EP0772374A2 - Method and apparatus for controlling the performance of a loudspeaker in a room - Google Patents

Method and apparatus for controlling the performance of a loudspeaker in a room Download PDF

Info

Publication number
EP0772374A2
EP0772374A2 EP96203005A EP96203005A EP0772374A2 EP 0772374 A2 EP0772374 A2 EP 0772374A2 EP 96203005 A EP96203005 A EP 96203005A EP 96203005 A EP96203005 A EP 96203005A EP 0772374 A2 EP0772374 A2 EP 0772374A2
Authority
EP
European Patent Office
Prior art keywords
loudspeaker
driver
room
filter
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96203005A
Other languages
German (de)
French (fr)
Other versions
EP0772374A3 (en
EP0772374B1 (en
Inventor
Jan Abildgaard Pedersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bang and Olufsen AS
Original Assignee
Bang and Olufsen AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bang and Olufsen AS filed Critical Bang and Olufsen AS
Publication of EP0772374A2 publication Critical patent/EP0772374A2/en
Publication of EP0772374A3 publication Critical patent/EP0772374A3/en
Application granted granted Critical
Publication of EP0772374B1 publication Critical patent/EP0772374B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/002Damping circuit arrangements for transducers, e.g. motional feedback circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space

Definitions

  • the invention relates to a method and apparatus for controlling the performance of a loudspeaker in a room.
  • the actual performance of a loudspeaker is known to be highly dependent on the acoustics of the actual listening room and the actual loudspeaker position within this room.
  • the performance of a loudspeaker will change very noticeably when it is in proximity to the boundaries of the room. This is caused by the loading of the room on the loudspeaker as a radiator, or in other words due to the changing radiation resistance.
  • a change of listener position changes the perceived performance of the loudspeaker, in particular due to early reflections and standing waves.
  • some boundary effects are universal in the room, in particular in the bass frequency range, and hence the perception of this range is less influenced by the listener position.
  • Loudspeaker designers experience this fact by having to make a compromise when optimizing the timbre of the loudspeaker so that the perceived sound will be acceptable under a number of different conditions, i.e. different room acoustics, loudspeaker positions, and listening positions. Even though making this compromise, the designer cannot ensure that the customer will always experience the intended quality. Thus, the listener will experience a performance of the loudspeaker that depends on the acoustic properties of the actual listening room and the position chosen for both loudspeaker and listener. There is a risk that an expensive loudspeaker which performs very well in the shop, will turn out performing badly or at least disappointingly when placed in a different environment and/or in a different position.
  • velocity, of the diaphragm of the loudspeaker driver and the force, arising from the sound field, acting on it are determined by measuring suitable parameters, defining thereby a first complex transfer function, that in a second acoustic environment a second complex transfer function is determined by measuring the same or different parameters of the loudspeaker driver, relating to the room, that the ratio between the real parts of the first and second transfer functions is used to define the performance of a correcting filter, that the filter is applied in the signal chain to the loudspeaker driver.
  • the invention is based on the realization that there is a strong link between the way the loudspeaker sounds, in particular in the bass range, and its radiation resistance as a function of frequency, being the real part of the radiation impedance.
  • Implementing the invention for a loudspeaker has proved to significantly increase the certainty that the customer will always experience the quality intended by the loudspeaker designer. This is achieved by measuring the radiated power output, radiation resistance or any similar physical parameter, e.g. real part of the acoustic wave impedance near the diaphragm, when the loudspeaker is placed in the actual position and comparing this to a reference measurement.
  • the loudspeaker in a first step is put in a reference room environment where it performs to a standard to be determined, and during which a reference radiated power output (real, i.e. active) or reference radiation resistance of a driver as a function of frequency is measured, and in that in a second step the loudspeaker is put in its room of usage where its attendant radiated power output or radiation resistance is measured, the ratio between the said real (active) power outputs or radiation resistances respectively being used to define the transfer function of a correcting filter in order to obtain said standard of performance determined in said reference room environment, and that in a third step said correcting filter is introduced in the electrical signal path to the driver.
  • a reference radiated power output real, i.e. active
  • reference radiation resistance of a driver as a function of frequency
  • a multi-driver loudspeaker should have each driver subjected to such a measurement, however one or several may be selected as representative. At the time of measurement of one particular driver or a group of drivers, the other drivers may either be short-circuited, disconnected or connected to the signal.
  • the bass performance changes.
  • the method according to the invention is able to detect a major part of this change in the acoustic environment of the loudspeaker and to correct accordingly. Switching on and off an apparatus working according to the principles of the invention can lead to dramatic changes of the bass performance of the loudspeaker depending on how different the actual position and room are from the reference conditions. If a loudspeaker is designed to operate away from the walls of a room, then when placing such a loudspeaker close to a corner of the listening room, the bass performance becomes boomy, coloured, and the sound pressure level increases.
  • the apparatus according to the principles of the invention corrects the timbre in such a way that the perceived timbre is almost the same as in the reference position.
  • the effect of the apparatus in this situation has been described by listeners as quite startling.
  • the bass performance then was not plagued by the rumble which is traditionally a characteristic of a corner position, and the bass performance becomes more even and neutral without becoming "thin". In a corner position this is perceived as a dramatic improvement of the bass performance.
  • An advantageous embodiment is particular in that the loudspeaker is permanently fitted with measurement means, the ratio between reference and use measurements being used to define the parameters of the correcting filter. This enables a measurement to be initiated by a user or in the event that some predefined conditions are met, e.g. power up of the apparatus. This measurement cycle could be performed using a dedicated measuring signal, e.g. obtained from a particular Compact Disc.
  • a further advantageous embodiment of the invention is particular in that the loudspeaker is permanently fitted with measurement means, and the complex transfer function, which corresponds to the situation during usage, is continuously measured during operation of the apparatus.
  • the ratio between reference and usage measurements being used to define the parameters of the correcting filter.
  • the loudspeaker will be automatically and continuously adaptable to any new listening room environment, e.g. using the played music as the stimuli when measuring the complex transfer functions.
  • the transfer function in the usage situation is continuously measured, and e.g. a digital signal processor in the signal chain calculates and performs the filtering which provides a sound from the loudspeaker which is very similar to the sound in the reference position/room and which presumably was judged positively during the design of the loudspeaker.
  • a further advantageous embodiment is particular in that the listening room is divided into zones of e.g. 30 cm by 30 cm, each having a correction filter transfer function assigned to it, and that information on the particular zone is fed to the correcting filter in the electrical signal path to the loudspeaker.
  • a simpler arrangement is obtained by instructing the user to activate switches according to a schematic showing various typical placements of a loudspeaker in a room. This functions in practice, provided the loudspeaker is of the same type as the loudspeaker used in the reference environent.
  • An apparatus is particular in that it comprises a filter, the transfer function of which is controllable by electronic/numerical signals, said signals being obtained from a unit which determines the ratio between a stored reference radiation resistance or active power output (real) as a function of frequency and a measured radiation resistance or active power output (real) in the usage situation.
  • This ratio basically defines the amplitude response of the correction filter, and various filter implementations, e.g. minimum phase can be obtained from this.
  • various operation might be performed to modify the ratio before implementation, e.g. smoothing, convolution, frequency limiting, correction limiting, logarithm, exponential, multiplication, addition etc. and combinations of these. For instance, defining the amplitude response of the correction filter as the square root of the ratio seems to be a reasonable choice.
  • FIG. 1 shows the signal path and transfer functions relating to a loudspeaker in a room.
  • the electrical signal from the source is fed to a power amplifier A which drives the loudspeaker which is designated B and comprises the electrical and mechanical parts of the loudspeaker driver unit and the acoustic influence of the cabinet enclosure.
  • the output from the loudspeaker is transformed by the transfer function C from the acceleration of the diaphragm to the sound pressure in front of the diaphragm which may be measured by a microphone D as one example of how to obtain the force, arising from the sound field, acting on the diaphragm.
  • An accelerometer E for example may measure the diaphragm acceleration directly.
  • the source signal is provided, at point 2 the electrical input signal to the loudspeaker driver is available, point 3 refers to the acceleration of the diaphragm of the loudspeaker, and at point 4 the sound pressure at some predetermined and fixed point in front of the driver is available.
  • an electrical signal representing the sound pressure is available at point 5
  • an electrical signal representing the membrane acceleration is available at point 6.
  • Fig. 2 shows one embodiment of the invention where the loudspeaker B with one of a multitude of possible placements of a microphone D and an accelerometer E.
  • Fig. 3 shows how a measurement of the radiation resistance of the loudspeaker is used when calculating the filter F, which is switched into the signal path.
  • the signal processing may occur through any means available to the skilled person, the result will be a linear pre-distortion of the signal to the power amplifier in order that the loudspeaker provides an excitation of the listening room so that the perceived sound is a good approximation to the quality determined during the design phase.
  • the advantage of making the measurement continuous is that the system will automatically compensate e.g. for an influx of listeners or a changed placement of furniture or the loudspeaker placement itself, which disturbs the sound distribution in the room. Such a disturbance is now compensated so that the perceived sound is essentially unchanged.

Abstract

A method for controlling the performance of a loudspeaker in a room, by determining in a first acoustic environment suitable parameters defining a first complex transfer function based on a measurement of the resultant movement of a loudspeaker driver diaphragm and the associated force, arising from the sound field in the room, acting on it, and in a second acoustic environment the same or different parameters of a second complex transfer function by measuring the loudspeaker driver relating to the room. The ratio between the real parts of the first and second transfer functions is used to define the performance of a correcting filter, included in the signal chain to the loudspeaker driver.

Description

  • The invention relates to a method and apparatus for controlling the performance of a loudspeaker in a room.
  • The actual performance of a loudspeaker is known to be highly dependent on the acoustics of the actual listening room and the actual loudspeaker position within this room. In particular the performance of a loudspeaker will change very noticeably when it is in proximity to the boundaries of the room. This is caused by the loading of the room on the loudspeaker as a radiator, or in other words due to the changing radiation resistance. A change of listener position changes the perceived performance of the loudspeaker, in particular due to early reflections and standing waves. However some boundary effects are universal in the room, in particular in the bass frequency range, and hence the perception of this range is less influenced by the listener position.
  • Loudspeaker designers experience this fact by having to make a compromise when optimizing the timbre of the loudspeaker so that the perceived sound will be acceptable under a number of different conditions, i.e. different room acoustics, loudspeaker positions, and listening positions. Even though making this compromise, the designer cannot ensure that the customer will always experience the intended quality. Thus, the listener will experience a performance of the loudspeaker that depends on the acoustic properties of the actual listening room and the position chosen for both loudspeaker and listener. There is a risk that an expensive loudspeaker which performs very well in the shop, will turn out performing badly or at least disappointingly when placed in a different environment and/or in a different position.
  • In order to compensate for this problem it is known to fit a switch in the cross-over filter unit in the loudspeaker in order that the bass response may be modified to suit a particular placement of the loudspeaker. At best, this must be considered a poor compromise, and if at all possible, the precise adjustment will be dependent on a measurement of the room characteristics. Some automatic systems are based on measuring the transfer function from the input of the loudspeaker to an omnidirectional microphone, placed at the preferred listening position or a number of representative positions. An equalizing filter is then inserted so that the resulting transfer function approximates a target function, which e.g. can be flat in the frequency range of interest. A major problem of such systems is the sensitivity to changes in the position of the sound source as well as the receiver. If the position of the loudspeaker or the listener is changed after calculating the equalizing filter, the effects can be severe colouration, pre-echoes, etc. Another problem of such systems is the choice of a suitable target function, where a flat function may not be found to be optimal.
  • It has in the present invention been realized that since all the involved acoustic phenomena's are considered to be linear, what is actually compensated through the apparently sensible procedures discussed above is the superposition of several phenomena, such as standing waves/natural frequencies of the room, early reflections, reverberation and the reduction of angular space angle due to the boundary effect, and it is considered that this is the reason why the known procedures will only function for one listening position.
  • It is the purpose of the invention to provide a method and apparatus for controlling the performance of a loudspeaker in a room in order that it becomes independent of the placement of the loudspeaker. This is obtained in a method according to the invention which is particular in that in a first acoustic environment the movement, e.g. velocity, of the diaphragm of the loudspeaker driver and the force, arising from the sound field, acting on it are determined by measuring suitable parameters, defining thereby a first complex transfer function, that in a second acoustic environment a second complex transfer function is determined by measuring the same or different parameters of the loudspeaker driver, relating to the room, that the ratio between the real parts of the first and second transfer functions is used to define the performance of a correcting filter, that the filter is applied in the signal chain to the loudspeaker driver.
  • The invention is based on the realization that there is a strong link between the way the loudspeaker sounds, in particular in the bass range, and its radiation resistance as a function of frequency, being the real part of the radiation impedance. Implementing the invention for a loudspeaker has proved to significantly increase the certainty that the customer will always experience the quality intended by the loudspeaker designer. This is achieved by measuring the radiated power output, radiation resistance or any similar physical parameter, e.g. real part of the acoustic wave impedance near the diaphragm, when the loudspeaker is placed in the actual position and comparing this to a reference measurement. More precisely this is obtained in that the loudspeaker in a first step is put in a reference room environment where it performs to a standard to be determined, and during which a reference radiated power output (real, i.e. active) or reference radiation resistance of a driver as a function of frequency is measured, and in that in a second step the loudspeaker is put in its room of usage where its attendant radiated power output or radiation resistance is measured, the ratio between the said real (active) power outputs or radiation resistances respectively being used to define the transfer function of a correcting filter in order to obtain said standard of performance determined in said reference room environment, and that in a third step said correcting filter is introduced in the electrical signal path to the driver. In principle a multi-driver loudspeaker should have each driver subjected to such a measurement, however one or several may be selected as representative. At the time of measurement of one particular driver or a group of drivers, the other drivers may either be short-circuited, disconnected or connected to the signal.
  • When the loudspeaker is placed in a position which is not identical to the reference position/room, the bass performance changes. However, the method according to the invention is able to detect a major part of this change in the acoustic environment of the loudspeaker and to correct accordingly. Switching on and off an apparatus working according to the principles of the invention can lead to dramatic changes of the bass performance of the loudspeaker depending on how different the actual position and room are from the reference conditions. If a loudspeaker is designed to operate away from the walls of a room, then when placing such a loudspeaker close to a corner of the listening room, the bass performance becomes boomy, coloured, and the sound pressure level increases. In such a situation the apparatus according to the principles of the invention corrects the timbre in such a way that the perceived timbre is almost the same as in the reference position. The effect of the apparatus in this situation has been described by listeners as quite startling. The bass performance then was not plagued by the rumble which is traditionally a characteristic of a corner position, and the bass performance becomes more even and neutral without becoming "thin". In a corner position this is perceived as a dramatic improvement of the bass performance.
  • An advantageous embodiment is particular in that the loudspeaker is permanently fitted with measurement means, the ratio between reference and use measurements being used to define the parameters of the correcting filter. This enables a measurement to be initiated by a user or in the event that some predefined conditions are met, e.g. power up of the apparatus. This measurement cycle could be performed using a dedicated measuring signal, e.g. obtained from a particular Compact Disc.
  • A further advantageous embodiment of the invention is particular in that the loudspeaker is permanently fitted with measurement means, and the complex transfer function, which corresponds to the situation during usage, is continuously measured during operation of the apparatus. The ratio between reference and usage measurements being used to define the parameters of the correcting filter. This means that the loudspeaker will be automatically and continuously adaptable to any new listening room environment, e.g. using the played music as the stimuli when measuring the complex transfer functions. In this case the transfer function in the usage situation is continuously measured, and e.g. a digital signal processor in the signal chain calculates and performs the filtering which provides a sound from the loudspeaker which is very similar to the sound in the reference position/room and which presumably was judged positively during the design of the loudspeaker.
  • A further advantageous embodiment is particular in that the listening room is divided into zones of e.g. 30 cm by 30 cm, each having a correction filter transfer function assigned to it, and that information on the particular zone is fed to the correcting filter in the electrical signal path to the loudspeaker. By this means it is possible to accomodate a number of typical placements of a loudspeaker and to obtain a large degree of the improvement according to the invention, without having to perform a measurement.
  • A simpler arrangement is obtained by instructing the user to activate switches according to a schematic showing various typical placements of a loudspeaker in a room. This functions in practice, provided the loudspeaker is of the same type as the loudspeaker used in the reference environent.
  • An apparatus according to the invention is particular in that it comprises a filter, the transfer function of which is controllable by electronic/numerical signals, said signals being obtained from a unit which determines the ratio between a stored reference radiation resistance or active power output (real) as a function of frequency and a measured radiation resistance or active power output (real) in the usage situation. This ratio basically defines the amplitude response of the correction filter, and various filter implementations, e.g. minimum phase can be obtained from this. However various operation might be performed to modify the ratio before implementation, e.g. smoothing, convolution, frequency limiting, correction limiting, logarithm, exponential, multiplication, addition etc. and combinations of these. For instance, defining the amplitude response of the correction filter as the square root of the ratio seems to be a reasonable choice.
  • The invention will be further described in the following with reference to the drawing, in which
    • Fig. 1 shows the electrical, mechanical and acoustical signal paths associated with a loudspeaker placed in a room,
    • Fig. 2 shows a loudspeaker with a driver and measuring transducers, and
    • Fig. 3 shows a schematic of how the correction filter can be inserted in the signal chain according to one embodiment of the invention.
  • By way of example Fig. 1 shows the signal path and transfer functions relating to a loudspeaker in a room. The electrical signal from the source is fed to a power amplifier A which drives the loudspeaker which is designated B and comprises the electrical and mechanical parts of the loudspeaker driver unit and the acoustic influence of the cabinet enclosure. The output from the loudspeaker is transformed by the transfer function C from the acceleration of the diaphragm to the sound pressure in front of the diaphragm which may be measured by a microphone D as one example of how to obtain the force, arising from the sound field, acting on the diaphragm. An accelerometer E for example may measure the diaphragm acceleration directly. At point 1 the source signal is provided, at point 2 the electrical input signal to the loudspeaker driver is available, point 3 refers to the acceleration of the diaphragm of the loudspeaker, and at point 4 the sound pressure at some predetermined and fixed point in front of the driver is available. After being converted by the microphone D an electrical signal representing the sound pressure is available at point 5, and correspondingly, an electrical signal representing the membrane acceleration is available at point 6.
  • Fig. 2 shows one embodiment of the invention where the loudspeaker B with one of a multitude of possible placements of a microphone D and an accelerometer E.
  • Fig. 3 shows how a measurement of the radiation resistance of the loudspeaker is used when calculating the filter F, which is switched into the signal path. The signal processing may occur through any means available to the skilled person, the result will be a linear pre-distortion of the signal to the power amplifier in order that the loudspeaker provides an excitation of the listening room so that the perceived sound is a good approximation to the quality determined during the design phase. The advantage of making the measurement continuous is that the system will automatically compensate e.g. for an influx of listeners or a changed placement of furniture or the loudspeaker placement itself, which disturbs the sound distribution in the room. Such a disturbance is now compensated so that the perceived sound is essentially unchanged.

Claims (8)

  1. A method for controlling the performance of a loudspeaker in a room, characterized in that in a first acoustic environment the resultant movement of the loudspeaker driver diaphragm and the associated force, arising from the sound field in the room, acting on it are determined by measuring suitable parameters defining a first complex transfer function, that in a second acoustic environment a second complex transfer function is determined by measuring the same or different parameters of the loudspeaker driver relating to the room, that the ratio between the real parts of the first and second transfer functions is used to define the performance of a correcting filter, that the filter is applied in the signal chain to the loudspeaker driver.
  2. A method for controlling the performance of a loudspeaker in a room, in particular in the low frequency range, according to claim 1, characterized in that the loudspeaker in a first step is put in a reference room environment where it performs to a standard to be determined, and during which a reference radiated power output (real, i.e. active), reference radiation resistance (acoustic or mechanical) of a driver or any similar physical parameter, e.g. real part of the acoustic wave impedance near the diaphragm of the driver, as a function of frequency is measured, and in that in a second step the loudspeaker is put in its room of use where a usage radiated power output (real, i.e. active), usage radiation resistance of the same driver or any similar physical parameter, e.g. real part of the acoustic wave impedance near the diaphragm of the same driver, is measured, the ratio between the real part of said power outputs (active), radiation resistances or any similar physical parameters, e.g. real parts of the acoustic wave impedances near the diaphragm of the driver, respectively being used to define the transfer function of a correcting filter in order to obtain said standard of performance determined in said reference room environment, and that in a third step said correcting filter is introduced in the electrical signal path to the driver.
  3. A method according to claim 1 and 2 , characterized in that the loudspeaker is permanently fitted with measurement means, the ratio between reference and usage measurements being used to define the parameters of the correcting filter.
  4. A method according to claim 1 and 2, characterized in that the loudspeaker is permanently fitted with measurement means and is continously measuring the second complex transfer function, the ratio between reference and usage measurements being used to define the parameters of the correcting filter.
  5. A method according to claim 3, characterized in that the measurement means are activated by a user or in the event that some predefined conditions are met, e.g. power up of the apparatus.
  6. A method according to claim 1 and 2, characterized in that the listening room is divided into zones of e.g. 30 cm by 30 cm, each having a correcting filter transfer function assigned to it, and that information on the particular zone is fed to the correcting filter in the electrical signal path to the loudspeaker.
  7. An apparatus for performing the method according to claim 1 and 2, characterized in that it comprises a filter, the transfer function of which is controllable by electronic/numerical signals, said signals being obtained from a unit which determines the ratio between a stored reference radiation resistance or active power output (real) or wave resistance near the driver as a function of frequency and a measured radiation resistance or active power output (real) or wave resistance near the driver in the usage situation. This ratio basically defines the amplitude response of the correction filter, and various filter implementations, e.g. minimum phase can be obtained from this. However various operations might be performed to modify the ratio before implementation, e.g. smoothing, convolution, frequency limiting, correction limiting, logarithm, exponential, multiplication, addition etc. and combinations of these. For instance, defining the amplitude response of the correction filter as the square root of the ratio seems to be a reasonable choice.
  8. A method according to claim 3 or 4 or 5 or 6, characterized in that a multi-driver system, e.g. 2 woofers and 1 tweeter, should have each driver subjected to a measurement according to claim 1 and 2. However one or several may be selected as representative. At the time of measurement of one particular or a group of drivers, the other drivers may either be short-circuited, disconnected or connected to the signal. Each driver may have individual filters implemented or some groups may have a common filter implemented.
EP19960203005 1995-11-02 1996-10-29 Method and apparatus for controlling the performance of a loudspeaker in a room Expired - Lifetime EP0772374B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK1124/95 1995-11-02
DK112495 1995-11-02

Publications (3)

Publication Number Publication Date
EP0772374A2 true EP0772374A2 (en) 1997-05-07
EP0772374A3 EP0772374A3 (en) 2006-03-29
EP0772374B1 EP0772374B1 (en) 2008-10-08

Family

ID=8101285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960203005 Expired - Lifetime EP0772374B1 (en) 1995-11-02 1996-10-29 Method and apparatus for controlling the performance of a loudspeaker in a room

Country Status (3)

Country Link
EP (1) EP0772374B1 (en)
DE (1) DE69637704D1 (en)
DK (1) DK0772374T3 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006116883A1 (en) * 2005-05-01 2006-11-09 Anocsys Ag Method for compensating for changes in reproduced audio signals and a corresponding device
WO2009007322A2 (en) * 2007-07-11 2009-01-15 Austriamicrosystems Ag Sound reproduction device and method for the calibration of a sound reproduction device
US8094826B2 (en) 2006-01-03 2012-01-10 Sl Audio A/S Method and system for equalizing a loudspeaker in a room
WO2012003894A1 (en) * 2010-07-09 2012-01-12 Bang & Olufsen A/S Adaptive sound field control
US8144904B2 (en) * 2006-06-07 2012-03-27 Siemens Audiologische Technik Gmbh Method for generating an individual hearing device program
US8144883B2 (en) 2004-05-06 2012-03-27 Bang & Olufsen A/S Method and system for adapting a loudspeaker to a listening position in a room
US9264839B2 (en) 2014-03-17 2016-02-16 Sonos, Inc. Playback device configuration based on proximity detection
US9348354B2 (en) 2003-07-28 2016-05-24 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices without a voltage controlled crystal oscillator
WO2016083970A1 (en) * 2014-11-28 2016-06-02 Goldmund International Sam Versatile electroacoustic diffuser-absorber
US9367611B1 (en) 2014-07-22 2016-06-14 Sonos, Inc. Detecting improper position of a playback device
US9374607B2 (en) 2012-06-26 2016-06-21 Sonos, Inc. Media playback system with guest access
US9419575B2 (en) 2014-03-17 2016-08-16 Sonos, Inc. Audio settings based on environment
US9519454B2 (en) 2012-08-07 2016-12-13 Sonos, Inc. Acoustic signatures
US9538305B2 (en) 2015-07-28 2017-01-03 Sonos, Inc. Calibration error conditions
US9648422B2 (en) 2012-06-28 2017-05-09 Sonos, Inc. Concurrent multi-loudspeaker calibration with a single measurement
US9668049B2 (en) 2012-06-28 2017-05-30 Sonos, Inc. Playback device calibration user interfaces
US9693165B2 (en) 2015-09-17 2017-06-27 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US9690271B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration
US9690539B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration user interface
US9706323B2 (en) 2014-09-09 2017-07-11 Sonos, Inc. Playback device calibration
US9715367B2 (en) 2014-09-09 2017-07-25 Sonos, Inc. Audio processing algorithms
US9729115B2 (en) 2012-04-27 2017-08-08 Sonos, Inc. Intelligently increasing the sound level of player
US9734242B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data
US9743207B1 (en) 2016-01-18 2017-08-22 Sonos, Inc. Calibration using multiple recording devices
US9743181B2 (en) 2016-01-06 2017-08-22 Apple Inc. Loudspeaker equalizer
US9749760B2 (en) 2006-09-12 2017-08-29 Sonos, Inc. Updating zone configuration in a multi-zone media system
US9749763B2 (en) 2014-09-09 2017-08-29 Sonos, Inc. Playback device calibration
US9756424B2 (en) 2006-09-12 2017-09-05 Sonos, Inc. Multi-channel pairing in a media system
US9763018B1 (en) 2016-04-12 2017-09-12 Sonos, Inc. Calibration of audio playback devices
US9766853B2 (en) 2006-09-12 2017-09-19 Sonos, Inc. Pair volume control
US9781513B2 (en) 2014-02-06 2017-10-03 Sonos, Inc. Audio output balancing
US9787550B2 (en) 2004-06-05 2017-10-10 Sonos, Inc. Establishing a secure wireless network with a minimum human intervention
US9794710B1 (en) 2016-07-15 2017-10-17 Sonos, Inc. Spatial audio correction
US9794707B2 (en) 2014-02-06 2017-10-17 Sonos, Inc. Audio output balancing
US9860662B2 (en) 2016-04-01 2018-01-02 Sonos, Inc. Updating playback device configuration information based on calibration data
US9860670B1 (en) 2016-07-15 2018-01-02 Sonos, Inc. Spectral correction using spatial calibration
US9864574B2 (en) 2016-04-01 2018-01-09 Sonos, Inc. Playback device calibration based on representation spectral characteristics
US9891881B2 (en) 2014-09-09 2018-02-13 Sonos, Inc. Audio processing algorithm database
US9930470B2 (en) 2011-12-29 2018-03-27 Sonos, Inc. Sound field calibration using listener localization
US9961464B2 (en) 2016-09-23 2018-05-01 Apple Inc. Pressure gradient microphone for measuring an acoustic characteristic of a loudspeaker
US9977561B2 (en) 2004-04-01 2018-05-22 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide guest access
US10003899B2 (en) 2016-01-25 2018-06-19 Sonos, Inc. Calibration with particular locations
US10127006B2 (en) 2014-09-09 2018-11-13 Sonos, Inc. Facilitating calibration of an audio playback device
US10244314B2 (en) 2017-06-02 2019-03-26 Apple Inc. Audio adaptation to room
US10284983B2 (en) 2015-04-24 2019-05-07 Sonos, Inc. Playback device calibration user interfaces
US10299061B1 (en) 2018-08-28 2019-05-21 Sonos, Inc. Playback device calibration
US10306364B2 (en) 2012-09-28 2019-05-28 Sonos, Inc. Audio processing adjustments for playback devices based on determined characteristics of audio content
US10359987B2 (en) 2003-07-28 2019-07-23 Sonos, Inc. Adjusting volume levels
US10372406B2 (en) 2016-07-22 2019-08-06 Sonos, Inc. Calibration interface
US10425733B1 (en) 2018-09-28 2019-09-24 Apple Inc. Microphone equalization for room acoustics
US10459684B2 (en) 2016-08-05 2019-10-29 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
CN110402585A (en) * 2017-03-10 2019-11-01 三星电子株式会社 Indoor all-bottom sound power optimization method and device
US10585639B2 (en) 2015-09-17 2020-03-10 Sonos, Inc. Facilitating calibration of an audio playback device
EP3583783A4 (en) * 2017-03-10 2020-03-11 Samsung Electronics Co., Ltd. Method and apparatus for in-room low-frequency sound power optimization
US10613817B2 (en) 2003-07-28 2020-04-07 Sonos, Inc. Method and apparatus for displaying a list of tracks scheduled for playback by a synchrony group
US10664224B2 (en) 2015-04-24 2020-05-26 Sonos, Inc. Speaker calibration user interface
US10734965B1 (en) 2019-08-12 2020-08-04 Sonos, Inc. Audio calibration of a portable playback device
US11005440B2 (en) 2017-10-04 2021-05-11 Google Llc Methods and systems for automatically equalizing audio output based on room position
US11106425B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11106423B2 (en) 2016-01-25 2021-08-31 Sonos, Inc. Evaluating calibration of a playback device
US11106424B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11206484B2 (en) 2018-08-28 2021-12-21 Sonos, Inc. Passive speaker authentication
US11265652B2 (en) 2011-01-25 2022-03-01 Sonos, Inc. Playback device pairing
US11294618B2 (en) 2003-07-28 2022-04-05 Sonos, Inc. Media player system
US11403062B2 (en) 2015-06-11 2022-08-02 Sonos, Inc. Multiple groupings in a playback system
US11429343B2 (en) 2011-01-25 2022-08-30 Sonos, Inc. Stereo playback configuration and control
US11481182B2 (en) 2016-10-17 2022-10-25 Sonos, Inc. Room association based on name
US11650784B2 (en) 2003-07-28 2023-05-16 Sonos, Inc. Adjusting volume levels
US11894975B2 (en) 2004-06-05 2024-02-06 Sonos, Inc. Playback device connection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000274A1 (en) 1982-06-30 1984-01-19 B & W Loudspeakers Environment-adaptive loudspeaker systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4334040C2 (en) * 1993-10-06 1996-07-11 Klippel Wolfgang Circuit arrangement for the independent correction of the transmission behavior of electrodynamic sound transmitters without an additional mechanical or acoustic sensor
JPH07274282A (en) * 1994-03-31 1995-10-20 Suzuki Motor Corp Adjustment method for on-vehicle acoustic equipment and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000274A1 (en) 1982-06-30 1984-01-19 B & W Loudspeakers Environment-adaptive loudspeaker systems

Cited By (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10754613B2 (en) 2003-07-28 2020-08-25 Sonos, Inc. Audio master selection
US9727304B2 (en) 2003-07-28 2017-08-08 Sonos, Inc. Obtaining content from direct source and other source
US11635935B2 (en) 2003-07-28 2023-04-25 Sonos, Inc. Adjusting volume levels
US10120638B2 (en) 2003-07-28 2018-11-06 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US10133536B2 (en) 2003-07-28 2018-11-20 Sonos, Inc. Method and apparatus for adjusting volume in a synchrony group
US10140085B2 (en) 2003-07-28 2018-11-27 Sonos, Inc. Playback device operating states
US11625221B2 (en) 2003-07-28 2023-04-11 Sonos, Inc Synchronizing playback by media playback devices
US9348354B2 (en) 2003-07-28 2016-05-24 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices without a voltage controlled crystal oscillator
US9354656B2 (en) 2003-07-28 2016-05-31 Sonos, Inc. Method and apparatus for dynamic channelization device switching in a synchrony group
US11556305B2 (en) 2003-07-28 2023-01-17 Sonos, Inc. Synchronizing playback by media playback devices
US11550536B2 (en) 2003-07-28 2023-01-10 Sonos, Inc. Adjusting volume levels
US11550539B2 (en) 2003-07-28 2023-01-10 Sonos, Inc. Playback device
US10146498B2 (en) 2003-07-28 2018-12-04 Sonos, Inc. Disengaging and engaging zone players
US10157035B2 (en) 2003-07-28 2018-12-18 Sonos, Inc. Switching between a directly connected and a networked audio source
US10157034B2 (en) 2003-07-28 2018-12-18 Sonos, Inc. Clock rate adjustment in a multi-zone system
US10747496B2 (en) 2003-07-28 2020-08-18 Sonos, Inc. Playback device
US11294618B2 (en) 2003-07-28 2022-04-05 Sonos, Inc. Media player system
US11200025B2 (en) 2003-07-28 2021-12-14 Sonos, Inc. Playback device
US11132170B2 (en) 2003-07-28 2021-09-28 Sonos, Inc. Adjusting volume levels
US11106424B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11106425B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US10157033B2 (en) 2003-07-28 2018-12-18 Sonos, Inc. Method and apparatus for switching between a directly connected and a networked audio source
US11080001B2 (en) 2003-07-28 2021-08-03 Sonos, Inc. Concurrent transmission and playback of audio information
US9658820B2 (en) 2003-07-28 2017-05-23 Sonos, Inc. Resuming synchronous playback of content
US10175930B2 (en) 2003-07-28 2019-01-08 Sonos, Inc. Method and apparatus for playback by a synchrony group
US10175932B2 (en) 2003-07-28 2019-01-08 Sonos, Inc. Obtaining content from direct source and remote source
US10185541B2 (en) 2003-07-28 2019-01-22 Sonos, Inc. Playback device
US10970034B2 (en) 2003-07-28 2021-04-06 Sonos, Inc. Audio distributor selection
US10963215B2 (en) 2003-07-28 2021-03-30 Sonos, Inc. Media playback device and system
US10185540B2 (en) 2003-07-28 2019-01-22 Sonos, Inc. Playback device
US9727302B2 (en) 2003-07-28 2017-08-08 Sonos, Inc. Obtaining content from remote source for playback
US9727303B2 (en) 2003-07-28 2017-08-08 Sonos, Inc. Resuming synchronous playback of content
US9740453B2 (en) 2003-07-28 2017-08-22 Sonos, Inc. Obtaining content from multiple remote sources for playback
US10956119B2 (en) 2003-07-28 2021-03-23 Sonos, Inc. Playback device
US9733893B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Obtaining and transmitting audio
US10949163B2 (en) 2003-07-28 2021-03-16 Sonos, Inc. Playback device
US9733892B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Obtaining content based on control by multiple controllers
US9734242B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data
US10031715B2 (en) 2003-07-28 2018-07-24 Sonos, Inc. Method and apparatus for dynamic master device switching in a synchrony group
US10754612B2 (en) 2003-07-28 2020-08-25 Sonos, Inc. Playback device volume control
US9733891B2 (en) 2003-07-28 2017-08-15 Sonos, Inc. Obtaining content from local and remote sources for playback
US11650784B2 (en) 2003-07-28 2023-05-16 Sonos, Inc. Adjusting volume levels
US11301207B1 (en) 2003-07-28 2022-04-12 Sonos, Inc. Playback device
US10613817B2 (en) 2003-07-28 2020-04-07 Sonos, Inc. Method and apparatus for displaying a list of tracks scheduled for playback by a synchrony group
US10545723B2 (en) 2003-07-28 2020-01-28 Sonos, Inc. Playback device
US10209953B2 (en) 2003-07-28 2019-02-19 Sonos, Inc. Playback device
US10445054B2 (en) 2003-07-28 2019-10-15 Sonos, Inc. Method and apparatus for switching between a directly connected and a networked audio source
US10216473B2 (en) 2003-07-28 2019-02-26 Sonos, Inc. Playback device synchrony group states
US10387102B2 (en) 2003-07-28 2019-08-20 Sonos, Inc. Playback device grouping
US9778898B2 (en) 2003-07-28 2017-10-03 Sonos, Inc. Resynchronization of playback devices
US9778900B2 (en) 2003-07-28 2017-10-03 Sonos, Inc. Causing a device to join a synchrony group
US9778897B2 (en) 2003-07-28 2017-10-03 Sonos, Inc. Ceasing playback among a plurality of playback devices
US10365884B2 (en) 2003-07-28 2019-07-30 Sonos, Inc. Group volume control
US10359987B2 (en) 2003-07-28 2019-07-23 Sonos, Inc. Adjusting volume levels
US10324684B2 (en) 2003-07-28 2019-06-18 Sonos, Inc. Playback device synchrony group states
US10303432B2 (en) 2003-07-28 2019-05-28 Sonos, Inc Playback device
US10228902B2 (en) 2003-07-28 2019-03-12 Sonos, Inc. Playback device
US10303431B2 (en) 2003-07-28 2019-05-28 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US10296283B2 (en) 2003-07-28 2019-05-21 Sonos, Inc. Directing synchronous playback between zone players
US10289380B2 (en) 2003-07-28 2019-05-14 Sonos, Inc. Playback device
US10282164B2 (en) 2003-07-28 2019-05-07 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US10983750B2 (en) 2004-04-01 2021-04-20 Sonos, Inc. Guest access to a media playback system
US9977561B2 (en) 2004-04-01 2018-05-22 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide guest access
US11467799B2 (en) 2004-04-01 2022-10-11 Sonos, Inc. Guest access to a media playback system
US11907610B2 (en) 2004-04-01 2024-02-20 Sonos, Inc. Guess access to a media playback system
US8144883B2 (en) 2004-05-06 2012-03-27 Bang & Olufsen A/S Method and system for adapting a loudspeaker to a listening position in a room
US10965545B2 (en) 2004-06-05 2021-03-30 Sonos, Inc. Playback device connection
US11909588B2 (en) 2004-06-05 2024-02-20 Sonos, Inc. Wireless device connection
US11025509B2 (en) 2004-06-05 2021-06-01 Sonos, Inc. Playback device connection
US11456928B2 (en) 2004-06-05 2022-09-27 Sonos, Inc. Playback device connection
US10439896B2 (en) 2004-06-05 2019-10-08 Sonos, Inc. Playback device connection
US9787550B2 (en) 2004-06-05 2017-10-10 Sonos, Inc. Establishing a secure wireless network with a minimum human intervention
US10541883B2 (en) 2004-06-05 2020-01-21 Sonos, Inc. Playback device connection
US10979310B2 (en) 2004-06-05 2021-04-13 Sonos, Inc. Playback device connection
US9866447B2 (en) 2004-06-05 2018-01-09 Sonos, Inc. Indicator on a network device
US11894975B2 (en) 2004-06-05 2024-02-06 Sonos, Inc. Playback device connection
US9960969B2 (en) 2004-06-05 2018-05-01 Sonos, Inc. Playback device connection
US10097423B2 (en) 2004-06-05 2018-10-09 Sonos, Inc. Establishing a secure wireless network with minimum human intervention
WO2006116883A1 (en) * 2005-05-01 2006-11-09 Anocsys Ag Method for compensating for changes in reproduced audio signals and a corresponding device
US8094826B2 (en) 2006-01-03 2012-01-10 Sl Audio A/S Method and system for equalizing a loudspeaker in a room
US8144904B2 (en) * 2006-06-07 2012-03-27 Siemens Audiologische Technik Gmbh Method for generating an individual hearing device program
US11082770B2 (en) 2006-09-12 2021-08-03 Sonos, Inc. Multi-channel pairing in a media system
US11388532B2 (en) 2006-09-12 2022-07-12 Sonos, Inc. Zone scene activation
US10136218B2 (en) 2006-09-12 2018-11-20 Sonos, Inc. Playback device pairing
US10028056B2 (en) 2006-09-12 2018-07-17 Sonos, Inc. Multi-channel pairing in a media system
US9749760B2 (en) 2006-09-12 2017-08-29 Sonos, Inc. Updating zone configuration in a multi-zone media system
US10469966B2 (en) 2006-09-12 2019-11-05 Sonos, Inc. Zone scene management
US10555082B2 (en) 2006-09-12 2020-02-04 Sonos, Inc. Playback device pairing
US9756424B2 (en) 2006-09-12 2017-09-05 Sonos, Inc. Multi-channel pairing in a media system
US10448159B2 (en) 2006-09-12 2019-10-15 Sonos, Inc. Playback device pairing
US10848885B2 (en) 2006-09-12 2020-11-24 Sonos, Inc. Zone scene management
US10897679B2 (en) 2006-09-12 2021-01-19 Sonos, Inc. Zone scene management
US10966025B2 (en) 2006-09-12 2021-03-30 Sonos, Inc. Playback device pairing
US9766853B2 (en) 2006-09-12 2017-09-19 Sonos, Inc. Pair volume control
US10306365B2 (en) 2006-09-12 2019-05-28 Sonos, Inc. Playback device pairing
US9813827B2 (en) 2006-09-12 2017-11-07 Sonos, Inc. Zone configuration based on playback selections
US10228898B2 (en) 2006-09-12 2019-03-12 Sonos, Inc. Identification of playback device and stereo pair names
US11540050B2 (en) 2006-09-12 2022-12-27 Sonos, Inc. Playback device pairing
US11385858B2 (en) 2006-09-12 2022-07-12 Sonos, Inc. Predefined multi-channel listening environment
US9860657B2 (en) 2006-09-12 2018-01-02 Sonos, Inc. Zone configurations maintained by playback device
US9928026B2 (en) 2006-09-12 2018-03-27 Sonos, Inc. Making and indicating a stereo pair
WO2009007322A3 (en) * 2007-07-11 2009-04-09 Austriamicrosystems Ag Sound reproduction device and method for the calibration of a sound reproduction device
WO2009007322A2 (en) * 2007-07-11 2009-01-15 Austriamicrosystems Ag Sound reproduction device and method for the calibration of a sound reproduction device
US9065411B2 (en) 2010-07-09 2015-06-23 Bang & Olufsen A/S Adaptive sound field control
WO2012003894A1 (en) * 2010-07-09 2012-01-12 Bang & Olufsen A/S Adaptive sound field control
US11265652B2 (en) 2011-01-25 2022-03-01 Sonos, Inc. Playback device pairing
US11758327B2 (en) 2011-01-25 2023-09-12 Sonos, Inc. Playback device pairing
US11429343B2 (en) 2011-01-25 2022-08-30 Sonos, Inc. Stereo playback configuration and control
US11825289B2 (en) 2011-12-29 2023-11-21 Sonos, Inc. Media playback based on sensor data
US10945089B2 (en) 2011-12-29 2021-03-09 Sonos, Inc. Playback based on user settings
US11528578B2 (en) 2011-12-29 2022-12-13 Sonos, Inc. Media playback based on sensor data
US10334386B2 (en) 2011-12-29 2019-06-25 Sonos, Inc. Playback based on wireless signal
US11910181B2 (en) 2011-12-29 2024-02-20 Sonos, Inc Media playback based on sensor data
US10455347B2 (en) 2011-12-29 2019-10-22 Sonos, Inc. Playback based on number of listeners
US9930470B2 (en) 2011-12-29 2018-03-27 Sonos, Inc. Sound field calibration using listener localization
US11197117B2 (en) 2011-12-29 2021-12-07 Sonos, Inc. Media playback based on sensor data
US11122382B2 (en) 2011-12-29 2021-09-14 Sonos, Inc. Playback based on acoustic signals
US11889290B2 (en) 2011-12-29 2024-01-30 Sonos, Inc. Media playback based on sensor data
US11290838B2 (en) 2011-12-29 2022-03-29 Sonos, Inc. Playback based on user presence detection
US11849299B2 (en) 2011-12-29 2023-12-19 Sonos, Inc. Media playback based on sensor data
US11825290B2 (en) 2011-12-29 2023-11-21 Sonos, Inc. Media playback based on sensor data
US11153706B1 (en) 2011-12-29 2021-10-19 Sonos, Inc. Playback based on acoustic signals
US10986460B2 (en) 2011-12-29 2021-04-20 Sonos, Inc. Grouping based on acoustic signals
US10063202B2 (en) 2012-04-27 2018-08-28 Sonos, Inc. Intelligently modifying the gain parameter of a playback device
US9729115B2 (en) 2012-04-27 2017-08-08 Sonos, Inc. Intelligently increasing the sound level of player
US10720896B2 (en) 2012-04-27 2020-07-21 Sonos, Inc. Intelligently modifying the gain parameter of a playback device
US9374607B2 (en) 2012-06-26 2016-06-21 Sonos, Inc. Media playback system with guest access
US9961463B2 (en) 2012-06-28 2018-05-01 Sonos, Inc. Calibration indicator
US9736584B2 (en) 2012-06-28 2017-08-15 Sonos, Inc. Hybrid test tone for space-averaged room audio calibration using a moving microphone
US9788113B2 (en) 2012-06-28 2017-10-10 Sonos, Inc. Calibration state variable
US9749744B2 (en) 2012-06-28 2017-08-29 Sonos, Inc. Playback device calibration
US10296282B2 (en) 2012-06-28 2019-05-21 Sonos, Inc. Speaker calibration user interface
US10045138B2 (en) 2012-06-28 2018-08-07 Sonos, Inc. Hybrid test tone for space-averaged room audio calibration using a moving microphone
US11064306B2 (en) 2012-06-28 2021-07-13 Sonos, Inc. Calibration state variable
US10674293B2 (en) 2012-06-28 2020-06-02 Sonos, Inc. Concurrent multi-driver calibration
US9668049B2 (en) 2012-06-28 2017-05-30 Sonos, Inc. Playback device calibration user interfaces
US9913057B2 (en) 2012-06-28 2018-03-06 Sonos, Inc. Concurrent multi-loudspeaker calibration with a single measurement
US9690271B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration
US9690539B2 (en) 2012-06-28 2017-06-27 Sonos, Inc. Speaker calibration user interface
US10284984B2 (en) 2012-06-28 2019-05-07 Sonos, Inc. Calibration state variable
US11368803B2 (en) 2012-06-28 2022-06-21 Sonos, Inc. Calibration of playback device(s)
US10129674B2 (en) 2012-06-28 2018-11-13 Sonos, Inc. Concurrent multi-loudspeaker calibration
US9648422B2 (en) 2012-06-28 2017-05-09 Sonos, Inc. Concurrent multi-loudspeaker calibration with a single measurement
US10412516B2 (en) 2012-06-28 2019-09-10 Sonos, Inc. Calibration of playback devices
US9820045B2 (en) 2012-06-28 2017-11-14 Sonos, Inc. Playback calibration
US10791405B2 (en) 2012-06-28 2020-09-29 Sonos, Inc. Calibration indicator
US11800305B2 (en) 2012-06-28 2023-10-24 Sonos, Inc. Calibration interface
US11516606B2 (en) 2012-06-28 2022-11-29 Sonos, Inc. Calibration interface
US10045139B2 (en) 2012-06-28 2018-08-07 Sonos, Inc. Calibration state variable
US11516608B2 (en) 2012-06-28 2022-11-29 Sonos, Inc. Calibration state variable
US9998841B2 (en) 2012-08-07 2018-06-12 Sonos, Inc. Acoustic signatures
US10051397B2 (en) 2012-08-07 2018-08-14 Sonos, Inc. Acoustic signatures
US10904685B2 (en) 2012-08-07 2021-01-26 Sonos, Inc. Acoustic signatures in a playback system
US9519454B2 (en) 2012-08-07 2016-12-13 Sonos, Inc. Acoustic signatures
US11729568B2 (en) 2012-08-07 2023-08-15 Sonos, Inc. Acoustic signatures in a playback system
US10306364B2 (en) 2012-09-28 2019-05-28 Sonos, Inc. Audio processing adjustments for playback devices based on determined characteristics of audio content
US9794707B2 (en) 2014-02-06 2017-10-17 Sonos, Inc. Audio output balancing
US9781513B2 (en) 2014-02-06 2017-10-03 Sonos, Inc. Audio output balancing
US10791407B2 (en) 2014-03-17 2020-09-29 Sonon, Inc. Playback device configuration
US11696081B2 (en) 2014-03-17 2023-07-04 Sonos, Inc. Audio settings based on environment
US10051399B2 (en) 2014-03-17 2018-08-14 Sonos, Inc. Playback device configuration according to distortion threshold
US10129675B2 (en) 2014-03-17 2018-11-13 Sonos, Inc. Audio settings of multiple speakers in a playback device
US9521488B2 (en) 2014-03-17 2016-12-13 Sonos, Inc. Playback device setting based on distortion
US10863295B2 (en) 2014-03-17 2020-12-08 Sonos, Inc. Indoor/outdoor playback device calibration
US10511924B2 (en) 2014-03-17 2019-12-17 Sonos, Inc. Playback device with multiple sensors
US10299055B2 (en) 2014-03-17 2019-05-21 Sonos, Inc. Restoration of playback device configuration
US9521487B2 (en) 2014-03-17 2016-12-13 Sonos, Inc. Calibration adjustment based on barrier
US9872119B2 (en) 2014-03-17 2018-01-16 Sonos, Inc. Audio settings of multiple speakers in a playback device
US9516419B2 (en) 2014-03-17 2016-12-06 Sonos, Inc. Playback device setting according to threshold(s)
US11540073B2 (en) 2014-03-17 2022-12-27 Sonos, Inc. Playback device self-calibration
US9439021B2 (en) 2014-03-17 2016-09-06 Sonos, Inc. Proximity detection using audio pulse
US9264839B2 (en) 2014-03-17 2016-02-16 Sonos, Inc. Playback device configuration based on proximity detection
US9743208B2 (en) 2014-03-17 2017-08-22 Sonos, Inc. Playback device configuration based on proximity detection
US10412517B2 (en) 2014-03-17 2019-09-10 Sonos, Inc. Calibration of playback device to target curve
US9344829B2 (en) 2014-03-17 2016-05-17 Sonos, Inc. Indication of barrier detection
US9439022B2 (en) 2014-03-17 2016-09-06 Sonos, Inc. Playback device speaker configuration based on proximity detection
US9419575B2 (en) 2014-03-17 2016-08-16 Sonos, Inc. Audio settings based on environment
US9367611B1 (en) 2014-07-22 2016-06-14 Sonos, Inc. Detecting improper position of a playback device
US9521489B2 (en) 2014-07-22 2016-12-13 Sonos, Inc. Operation using positioning information
US9778901B2 (en) 2014-07-22 2017-10-03 Sonos, Inc. Operation using positioning information
US9910634B2 (en) 2014-09-09 2018-03-06 Sonos, Inc. Microphone calibration
US10701501B2 (en) 2014-09-09 2020-06-30 Sonos, Inc. Playback device calibration
US9891881B2 (en) 2014-09-09 2018-02-13 Sonos, Inc. Audio processing algorithm database
US10154359B2 (en) 2014-09-09 2018-12-11 Sonos, Inc. Playback device calibration
US9936318B2 (en) 2014-09-09 2018-04-03 Sonos, Inc. Playback device calibration
US10127008B2 (en) 2014-09-09 2018-11-13 Sonos, Inc. Audio processing algorithm database
US11029917B2 (en) 2014-09-09 2021-06-08 Sonos, Inc. Audio processing algorithms
US9749763B2 (en) 2014-09-09 2017-08-29 Sonos, Inc. Playback device calibration
US11625219B2 (en) 2014-09-09 2023-04-11 Sonos, Inc. Audio processing algorithms
US10599386B2 (en) 2014-09-09 2020-03-24 Sonos, Inc. Audio processing algorithms
US9952825B2 (en) 2014-09-09 2018-04-24 Sonos, Inc. Audio processing algorithms
US9715367B2 (en) 2014-09-09 2017-07-25 Sonos, Inc. Audio processing algorithms
US9706323B2 (en) 2014-09-09 2017-07-11 Sonos, Inc. Playback device calibration
US10127006B2 (en) 2014-09-09 2018-11-13 Sonos, Inc. Facilitating calibration of an audio playback device
US10271150B2 (en) 2014-09-09 2019-04-23 Sonos, Inc. Playback device calibration
US9781532B2 (en) 2014-09-09 2017-10-03 Sonos, Inc. Playback device calibration
WO2016083970A1 (en) * 2014-11-28 2016-06-02 Goldmund International Sam Versatile electroacoustic diffuser-absorber
US10284983B2 (en) 2015-04-24 2019-05-07 Sonos, Inc. Playback device calibration user interfaces
US10664224B2 (en) 2015-04-24 2020-05-26 Sonos, Inc. Speaker calibration user interface
US11403062B2 (en) 2015-06-11 2022-08-02 Sonos, Inc. Multiple groupings in a playback system
US9538305B2 (en) 2015-07-28 2017-01-03 Sonos, Inc. Calibration error conditions
US10129679B2 (en) 2015-07-28 2018-11-13 Sonos, Inc. Calibration error conditions
US9781533B2 (en) 2015-07-28 2017-10-03 Sonos, Inc. Calibration error conditions
US10462592B2 (en) 2015-07-28 2019-10-29 Sonos, Inc. Calibration error conditions
US10419864B2 (en) 2015-09-17 2019-09-17 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US11803350B2 (en) 2015-09-17 2023-10-31 Sonos, Inc. Facilitating calibration of an audio playback device
US11706579B2 (en) 2015-09-17 2023-07-18 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US11099808B2 (en) 2015-09-17 2021-08-24 Sonos, Inc. Facilitating calibration of an audio playback device
US10585639B2 (en) 2015-09-17 2020-03-10 Sonos, Inc. Facilitating calibration of an audio playback device
US9992597B2 (en) 2015-09-17 2018-06-05 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US9693165B2 (en) 2015-09-17 2017-06-27 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US11197112B2 (en) 2015-09-17 2021-12-07 Sonos, Inc. Validation of audio calibration using multi-dimensional motion check
US9743181B2 (en) 2016-01-06 2017-08-22 Apple Inc. Loudspeaker equalizer
US11432089B2 (en) 2016-01-18 2022-08-30 Sonos, Inc. Calibration using multiple recording devices
US10841719B2 (en) 2016-01-18 2020-11-17 Sonos, Inc. Calibration using multiple recording devices
US10063983B2 (en) 2016-01-18 2018-08-28 Sonos, Inc. Calibration using multiple recording devices
US9743207B1 (en) 2016-01-18 2017-08-22 Sonos, Inc. Calibration using multiple recording devices
US10405117B2 (en) 2016-01-18 2019-09-03 Sonos, Inc. Calibration using multiple recording devices
US11800306B2 (en) 2016-01-18 2023-10-24 Sonos, Inc. Calibration using multiple recording devices
US11516612B2 (en) 2016-01-25 2022-11-29 Sonos, Inc. Calibration based on audio content
US11184726B2 (en) 2016-01-25 2021-11-23 Sonos, Inc. Calibration using listener locations
US11006232B2 (en) 2016-01-25 2021-05-11 Sonos, Inc. Calibration based on audio content
US11106423B2 (en) 2016-01-25 2021-08-31 Sonos, Inc. Evaluating calibration of a playback device
US10390161B2 (en) 2016-01-25 2019-08-20 Sonos, Inc. Calibration based on audio content type
US10735879B2 (en) 2016-01-25 2020-08-04 Sonos, Inc. Calibration based on grouping
US10003899B2 (en) 2016-01-25 2018-06-19 Sonos, Inc. Calibration with particular locations
US9864574B2 (en) 2016-04-01 2018-01-09 Sonos, Inc. Playback device calibration based on representation spectral characteristics
US11212629B2 (en) 2016-04-01 2021-12-28 Sonos, Inc. Updating playback device configuration information based on calibration data
US11379179B2 (en) 2016-04-01 2022-07-05 Sonos, Inc. Playback device calibration based on representative spectral characteristics
US9860662B2 (en) 2016-04-01 2018-01-02 Sonos, Inc. Updating playback device configuration information based on calibration data
US10405116B2 (en) 2016-04-01 2019-09-03 Sonos, Inc. Updating playback device configuration information based on calibration data
US10402154B2 (en) 2016-04-01 2019-09-03 Sonos, Inc. Playback device calibration based on representative spectral characteristics
US10880664B2 (en) 2016-04-01 2020-12-29 Sonos, Inc. Updating playback device configuration information based on calibration data
US11736877B2 (en) 2016-04-01 2023-08-22 Sonos, Inc. Updating playback device configuration information based on calibration data
US10884698B2 (en) 2016-04-01 2021-01-05 Sonos, Inc. Playback device calibration based on representative spectral characteristics
US10750304B2 (en) 2016-04-12 2020-08-18 Sonos, Inc. Calibration of audio playback devices
US11218827B2 (en) 2016-04-12 2022-01-04 Sonos, Inc. Calibration of audio playback devices
US11889276B2 (en) 2016-04-12 2024-01-30 Sonos, Inc. Calibration of audio playback devices
US9763018B1 (en) 2016-04-12 2017-09-12 Sonos, Inc. Calibration of audio playback devices
US10299054B2 (en) 2016-04-12 2019-05-21 Sonos, Inc. Calibration of audio playback devices
US10045142B2 (en) 2016-04-12 2018-08-07 Sonos, Inc. Calibration of audio playback devices
US10129678B2 (en) 2016-07-15 2018-11-13 Sonos, Inc. Spatial audio correction
US10750303B2 (en) 2016-07-15 2020-08-18 Sonos, Inc. Spatial audio correction
US9794710B1 (en) 2016-07-15 2017-10-17 Sonos, Inc. Spatial audio correction
US11337017B2 (en) 2016-07-15 2022-05-17 Sonos, Inc. Spatial audio correction
US10448194B2 (en) 2016-07-15 2019-10-15 Sonos, Inc. Spectral correction using spatial calibration
US11736878B2 (en) 2016-07-15 2023-08-22 Sonos, Inc. Spatial audio correction
US9860670B1 (en) 2016-07-15 2018-01-02 Sonos, Inc. Spectral correction using spatial calibration
US11237792B2 (en) 2016-07-22 2022-02-01 Sonos, Inc. Calibration assistance
US10853022B2 (en) 2016-07-22 2020-12-01 Sonos, Inc. Calibration interface
US11531514B2 (en) 2016-07-22 2022-12-20 Sonos, Inc. Calibration assistance
US10372406B2 (en) 2016-07-22 2019-08-06 Sonos, Inc. Calibration interface
US11698770B2 (en) 2016-08-05 2023-07-11 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
US10853027B2 (en) 2016-08-05 2020-12-01 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
US10459684B2 (en) 2016-08-05 2019-10-29 Sonos, Inc. Calibration of a playback device based on an estimated frequency response
US9961464B2 (en) 2016-09-23 2018-05-01 Apple Inc. Pressure gradient microphone for measuring an acoustic characteristic of a loudspeaker
US11481182B2 (en) 2016-10-17 2022-10-25 Sonos, Inc. Room association based on name
EP3583783A4 (en) * 2017-03-10 2020-03-11 Samsung Electronics Co., Ltd. Method and apparatus for in-room low-frequency sound power optimization
CN110402585A (en) * 2017-03-10 2019-11-01 三星电子株式会社 Indoor all-bottom sound power optimization method and device
US10244314B2 (en) 2017-06-02 2019-03-26 Apple Inc. Audio adaptation to room
US10299039B2 (en) 2017-06-02 2019-05-21 Apple Inc. Audio adaptation to room
US11888456B2 (en) 2017-10-04 2024-01-30 Google Llc Methods and systems for automatically equalizing audio output based on room position
US11005440B2 (en) 2017-10-04 2021-05-11 Google Llc Methods and systems for automatically equalizing audio output based on room position
US11206484B2 (en) 2018-08-28 2021-12-21 Sonos, Inc. Passive speaker authentication
US11877139B2 (en) 2018-08-28 2024-01-16 Sonos, Inc. Playback device calibration
US11350233B2 (en) 2018-08-28 2022-05-31 Sonos, Inc. Playback device calibration
US10848892B2 (en) 2018-08-28 2020-11-24 Sonos, Inc. Playback device calibration
US10299061B1 (en) 2018-08-28 2019-05-21 Sonos, Inc. Playback device calibration
US10582326B1 (en) 2018-08-28 2020-03-03 Sonos, Inc. Playback device calibration
US10425733B1 (en) 2018-09-28 2019-09-24 Apple Inc. Microphone equalization for room acoustics
US11374547B2 (en) 2019-08-12 2022-06-28 Sonos, Inc. Audio calibration of a portable playback device
US11728780B2 (en) 2019-08-12 2023-08-15 Sonos, Inc. Audio calibration of a portable playback device
US10734965B1 (en) 2019-08-12 2020-08-04 Sonos, Inc. Audio calibration of a portable playback device

Also Published As

Publication number Publication date
DK0772374T3 (en) 2009-02-02
DE69637704D1 (en) 2008-11-20
EP0772374A3 (en) 2006-03-29
EP0772374B1 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
EP0772374B1 (en) Method and apparatus for controlling the performance of a loudspeaker in a room
US20020154785A1 (en) Adjusting a loudspeaker to its acoustic environment: the ABC system
EP1745677B1 (en) A method and system for adapting a loudspeaker to a listening position in a room
US4823391A (en) Sound reproduction system
US5386082A (en) Method of detecting localization of acoustic image and acoustic image localizing system
EP1341399B1 (en) Sound field control method and sound field control system
US5119420A (en) Device for correcting a sound field in a narrow space
US20060140418A1 (en) Method of compensating audio frequency response characteristics in real-time and a sound system using the same
EP1272004A2 (en) Audio signal processing
EP3826330A1 (en) Audio adaption to room
US20080069378A1 (en) Automatic Audio System Equalizing
KR20030003694A (en) System and method for optimization of three-dimensional audio
JPH1069280A (en) Sound field control unit and sound field controller
US4596034A (en) Sound reproduction system and method
US7783054B2 (en) System for auralizing a loudspeaker in a monitoring room for any type of input signals
JPH11298990A (en) Audio equipment
US6507657B1 (en) Stereophonic sound image enhancement apparatus and stereophonic sound image enhancement method
EP1511358A2 (en) Automatic sound field correction apparatus and computer program therefor
JP2886402B2 (en) Stereo signal generator
JP3451022B2 (en) Method and apparatus for improving clarity of loud sound
JP2714098B2 (en) How to correct acoustic frequency characteristics
JPH08179786A (en) On-vehicle stereophonic reproducing device
JPH11262081A (en) Delay time setting system
JPH08102999A (en) Stereophonic sound reproducing device
US20100202624A1 (en) Equipment, method and use of the equipment in an audio system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE DK FR GB

17P Request for examination filed

Effective date: 20060929

17Q First examination report despatched

Effective date: 20070611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69637704

Country of ref document: DE

Date of ref document: 20081120

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090709

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20151023

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151027

Year of fee payment: 20

Ref country code: DE

Payment date: 20151026

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151102

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69637704

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20161029

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161028