EP1081506A1 - Ceiling tile transmitter and receiver system - Google Patents

Ceiling tile transmitter and receiver system Download PDF

Info

Publication number
EP1081506A1
EP1081506A1 EP00116401A EP00116401A EP1081506A1 EP 1081506 A1 EP1081506 A1 EP 1081506A1 EP 00116401 A EP00116401 A EP 00116401A EP 00116401 A EP00116401 A EP 00116401A EP 1081506 A1 EP1081506 A1 EP 1081506A1
Authority
EP
European Patent Office
Prior art keywords
transmitter
ceiling tile
receiver
receiver system
pocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00116401A
Other languages
German (de)
French (fr)
Other versions
EP1081506B1 (en
Inventor
Sandor A. Frecska
John E. Cronin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armstrong World Industries Inc
Original Assignee
Armstrong World Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armstrong World Industries Inc filed Critical Armstrong World Industries Inc
Priority to EP02026799A priority Critical patent/EP1296408A3/en
Publication of EP1081506A1 publication Critical patent/EP1081506A1/en
Application granted granted Critical
Publication of EP1081506B1 publication Critical patent/EP1081506B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/045Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/0457Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like having closed internal cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • Building management systems contain various appliances for building service functions, a control system for control and regulation of the appliances, and a communication bus for communication of signals between the control system and the appliances.
  • Such a system is used for the central management of building functions, such as lighting, heating, and ventilation etc.
  • the appliances include, for example, lighting, heating equipment, air-conditioning devices or electrically movable window blinds.
  • the central management of energy consumption services allows a relatively easy adjustment of the level of light or temperature to the actual existing demand at any moment. This results in considerable savings of energy and costs.
  • Such a system precisely monitors energy consumption and enables accurate billing of' the users in a multi-user building.
  • Such a building management system can also be used for peak saving purposes to comply with the requirements of an electric company to keep power consumption below an agreed maximum level.
  • One communication system may require one frequency setting whereas another communication system may require an entirely different frequency setting.
  • one communication system may require a certain power or gain, whereas another would be different.
  • Antenna gain is related to antenna size, and therefore if more gain is needed, the size of the antenna is increased.
  • Aesthetics have become of primary importance in building ceiling systems. Many ceiling manufacturers offer a wide variety of designs and colors for their suspended ceiling systems.
  • the communication bus system is still a "hardwired" configuration. This leads to a decrease in flexibility, since a room's square footage may change over time, and therefore the transmitter/receiver devices and the hardwired communication bus may also need to be changed or rerouted. Rerouting or changing current transmitter/receiver devices requires modifying ceiling panels (drilling/punching/cutting) and replacing the ceiling tiles that had the transmitter/ receiver device in it.
  • transmitter/receiver devices have poor aesthetics when suspended from ceiling panels.
  • a rod or dish antenna system is added to the ceiling panel to allow it to communicate to appliances below.
  • the basic concept of the present invention is to attach or embed at least one transmitter/receiver device in a ceiling panel either during or after the ceiling panel manufacturing process.
  • the invention concept involves a number of related embodiments.
  • a transmitter/receiver device such as an RF antenna, is rigidly fixed in the pocket after ceiling panel manufacturing.
  • the transmitter/receiver device is embedded in the front side of the ceiling tile and a "scrim" covering is placed over it.
  • the transmitter/receiver device can also be embedded inside the ceiling tile or rigidly fixed on the top or side surface of the ceiling tile.
  • the transmitter/receiver device can also be embedded on the front surface of the ceiling tile, where the transmitter adds to, or integrates into, the overall aesthetics of the ceiling tile.
  • Various combinations of these embodiments can be used with a single ceiling tile.
  • inventive concepts involve manufacturing aspects. There are several different ceiling tile manufacturing processes that can be used for embedding the transmitting/receiving devices.
  • a high temperature resistant "place holding" structure that can withstand the ceiling tile treatments can also be provided that can be removed later to allow the mounting of the transmitter/receiver device.
  • each pocket is created on the backside of the ceiling panel during the ceiling panel manufacturing process, wherein each pocket can be of a different size and shape, and antennas, or other electronic components, are rigidly fixed in these pockets after ceiling panel manufacturing.
  • Fig. 1 Shown in Fig. 1 is a section from a ceiling tile 1, with back surface (facing towards the plenum) 10 and a front surface (facing towards the room) 20.
  • back surface and “upper surface” are used interchangeably.
  • front surface” and “lower surface” are interchangeable.
  • pockets 2, 3, and 4. can be made of different dimensions in width, length and depth, to account for various possible sizes and shapes of the transmitter/receiver antennas or other electronic devices to be inserted.
  • a ceiling tile router can be used to cut pockets 2, 3, 4 after the ceiling tiles are fully manufactured. These pockets also can be stamped on the back side after the ceiling tile is wet manufactured. Alternately, these pockets can be defined by placing a ceramic placeholder during the forming process of the ceiling tile, so that the ceiling tile is wet-formed and then cured. When the ceiling tile dries, the ceramic placeholders are removed. These are just a few of the possible methods of creating these pockets.
  • Fig. 2 illustrates a ceiling tile 1 with an antenna 50 having electrical leads 60, and which can be used for the transmission or reception of radio frequency (RF) signals.
  • the antenna is placed in the pocket 2 of the ceiling tile 1.
  • the pockets are designed so as to allow any of multiple sizes and shapes of antennas to be placed in the pockets. These antennas can simply be glued or clamped into the pocket.
  • the electrical leads are usually of the coaxial type with easy to connect connectors.
  • the transmitter/receiver is embedded in the front side of the ceiling tile and a "scrim" covering is placed over it.
  • a "scrim" covering is placed over it.
  • FIG. 3 Such an embodiment is depicted in Fig. 3 with a ceiling panel 1 having a top surface 203 and a bottom surface 202.
  • This structure is shown inverted from the structures illustrated in Figs. 1 and 2 in which the back of the ceiling tile faces up, whereas in Fig. 3 the front of the ceiling tile faces up.
  • Pockets 30 and 31 are shown, fabricated as before.
  • Antenna 50 is placed/fixed in pocket 30, with electrical leads 51 being routed out through the back of the ceiling panel.
  • a hole is formed from the pocket to the back of the ceiling tile by a drill or other means.
  • the scrim 201 normally used in aesthetic ceiling tiles, is a sheath stretched and glued over the front face 203 of the ceiling tile 1. As can be seen, this scrim covers both the ceiling tile 1 and the antenna 50.
  • the scrim In high volume manufacturing of ceiling tiles, many pockets may be formed in the ceiling tile but not filled with an antenna, as discussed above.
  • the scrim also covers an empty pocket 31.
  • a dummy antenna structure is placed in the pocket. The antenna and dummy structure, if any, are glued into place.
  • the transmitter/receiver device is embedded inside the ceiling tile.
  • the antenna 50 in pocket 2 with extruding leads 60 can be effectively buried within the ceiling tile 1, with back surface 10 and front surface 20. Note that the extruding leads 60 are protruding from the back surface 10. This embodiment fully protects the antenna or device from any outside sources of mechanical damage, and provides the antenna or device with further environmental protection from moisture etc., that the ceiling tile allows.
  • the antenna or device can be encapsulated during part of the ceiling tile manufacturing process, if the highest temperature of the ceiling tile manufacturing process is lower than the limit that the antenna can withstand. During normal ceiling tile manufacturing, temperatures of 350°C are often reached.
  • the semiconductor process used to form an antenna is usually above the 350°C level, and the thermoset glue used to hold the rest of the antenna structure together can be designed to be higher than the 350°C ceiling tile process limit.
  • Another method to completely encapsulate the antenna is to form a deep pocket in the ceiling tile as illustrated in Fig. 1.
  • the antenna is fixed in the deep pocket followed by a back fill of the rest of the opening with a plug of ceiling tile that is glued in, or form a hardening paste in the antenna.
  • the transmitter/receiver is rigidly fixed on the top or side surface of the ceiling tile.
  • the antenna or device 50 is rigidly fixed by glue, clamps or other means to the back 10 of ceiling tile 1.
  • the antenna 50 is rigidly fixed by glue, clamps or other means to the side of ceiling tile 1.
  • the transmitter is encased on the front surface of the ceiling tile, where the transmitter adds to, or integrates into, the overall aesthetics of the ceiling tile.
  • Figs. 7 and 8 show a ceiling panel 1 with a back surface 10 and a front surface 20.
  • Decorative surface features 30 are shown on the front surface to create an aesthetic appeal.
  • region 40 on front surface 20 an aesthetic surface feature is missing intentionally.
  • an antenna or device 50 is placed/fixed in region 40 in the exact position where a surface feature would have been defined.
  • the antenna is encased so as to look like a surface feature.
  • the leads 40 are shown as being passed through from the front surface 10 to the back surface 20 hidden from view.
  • the ceiling tile transmitter and receiver system described herein can be incorporated into a wireless communication plane providing an umbrella of connectivity for devices. Such devices can span a range from appliances to computer clients (workstations, laptops, hand-held devices, etc.).
  • RF antennas, transceivers and receivers can be embedded or affixed to the ceiling tile.
  • the transmitters/receivers can be embedded in the ceiling tile.
  • the components of the transmitter/receiver system include miniature antennas, single chip transceivers, sensors, power supplies, microprocessors, etc.
  • the transmitter/receiver system in one preferred embodiment employs an omnidirectional multistrip antenna that has a toroidal field pattern and provides omnidirectional coverage in any plane around the long axis of the antenna and two lobes in any plane parallel to the long axis.
  • Such microstrip antenna and also omnidirectional air-loaded patch element antennas are available for different frequencies and application requirements.
  • One exemplary antenna that can be used is the Microsphere omnidirectional microstrip antenna available from Xertex Technologies.
  • the present invention has been described in the context of the manufacturing of ceiling tiles that incorporate embedded or affixed transmitter/receiver devices either during or after the manufacture of ceiling tiles, the invention is equally applicable to the installation of transmitter/receiver devices in existing ceiling tiles. To serve that end, it is a simple extension to provide a retrofitting kit to building supply vendors, building contractors or directly to other parties that includes the tools and additional hardware required to form pockets in existing ceiling tiles to accommodate transmitter/receiver devices and to rigidly affix the transmitter/receiver devices in the pockets or on a surface of the ceiling tile.

Abstract

A ceiling tile transmitter and receiver system having at least one transmitter/receiver device located in a ceiling panel either during or after the ceiling panel fabrication process. In one embodiment one or more pockets of variable size and shape are created on a surface of the ceiling panel during or after the ceiling panel manufacturing process and then a transmitter/receiver device, such as an RF antenna, is rigidly fixed in the pocket In another embodiment, the transmitter/receiver device is embedded in the front side (lower surface) of the ceiling tile and a "scrim" covering is placed over it to secure it in place. The transmitter/receiver device can also be embedded inside the ceiling tile or rigidly fixed on an upper, lower or side surface of the ceiling tile. The transmitter/receiver device can be encased on the front surface of the ceiling tile, where the transmitter adds to, or integrates into, the overall aesthetics of the ceiling tile. Various combinations of these embodiments can be used with a single ceiling tile. A high temperature resistant "place holding" structure that can withstand the ceiling tile treatments can be provided and later removed to allow the installation of the transmitter/receiver device.

Description

    BACKGROUND OF THE INVENTION
  • During recent years in the designing or retrofitting of buildings, there has become an ever more pressing need to increase design flexibility. With the pervasive use of digital electronics, building designs now need to incorporate such infrastructure as digital communications, Internet connections, local area network connections, increased voice communications capability, and the like. Also, more and more appliances, such as security, sound, paging, heating, ventilating and air conditioning (HVAC), lighting, heating and cooling systems are digitally controlled. This technology has placed even more stress on the building design which has to include communications bus systems between the various appliances and some central control system.
  • The building management systems that control these appliances have also evolved. Computer control is now fundamental to building management systems. This has lead the way to the measurement and control of the aforementioned appliances. By adding computer control, great savings in energy costs are achieved in terms of turning devices on or off, or adjusting appliances, based upon user needs or even user projected needs. Also, the remote control of systems has enabled the building management function to be done off premises.
  • Building management systems contain various appliances for building service functions, a control system for control and regulation of the appliances, and a communication bus for communication of signals between the control system and the appliances. Such a system is used for the central management of building functions, such as lighting, heating, and ventilation etc. The appliances include, for example, lighting, heating equipment, air-conditioning devices or electrically movable window blinds. In office buildings and commercial and industrial complexes, the central management of energy consumption services allows a relatively easy adjustment of the level of light or temperature to the actual existing demand at any moment. This results in considerable savings of energy and costs. Such a system precisely monitors energy consumption and enables accurate billing of' the users in a multi-user building. Such a building management system can also be used for peak saving purposes to comply with the requirements of an electric company to keep power consumption below an agreed maximum level.
  • Many building management systems have different capability, which leads to having different transmitter/receiver devices in the same ceiling system, or more importantly, a different method to integrate these different transmitter/receiver devices. For instance, one communication system may require one frequency setting whereas another communication system may require an entirely different frequency setting. Also, one communication system may require a certain power or gain, whereas another would be different. Antenna gain is related to antenna size, and therefore if more gain is needed, the size of the antenna is increased.
  • Aesthetics have become of primary importance in building ceiling systems. Many ceiling manufacturers offer a wide variety of designs and colors for their suspended ceiling systems.
  • Furthermore, many appliances are attached or hung from the ceiling panels or ceiling suspension grids. Today unfortunately, theft and vandalism have become issues, and at times devices such as smoke detectors, fire alarms, lighting fixtures, etc. have been vandalized.
  • In the known systems, the local controllers and the appliances are connected to the communication bus by wires. In a modern office building or commercial complex this is a drawback as space layouts are often changed. Changing space layouts almost always requires displacement of the appliances and frequently the tearing down and rebuilding of internal walls. To achieve a flexible floor layout at low cost, a minimum amount of wiring in the walls is required. However, it is also essential that the users of a building have full control over the location of the appliances; consequently, placing appliances only at predetermined locations is unacceptable. In current systems, a hard-wired communication bus is used to connect to the local room wireless transmitter/receiver systems. These wireless transmitter/receiver systems are used to communicate between the bus and the appliances in the room. However, the communication bus system is still a "hardwired" configuration. This leads to a decrease in flexibility, since a room's square footage may change over time, and therefore the transmitter/receiver devices and the hardwired communication bus may also need to be changed or rerouted. Rerouting or changing current transmitter/receiver devices requires modifying ceiling panels (drilling/punching/cutting) and replacing the ceiling tiles that had the transmitter/ receiver device in it.
  • Another problem occurs in that transmitter/receiver devices have poor aesthetics when suspended from ceiling panels. After much design and expense have been invested in a ceiling panel system, a rod or dish antenna system is added to the ceiling panel to allow it to communicate to appliances below. There has not been much consideration given in terms of the room aesthetics of a joint system of antennas and ceiling panels.
  • Another problem occurring in the industry is vandalism and theft. When devices can be physically seen, they are more prone to be tampered with or removed.
  • Still another problem occurs in the design of ceiling tile panels that can be integrated with antennas of different sizes. In the manufacturing and sales of ceiling tiles, processes have to be made flexible to account for all of the different part numbers corresponding to transmitter/receiver devices.
  • SUMMARY OF THE INVENTION
  • The basic concept of the present invention is to attach or embed at least one transmitter/receiver device in a ceiling panel either during or after the ceiling panel manufacturing process. The invention concept involves a number of related embodiments. In a first embodiment at least one pocket is created on the backside of the ceiling panel, of variable size and shape, by the ceiling panel manufacturing process and then a transmitter/receiver device, such as an RF antenna, is rigidly fixed in the pocket after ceiling panel manufacturing.
  • In another embodiment, the transmitter/receiver device is embedded in the front side of the ceiling tile and a "scrim" covering is placed over it. The transmitter/receiver device can also be embedded inside the ceiling tile or rigidly fixed on the top or side surface of the ceiling tile. The transmitter/receiver device can also be embedded on the front surface of the ceiling tile, where the transmitter adds to, or integrates into, the overall aesthetics of the ceiling tile. Various combinations of these embodiments can be used with a single ceiling tile.
  • Other inventive concepts involve manufacturing aspects. There are several different ceiling tile manufacturing processes that can be used for embedding the transmitting/receiving devices. A high temperature resistant "place holding" structure that can withstand the ceiling tile treatments can also be provided that can be removed later to allow the mounting of the transmitter/receiver device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is better described by reading the following Detailed Description of the Invention with reference to the accompanying drawing figures, in which like numerals refer to like elements throughout.
  • Fig. 1 illustrates a ceiling tile with formed or cut pockets on the back surface for rigidly fixing antennas or other electronic devices in accordance with an exemplary embodiment of the present invention.
  • Fig. 2 illustrates a ceiling tile with formed pockets on the back surface with one pocket containing a transmitter/receiver device in accordance with an exemplary embodiment of the present invention.
  • Fig. 3 illustrates a ceiling tile with formed pockets on the front surface for containing a transmitter/receiver device, and a scrim cover for attaching to the front surface in accordance with an exemplary embodiment of the present invention.
  • Fig. 4 illustrates a transmitter/receiver device embedded within a ceiling tile in accordance with an exemplary embodiment of the present invention.
  • Fig. 5 illustrates a transmitter/receiver device that is rigidly fixed to the back surface of a ceiling tile in accordance with an exemplary embodiment of the present invention.
  • Fig. 6 illustrates a transmitter/receiver device that is rigidly fixed to a side surface of a ceiling tile in accordance with an exemplary embodiment of the present invention.
  • Fig. 7 illustrates a ceiling tile having several surface features positioned on the front surface of a ceiling tile in accordance with an exemplary embodiment of the present invention.
  • Fig. 8 illustrates a transmitter/receiver device that is encased on the front surface of a ceiling tile in accordance with an exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In a first embodiment of the invention, at least one pocket is created on the backside of the ceiling panel during the ceiling panel manufacturing process, wherein each pocket can be of a different size and shape, and antennas, or other electronic components, are rigidly fixed in these pockets after ceiling panel manufacturing. Shown in Fig. 1 is a section from a ceiling tile 1, with back surface (facing towards the plenum) 10 and a front surface (facing towards the room) 20. Throughout this description, the terms "back surface" and "upper surface" are used interchangeably. Likewise "front surface" and "lower surface" are interchangeable. Depicted in the figure are pockets 2, 3, and 4. These pockets can be made of different dimensions in width, length and depth, to account for various possible sizes and shapes of the transmitter/receiver antennas or other electronic devices to be inserted.
  • A ceiling tile router can be used to cut pockets 2, 3, 4 after the ceiling tiles are fully manufactured. These pockets also can be stamped on the back side after the ceiling tile is wet manufactured. Alternately, these pockets can be defined by placing a ceramic placeholder during the forming process of the ceiling tile, so that the ceiling tile is wet-formed and then cured. When the ceiling tile dries, the ceramic placeholders are removed. These are just a few of the possible methods of creating these pockets.
  • Fig. 2 illustrates a ceiling tile 1 with an antenna 50 having electrical leads 60, and which can be used for the transmission or reception of radio frequency (RF) signals. The antenna is placed in the pocket 2 of the ceiling tile 1. The pockets are designed so as to allow any of multiple sizes and shapes of antennas to be placed in the pockets. These antennas can simply be glued or clamped into the pocket. The electrical leads are usually of the coaxial type with easy to connect connectors.
  • In a second embodiment of the invention the transmitter/receiver is embedded in the front side of the ceiling tile and a "scrim" covering is placed over it. Such an embodiment is depicted in Fig. 3 with a ceiling panel 1 having a top surface 203 and a bottom surface 202. This structure is shown inverted from the structures illustrated in Figs. 1 and 2 in which the back of the ceiling tile faces up, whereas in Fig. 3 the front of the ceiling tile faces up. Pockets 30 and 31 are shown, fabricated as before. Antenna 50 is placed/fixed in pocket 30, with electrical leads 51 being routed out through the back of the ceiling panel. A hole is formed from the pocket to the back of the ceiling tile by a drill or other means. The scrim 201, normally used in aesthetic ceiling tiles, is a sheath stretched and glued over the front face 203 of the ceiling tile 1. As can be seen, this scrim covers both the ceiling tile 1 and the antenna 50.
  • In high volume manufacturing of ceiling tiles, many pockets may be formed in the ceiling tile but not filled with an antenna, as discussed above. In the example of Fig. 3, the scrim also covers an empty pocket 31. In the case of some pockets being too wide or too deep to effectively cover without the scrim or its process deforming the scrim in that region, a dummy antenna structure is placed in the pocket. The antenna and dummy structure, if any, are glued into place.
  • In a third embodiment of the invention, the transmitter/receiver device is embedded inside the ceiling tile. As illustrated in Fig. 4, in certain applications, the antenna 50 in pocket 2 with extruding leads 60 can be effectively buried within the ceiling tile 1, with back surface 10 and front surface 20. Note that the extruding leads 60 are protruding from the back surface 10. This embodiment fully protects the antenna or device from any outside sources of mechanical damage, and provides the antenna or device with further environmental protection from moisture etc., that the ceiling tile allows.
  • The antenna or device can be encapsulated during part of the ceiling tile manufacturing process, if the highest temperature of the ceiling tile manufacturing process is lower than the limit that the antenna can withstand. During normal ceiling tile manufacturing, temperatures of 350°C are often reached. The semiconductor process used to form an antenna is usually above the 350°C level, and the thermoset glue used to hold the rest of the antenna structure together can be designed to be higher than the 350°C ceiling tile process limit.
  • Another method to completely encapsulate the antenna is to form a deep pocket in the ceiling tile as illustrated in Fig. 1. Next, the antenna is fixed in the deep pocket followed by a back fill of the rest of the opening with a plug of ceiling tile that is glued in, or form a hardening paste in the antenna.
  • In other embodiments of the invention, the transmitter/receiver is rigidly fixed on the top or side surface of the ceiling tile. As shown in Fig. 5, the antenna or device 50 is rigidly fixed by glue, clamps or other means to the back 10 of ceiling tile 1. As shown in Fig. 6, the antenna 50 is rigidly fixed by glue, clamps or other means to the side of ceiling tile 1.
  • In yet another embodiment of the invention, the transmitter is encased on the front surface of the ceiling tile, where the transmitter adds to, or integrates into, the overall aesthetics of the ceiling tile. Figs. 7 and 8 show a ceiling panel 1 with a back surface 10 and a front surface 20. Decorative surface features 30 are shown on the front surface to create an aesthetic appeal. As can be seen in region 40 on front surface 20, an aesthetic surface feature is missing intentionally. As depicted in Fig. 8, an antenna or device 50 is placed/fixed in region 40 in the exact position where a surface feature would have been defined. The antenna is encased so as to look like a surface feature. The leads 40 are shown as being passed through from the front surface 10 to the back surface 20 hidden from view.
  • The ceiling tile transmitter and receiver system described herein can be incorporated into a wireless communication plane providing an umbrella of connectivity for devices. Such devices can span a range from appliances to computer clients (workstations, laptops, hand-held devices, etc.). In a wireless communication system, RF antennas, transceivers and receivers can be embedded or affixed to the ceiling tile.
  • As described herein, the transmitters/receivers can be embedded in the ceiling tile. The components of the transmitter/receiver system include miniature antennas, single chip transceivers, sensors, power supplies, microprocessors, etc. The transmitter/receiver system in one preferred embodiment employs an omnidirectional multistrip antenna that has a toroidal field pattern and provides omnidirectional coverage in any plane around the long axis of the antenna and two lobes in any plane parallel to the long axis. Such microstrip antenna and also omnidirectional air-loaded patch element antennas are available for different frequencies and application requirements. One exemplary antenna that can be used is the Microsphere omnidirectional microstrip antenna available from Xertex Technologies.
  • Although the present invention has been described in the context of the manufacturing of ceiling tiles that incorporate embedded or affixed transmitter/receiver devices either during or after the manufacture of ceiling tiles, the invention is equally applicable to the installation of transmitter/receiver devices in existing ceiling tiles. To serve that end, it is a simple extension to provide a retrofitting kit to building supply vendors, building contractors or directly to other parties that includes the tools and additional hardware required to form pockets in existing ceiling tiles to accommodate transmitter/receiver devices and to rigidly affix the transmitter/receiver devices in the pockets or on a surface of the ceiling tile.
  • Furthermore, the corresponding structures, materials, acts and equivalents of any means plus function elements in the claims below are intended to include any structure, material, or acts for performing the functions in combination with other claimed elements as specifically claimed.
  • While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various other changes in form and detail may be made without departing from the spirit and scope of the invention.

Claims (40)

  1. A ceiling tile transmitter and receiver system for transmitting and receiving electromagnetic signals in a defined area of a building space, comprising:
    a ceiling tile including a lower surface, an upper surface and a plurality of lateral side surfaces, with at least one of the surfaces adapted to install a transmitter/receiver device; and
    at least one transmitter/receiver device rigidly affixed to the at least one surface.
  2. The ceiling tile transmitter and receiver system of claim 1 wherein the at least one surface is adapted to install a transmitter/receiver device by forming at least one pocket on said at least one surface.
  3. The ceiling tile transmitter and receiver system of claim 2 wherein the transmitter/receiver device is rigidly affixed in a pocket on the upper surface of the ceiling tile.
  4. The ceiling tile transmitter and receiver system of claim 2 wherein the transmitter/receiver device is rigidly affixed in a pocket on a lateral side surface of the ceiling tile.
  5. The ceiling tile transmitter and receiver system of claim 2 wherein the transmitter/receiver device is rigidly affixed in a pocket on the lower surface of the ceiling tile.
  6. The ceiling tile transmitter and receiver system of claim 5 further comprising a scrim cover placed over the entire lower surface of the ceiling tile.
  7. The ceiling tile transmitter and receiver system of claim 2 wherein the at least one pocket is formed by cutting the pocket on the at least one surface of the ceiling tile with a ceiling tile router.
  8. The ceiling tile transmitter and receiver system of claim 2 wherein the at least one pocket is formed by stamping the pocket on the at least one surface after the ceiling tile is wet manufactured.
  9. The ceiling tile transmitter and receiver system of claim 2 wherein the at least one pocket is formed by placing a ceramic placeholder for the pocket on the at least one surface during the forming and curing of the ceiling tile, the ceramic placeholder being removed after the ceiling tile dries.
  10. The ceiling tile transmitter and receiver system of claim 1 further comprising a plurality of pockets of varying dimensions that are formed on the at least one surface and adapted for the installation of transmitter/receiver devices.
  11. The ceiling tile transmitter and receiver system of claim 2 wherein the transmitter/receiver device is secured inside the formed pocket by applying an adhesive material.
  12. The ceiling tile transmitter and receiver system of claim 2 wherein the transmitter/receiver device are secured inside the formed pocket by a clamp.
  13. The ceiling tile transmitter and receiver system of claim 1 wherein the electromagnetic signals are radio frequency (RF) signals and the transmitter/receiver device is an RF antenna.
  14. The ceiling tile transmitter and receiver system of claim 13 wherein the RF antenna is a microstrip antenna.
  15. The ceiling tile transmitter and receiver system of claim 13 wherein the RF antenna includes an omnidirectional air-loaded patch element.
  16. The ceiling tile transmitter and receiver system of claim 1 wherein the transmitter/receiver device is rigidly fixed externally to the lower surface of the ceiling tile.
  17. The ceiling tile transmitter and receiver system of claim 1 wherein the transmitter/receiver device is rigidly fixed externally to the upper surface of the ceiling tile.
  18. The ceiling tile transmitter and receiver system of claim 1 wherein the transmitter/receiver device is rigidly fixed externally to a side surface of the ceiling tile.
  19. The ceiling tile transmitter and receiver system of claim 1 wherein the lower surface comprises a plurality of decorative surface features and at least one transmitter/receiver device that is rigidly fixed externally to the lower surface and encased to provide a uniform visual impression with the decorative surface features.
  20. The ceiling tile transmitter and receiver system of claim 1 wherein the transmitter/receiver device is located above the plane formed by the lower surface of a ceiling suspension system.
  21. The ceiling tile transmitter and receiver system of claim 1 wherein the at least one transmitter/receiver device includes one or more of a miniature antenna, a single chip transceiver, an electromagnetic sensor, a power supply and a microprocessor.
  22. A ceiling tile transmitter and receiver system for transmitting and receiving electromagnetic signals in a defined area of a building space, comprising:
    a ceiling tile including a lower surface, an upper surface and a plurality of lateral side surfaces; and
    at least one transmitter/receiver device embedded inside the ceiling tile.
  23. The ceiling tile transmitter and receiver system of claim 22 wherein the transmitter/receiver device is embedded adjacent to the lower surface and further comprises a scrim cover placed over the entire lower surface of the ceiling tile.
  24. The ceiling tile transmitter and receiver of claim 22 wherein the transmitter/receiver device is encapsulated within the ceiling tile during the manufacturing process.
  25. The ceiling tile transmitter and receiver system of claim 22 wherein the transmitter/receiver device is embedded inside the ceiling tile by an adhesive that attaches a plug of ceiling tile to the transmitter/receiver device to cover the opening created in the ceiling tile.
  26. The ceiling tile transmitter and receiver system of claim 22 wherein the electromagnetic signals are radio frequency (RF) signals and the transmitter/receiver device is an RF antenna.
  27. The ceiling tile transmitter and receiver system of claim 26 wherein the RF antenna is a microstrip antenna.
  28. The ceiling tile transmitter and receiver system of claim 26 wherein the RF antenna includes an omnidirectional air-loaded patch element.
  29. The ceiling tile transmitter and receiver system of claim 22 wherein the at least one transmitter/receiver device includes one or more of a miniature antenna, a single chip transceiver, an electromagnetic sensor, a power supply and a microprocessor.
  30. A method for fabricating a ceiling tile transmitter and receiver system for transmitting and receiving electromagnetic signals in a defined area of a building space, comprising:
    forming at least one pocket of variable dimensions on any of the external surfaces of the ceiling tile to install a transmitter/receiver device;
    and
    rigidly affixing a transmitter/receiver device in at least one pocket formed on an external surface.
  31. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 wherein the transmitter/receiver device is rigidly affixed in a pocket on an upper surface of the ceiling tile.
  32. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 wherein the transmitter/receiver device is rigidly affixed in a pocket on a lateral side surface of the ceiling tile.
  33. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 wherein the transmitter/receiver device is rigidly affixed in a pocket on a lower surface of the ceiling tile.
  34. The method for fabricating a ceiling tile transmitter and receiver system of claim 33 further comprising adhering a scrim cover to the entire lower surface of the ceiling tile.
  35. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 further comprising forming a pocket by cutting the pocket on the external surface of the ceiling tile with a ceiling tile router.
  36. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 further comprising forming a pocket by stamping the pocket on the external surface after the ceiling tile is wet manufactured.
  37. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 further comprising forming a pocket by placing a ceramic placeholder for the pocket during the forming and curing of the ceiling tile and removing the ceramic placeholder after the ceiling tile dries.
  38. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 further comprising securing the transmitter/receiver device inside the formed pocket by applying an adhesive material.
  39. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 further comprising clamping the transmitter/receiver device inside the formed pocket.
  40. The method for fabricating a ceiling tile transmitter and receiver system of claim 30 wherein the transmitter/receiver device includes one or more of a miniature antenna, a single chip transceiver, an electromagnetic sensor, a power supply and a microprocessor.
EP00116401A 1999-08-10 2000-07-28 Ceiling tile transmitter and receiver system Expired - Lifetime EP1081506B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02026799A EP1296408A3 (en) 1999-08-10 2000-07-28 Ceiling tile transmitter and receiver system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14806099P 1999-08-10 1999-08-10
US148060 1999-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP02026799A Division EP1296408A3 (en) 1999-08-10 2000-07-28 Ceiling tile transmitter and receiver system

Publications (2)

Publication Number Publication Date
EP1081506A1 true EP1081506A1 (en) 2001-03-07
EP1081506B1 EP1081506B1 (en) 2003-12-17

Family

ID=22524076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00116401A Expired - Lifetime EP1081506B1 (en) 1999-08-10 2000-07-28 Ceiling tile transmitter and receiver system

Country Status (5)

Country Link
EP (1) EP1081506B1 (en)
AT (1) ATE256872T1 (en)
CA (1) CA2314664A1 (en)
DE (1) DE60007242D1 (en)
MX (1) MXPA00007778A (en)

Cited By (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038618A1 (en) * 2013-09-16 2015-03-19 Energous Corporation Wireless power supply for rescue devices
WO2015187005A1 (en) 2014-06-06 2015-12-10 Intellifi B.V. An information transmission method
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9882395B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
CN117605214A (en) * 2024-01-22 2024-02-27 四川省材科院消防科技有限公司 Fire-fighting suspended ceiling and installation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330691A (en) * 1980-01-31 1982-05-18 The Futures Group, Inc. Integral ceiling tile-loudspeaker system
US4456793A (en) * 1982-06-09 1984-06-26 Bell Telephone Laboratories, Incorporated Cordless telephone system
US4923032A (en) * 1989-07-21 1990-05-08 Nuernberger Mark A Ceiling panel sound system
US4928312A (en) * 1988-10-17 1990-05-22 Amel Hill Acoustic transducer
US5316254A (en) * 1992-05-14 1994-05-31 Mccartha Robert D Junction box support for suspended ceilings
GB2283642A (en) * 1993-11-06 1995-05-10 Nokia Telecommunications Oy Radio communication apparatus
US5516068A (en) * 1992-07-31 1996-05-14 Rice; Frank Device support bracket

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330691A (en) * 1980-01-31 1982-05-18 The Futures Group, Inc. Integral ceiling tile-loudspeaker system
US4456793A (en) * 1982-06-09 1984-06-26 Bell Telephone Laboratories, Incorporated Cordless telephone system
US4928312A (en) * 1988-10-17 1990-05-22 Amel Hill Acoustic transducer
US4923032A (en) * 1989-07-21 1990-05-08 Nuernberger Mark A Ceiling panel sound system
US5316254A (en) * 1992-05-14 1994-05-31 Mccartha Robert D Junction box support for suspended ceilings
US5516068A (en) * 1992-07-31 1996-05-14 Rice; Frank Device support bracket
GB2283642A (en) * 1993-11-06 1995-05-10 Nokia Telecommunications Oy Radio communication apparatus

Cited By (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US11652369B2 (en) 2012-07-06 2023-05-16 Energous Corporation Systems and methods of determining a location of a receiver device and wirelessly delivering power to a focus region associated with the receiver device
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10148133B2 (en) 2012-07-06 2018-12-04 Energous Corporation Wireless power transmission with selective range
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US10298024B2 (en) 2012-07-06 2019-05-21 Energous Corporation Wireless power transmitters for selecting antenna sets for transmitting wireless power based on a receiver's location, and methods of use thereof
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9843229B2 (en) 2013-05-10 2017-12-12 Energous Corporation Wireless sound charging and powering of healthcare gadgets and sensors
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10128695B2 (en) 2013-05-10 2018-11-13 Energous Corporation Hybrid Wi-Fi and power router transmitter
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9941705B2 (en) 2013-05-10 2018-04-10 Energous Corporation Wireless sound charging of clothing and smart fabrics
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9847669B2 (en) 2013-05-10 2017-12-19 Energous Corporation Laptop computer as a transmitter for wireless charging
US10134260B1 (en) 2013-05-10 2018-11-20 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9967743B1 (en) 2013-05-10 2018-05-08 Energous Corporation Systems and methods for using a transmitter access policy at a network service to determine whether to provide power to wireless power receivers in a wireless power network
US10056782B1 (en) 2013-05-10 2018-08-21 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9800080B2 (en) 2013-05-10 2017-10-24 Energous Corporation Portable wireless charging pad
US11722177B2 (en) 2013-06-03 2023-08-08 Energous Corporation Wireless power receivers that are externally attachable to electronic devices
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10291294B2 (en) 2013-06-03 2019-05-14 Energous Corporation Wireless power transmitter that selectively activates antenna elements for performing wireless power transmission
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10396588B2 (en) 2013-07-01 2019-08-27 Energous Corporation Receiver for wireless power reception having a backup battery
US10523058B2 (en) 2013-07-11 2019-12-31 Energous Corporation Wireless charging transmitters that use sensor data to adjust transmission of power waves
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10305315B2 (en) 2013-07-11 2019-05-28 Energous Corporation Systems and methods for wireless charging using a cordless transceiver
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
US10498144B2 (en) 2013-08-06 2019-12-03 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices in response to commands received at a wireless power transmitter
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
WO2015038618A1 (en) * 2013-09-16 2015-03-19 Energous Corporation Wireless power supply for rescue devices
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10516301B2 (en) 2014-05-01 2019-12-24 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10298133B2 (en) 2014-05-07 2019-05-21 Energous Corporation Synchronous rectifier design for wireless power receiver
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10014728B1 (en) 2014-05-07 2018-07-03 Energous Corporation Wireless power receiver having a charger system for enhanced power delivery
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US9882395B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US11233425B2 (en) 2014-05-07 2022-01-25 Energous Corporation Wireless power receiver having an antenna assembly and charger for enhanced power delivery
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10186911B2 (en) 2014-05-07 2019-01-22 Energous Corporation Boost converter and controller for increasing voltage received from wireless power transmission waves
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10396604B2 (en) 2014-05-07 2019-08-27 Energous Corporation Systems and methods for operating a plurality of antennas of a wireless power transmitter
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US10116170B1 (en) 2014-05-07 2018-10-30 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9859758B1 (en) 2014-05-14 2018-01-02 Energous Corporation Transducer sound arrangement for pocket-forming
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
WO2015187005A1 (en) 2014-06-06 2015-12-10 Intellifi B.V. An information transmission method
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10554052B2 (en) 2014-07-14 2020-02-04 Energous Corporation Systems and methods for determining when to transmit power waves to a wireless power receiver
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9882394B1 (en) 2014-07-21 2018-01-30 Energous Corporation Systems and methods for using servers to generate charging schedules for wireless power transmission systems
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10490346B2 (en) 2014-07-21 2019-11-26 Energous Corporation Antenna structures having planar inverted F-antenna that surrounds an artificial magnetic conductor cell
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9899844B1 (en) 2014-08-21 2018-02-20 Energous Corporation Systems and methods for configuring operational conditions for a plurality of wireless power transmitters at a system configuration interface
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10790674B2 (en) 2014-08-21 2020-09-29 Energous Corporation User-configured operational parameters for wireless power transmission control
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
US11670970B2 (en) 2015-09-15 2023-06-06 Energous Corporation Detection of object location and displacement to cause wireless-power transmission adjustments within a transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US11056929B2 (en) 2015-09-16 2021-07-06 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US11777328B2 (en) 2015-09-16 2023-10-03 Energous Corporation Systems and methods for determining when to wirelessly transmit power to a location within a transmission field based on predicted specific absorption rate values at the location
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10483768B2 (en) 2015-09-16 2019-11-19 Energous Corporation Systems and methods of object detection using one or more sensors in wireless power charging systems
US10291056B2 (en) 2015-09-16 2019-05-14 Energous Corporation Systems and methods of controlling transmission of wireless power based on object indentification using a video camera
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10177594B2 (en) 2015-10-28 2019-01-08 Energous Corporation Radiating metamaterial antenna for wireless charging
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US10511196B2 (en) 2015-11-02 2019-12-17 Energous Corporation Slot antenna with orthogonally positioned slot segments for receiving electromagnetic waves having different polarizations
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10594165B2 (en) 2015-11-02 2020-03-17 Energous Corporation Stamped three-dimensional antenna
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10141771B1 (en) 2015-12-24 2018-11-27 Energous Corporation Near field transmitters with contact points for wireless power charging
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US11451096B2 (en) 2015-12-24 2022-09-20 Energous Corporation Near-field wireless-power-transmission system that includes first and second dipole antenna elements that are switchably coupled to a power amplifier and an impedance-adjusting component
US11114885B2 (en) 2015-12-24 2021-09-07 Energous Corporation Transmitter and receiver structures for near-field wireless power charging
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10516289B2 (en) 2015-12-24 2019-12-24 Energous Corportion Unit cell of a wireless power transmitter for wireless power charging
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10879740B2 (en) 2015-12-24 2020-12-29 Energous Corporation Electronic device with antenna elements that follow meandering patterns for receiving wireless power from a near-field antenna
US10116162B2 (en) 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US10218207B2 (en) 2015-12-24 2019-02-26 Energous Corporation Receiver chip for routing a wireless signal for wireless power charging or data reception
US10277054B2 (en) 2015-12-24 2019-04-30 Energous Corporation Near-field charging pad for wireless power charging of a receiver device that is temporarily unable to communicate
US10491029B2 (en) 2015-12-24 2019-11-26 Energous Corporation Antenna with electromagnetic band gap ground plane and dipole antennas for wireless power transfer
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10186892B2 (en) 2015-12-24 2019-01-22 Energous Corporation Receiver device with antennas positioned in gaps
US10447093B2 (en) 2015-12-24 2019-10-15 Energous Corporation Near-field antenna for wireless power transmission with four coplanar antenna elements that each follows a respective meandering pattern
US10958095B2 (en) 2015-12-24 2021-03-23 Energous Corporation Near-field wireless power transmission techniques for a wireless-power receiver
US11689045B2 (en) 2015-12-24 2023-06-27 Energous Corporation Near-held wireless power transmission techniques
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10164478B2 (en) 2015-12-29 2018-12-25 Energous Corporation Modular antenna boards in wireless power transmission systems
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US11777342B2 (en) 2016-11-03 2023-10-03 Energous Corporation Wireless power receiver with a transistor rectifier
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10476312B2 (en) 2016-12-12 2019-11-12 Energous Corporation Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered to a receiver
US10840743B2 (en) 2016-12-12 2020-11-17 Energous Corporation Circuit for managing wireless power transmitting devices
US11594902B2 (en) 2016-12-12 2023-02-28 Energous Corporation Circuit for managing multi-band operations of a wireless power transmitting device
US10355534B2 (en) 2016-12-12 2019-07-16 Energous Corporation Integrated circuit for managing wireless power transmitting devices
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US11245289B2 (en) 2016-12-12 2022-02-08 Energous Corporation Circuit for managing wireless power transmitting devices
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US11063476B2 (en) 2017-01-24 2021-07-13 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11637456B2 (en) 2017-05-12 2023-04-25 Energous Corporation Near-field antennas for accumulating radio frequency energy at different respective segments included in one or more channels of a conductive plate
US11245191B2 (en) 2017-05-12 2022-02-08 Energous Corporation Fabrication of near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11218795B2 (en) 2017-06-23 2022-01-04 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10714984B2 (en) 2017-10-10 2020-07-14 Energous Corporation Systems, methods, and devices for using a battery as an antenna for receiving wirelessly delivered power from radio frequency power waves
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11817721B2 (en) 2017-10-30 2023-11-14 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11710987B2 (en) 2018-02-02 2023-07-25 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11699847B2 (en) 2018-06-25 2023-07-11 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
US11463179B2 (en) 2019-02-06 2022-10-04 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11018779B2 (en) 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11784726B2 (en) 2019-02-06 2023-10-10 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11715980B2 (en) 2019-09-20 2023-08-01 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11411441B2 (en) 2019-09-20 2022-08-09 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
US11831361B2 (en) 2019-09-20 2023-11-28 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11799328B2 (en) 2019-09-20 2023-10-24 Energous Corporation Systems and methods of protecting wireless power receivers using surge protection provided by a rectifier, a depletion mode switch, and a coupling mechanism having multiple coupling locations
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US11817719B2 (en) 2019-12-31 2023-11-14 Energous Corporation Systems and methods for controlling and managing operation of one or more power amplifiers to optimize the performance of one or more antennas
US11411437B2 (en) 2019-12-31 2022-08-09 Energous Corporation System for wirelessly transmitting energy without using beam-forming control
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
CN117605214A (en) * 2024-01-22 2024-02-27 四川省材科院消防科技有限公司 Fire-fighting suspended ceiling and installation method
CN117605214B (en) * 2024-01-22 2024-04-05 四川省材科院消防科技有限公司 Fire-fighting suspended ceiling and installation method

Also Published As

Publication number Publication date
CA2314664A1 (en) 2001-02-10
ATE256872T1 (en) 2004-01-15
DE60007242D1 (en) 2004-01-29
EP1081506B1 (en) 2003-12-17
MXPA00007778A (en) 2004-11-12

Similar Documents

Publication Publication Date Title
EP1081506A1 (en) Ceiling tile transmitter and receiver system
US6715246B1 (en) Ceiling tile transmitter and receiver system
US7928917B1 (en) Wall-mounted electrical device with modular antenna bezel frame
US6563465B2 (en) Ceiling tile antenna and method for constructing same
CN102282735B (en) Add-on device for a network device
EP1605566A2 (en) Unified wired and wireless lan access wall plate
US7432858B2 (en) Printed circuit board wireless access point antenna
AU2003261293A1 (en) Antenna system for improving the performance of a short range wireless network
JPH1041873A (en) Radio transmission/reception equipment with antenna installed outdoors
US20090255725A1 (en) Integrated Wi-Fi Service Enclosure
AU2320701A (en) Ceiling tile transmitter and receiver system
US20220416526A1 (en) Smart wall-plate system
EP1296408A2 (en) Ceiling tile transmitter and receiver system
JP2002271226A (en) Ceiling tile transmitter and receiver system
US7039366B1 (en) Antenna and access point mounting system and method
CN212659455U (en) Novel switch bottom box
CN215869795U (en) Antenna system
US11056870B2 (en) Magnetic decorative trim with DC power transmission
JP7129509B1 (en) Information communication equipment
KR200346911Y1 (en) A wall insert type accesspointer
CA2624757A1 (en) Electrical outlet cover
JPH0595217A (en) Antenna system
KR20050101309A (en) Condoctor tape with adhesive matter
JPH0595216A (en) Antenna system
AU2002243813A1 (en) Split pole mounting of unprotected microwave radio with parabolic antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010803

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60007242

Country of ref document: DE

Date of ref document: 20040129

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040328

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040920

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1031765

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110825

Year of fee payment: 12

Ref country code: FR

Payment date: 20110830

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120728

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120728