2017-09-27 2022-10-18 Intel Corporation Technologies for selecting non-minimal paths and throttling port speeds to increase throughput in a network
EP3734174A4 (en) * 2018-03-02 2021-03-24 Gree Electric Appliances, Inc. of Zhuhai Communication implementation method and device for air conditioning unit, storage medium and processor
US11609012B2 (en) 2018-03-02 2023-03-21 Gree Electric Appliances, Inc. Of Zhuhai Communication implementation method and device for air conditioning units, non-transitory computer readable storage medium and processor

Also Published As

Publication number Publication date
CN1205760C (en) 2005-06-08
US6396393B2 (en) 2002-05-28
KR100719621B1 (en) 2007-05-17
JP2001251225A (en) 2001-09-14
CN1309479A (en) 2001-08-22
KR20010067437A (en) 2001-07-12

Similar Documents

Publication Publication Date Title
US6396393B2 (en) Transmitting device, receiving device, and receiving method
US7308188B2 (en) Audio reproducing apparatus
KR100590428B1 (en) Wireless digital communication systems, digital wireless devices and digital speakers
JP2002524000A (en) High quality wireless acoustic speaker
US6169844B1 (en) Program recording methods and apparatus
JPH11225292A (en) Digital broadcast receiver and reception method
JPH10136312A (en) Information reproducing device
KR19980019012A (en) A method for transmitting DVD reproduced data to a decoder in a fixed data rate via digital bus
US20010015983A1 (en) Digital audio-video network system
JPH10126427A (en) Digital interface device having transmission function for uncompressible digital data
JP3600567B2 (en) Video distribution device
US20080231685A1 (en) Communication System and Communication Method
US6456330B1 (en) Remote-controlled transmitter and information transfer system using the same
US6757025B1 (en) Method for switching input terminals based on incoming signal format
KR950020534A (en) Multi video audio system device and driving method thereof
EP1345429A2 (en) Digital broadcasting reception apparatus and control method
KR0185939B1 (en) Device for the audio signal reproduction of a digital video disc player
JP2004241925A (en) Signal transmitting method, bidirectional communication system, display device, and base device
JP2003284166A (en) Electronic apparatus system, method for sharing function of electronic apparatus, electronic apparatus, and electronic device
US20020059061A1 (en) Transmission-reception system, transmission apparatus, reception apparatus and transmission-reception method
KR200375305Y1 (en) A portable audio player which involves DAB/DMB transmitter in it
KR20060021463A (en) A portable audio player which involves dab/dmb transmitter in it
JP4121199B2 (en) Signal processing device
JPH08340517A (en) Muse bit stream output device
JPH10276431A (en) Data transmitter

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YUASA, NAOKI;REEL/FRAME:011396/0178

Effective date: 20001205

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12