CN102362406B - 感应式电力传输设备 - Google Patents

感应式电力传输设备 Download PDF

Info

Publication number
CN102362406B
CN102362406B CN201080012846.7A CN201080012846A CN102362406B CN 102362406 B CN102362406 B CN 102362406B CN 201080012846 A CN201080012846 A CN 201080012846A CN 102362406 B CN102362406 B CN 102362406B
Authority
CN
China
Prior art keywords
plate
flux
magnetic
coil
pole regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080012846.7A
Other languages
English (en)
Other versions
CN102362406A (zh
Inventor
J·T·伯伊斯
G·A·考维奇
黄昌玉
M·B·布迪亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auckland Uniservices Ltd
Original Assignee
Auckland Uniservices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auckland Uniservices Ltd filed Critical Auckland Uniservices Ltd
Priority to CN201510621373.5A priority Critical patent/CN105109359B/zh
Publication of CN102362406A publication Critical patent/CN102362406A/zh
Application granted granted Critical
Publication of CN102362406B publication Critical patent/CN102362406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H04B5/79
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H2047/046Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current with measuring of the magnetic field, e.g. of the magnetic flux, for the control of coil current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

一种磁通板,用于接收或产生磁通。板包括两个磁极区域(11、12),这两个磁极区域(11、12)与导磁磁芯(14)相关联。线圈(17)限定磁极区域。板允许在板的表面上方的显著高度处产生有用磁通。

Description

感应式电力传输设备
技术领域
本发明涉及用于产生或接收磁通的设备。本发明特别但不唯一具有对于低轮廓(lowprofile)、大体平的装置的应用,该装置例如是板(pad),用于使用感应式电力传输(IPT)系统的电力传输。
背景技术
IPT系统、和包括一个或多个绕组的板的使用在公开国际专利申请WO2008/140333中有介绍,该专利申请的内容通过参考包括在这里,这些绕组可以包括用于感应式电力传输的初级或次级绕组。IPT电力传输板的一种具体应用是电动车辆充电。IPT电力传输板既用在车辆中作为电力“拾取”装置(即,IPT系统的次级侧绕组),又用在诸如车库地板之类的静止位置处作为“充电板”(即,初级侧绕组),电力来源于该“充电板”。
在用于感应充电电动车辆的拾取装置的发展中,引起一些关注的问题是在车辆下方可用的空隙(clearance)。利用常规拾取电路,可在高达大概100mm的距离处提供足够量的功率,在这时,耦合因数变得如此小,以致于它成为不实际的。
一般承认,对典型的电动车辆整夜充电要求的功率是约2.0kW,从而在整夜充电模式中,可以传输大约24kWH。对于现代电动车辆,这是足以行驶大于100km的能量,并且对用于诸如送小孩上学、跑腿、短程上下班等之类的任务的小型车辆是理想的。
感应耦合充电器通常使用两个电力板,这两个电力板的形状是圆形的,并且可以具有400mm直径乘25mm厚的尺寸,如图1所示。然而,为了使用诸如这样的感应式充电器,车辆必须相对准确地定位在充电板上方(典型地在50mm的精确对准内),并且必须紧密地控制车辆上的电力板与地面上的电力板之间的间隔。在原理上,感应式电力传输对于在0mm与100mm之间的垂直间距可以实现,但如果系统被设置为100mm,则它在120mm处功率将有非常大的减小,并且在50mm以下将是不可操作的。这种状态的事情的发生是因为电力板的自感和互感都随板之间的距离变化而大大地不同。作为两个相同圆形板的间隔的函数的自感和互感示出在图2中,这两个相同圆形板具有图1的构造。因而在100mm处,电力板接收器或拾取器对于500W的功率额定值可以具有100V的拾取电压和5.0A的短路电流。如果IPT系统电子装置按4的Q因数操作,那么2kW可传输到电池,尽管在适当电池电压下产生需要的功率时仍然有要克服的困难。
在拾取板(即,车辆安装电力板)中的感应电压对于间隔非常敏感(与在图2中示出的互感的变化相对应),从而在120mm处,它减少近似40%,而在50mm处增大因数2。功率的减小意味着,车辆在通常时间中不会充分地充电,但更有挑战性的情形是,在较小间隔处,功率传输可能如此之高,从而电路的元件过载。而且,随着间隔减小,拾取线圈的自感也变化,从而电路偏移频率操作,将额外的压力置于电源上。随着间隔变得更小,在电源上由在初级侧上的非调谐拾取引起的这种压力不能承受,并且系统必须停机。在实际中,可行的是,按在40与100mm之间的间隔操作,但更大范围太困难。
从40至100mm的间隔范围很小。如果车辆具有相对高的地面间隙,那么或者在车辆上的电力板必须降低,或者在地面上的电力板必须升高。用于这样做的自动系统牺牲了充电系统的可靠性。可选择地,在地面上的板可在固定的但增高的平面台上,但当汽车不是正在充电时,这样的板是有绊倒危险的,并且这种情形一般在涉及车辆和行人的车库或其它位置要避免。
图1的已知电力板构造包括铝壳体1,该铝壳体1典型地包含八个铁氧体磁棒2和线圈3。在线圈中的电流在铁氧体磁棒中引起磁通,并且这种磁通具有在铁氧体磁棒上开始并且在包括线圈的路径中传播到磁棒的另一个端部的磁力线,该路径可以被设想成是半椭圆形状。用于单个磁棒的磁力线4示出在图3中。磁力线沿向上方向离开铁氧体,并且传播到磁棒的另一个端部,按直角进入。没有磁通从板的背后出去,因为实心铝支撑板1防止它这样做。在实际的板中,八个磁棒给出在图4中的横截面中近似表示的磁通图案。实际磁通图案的仿真示出在图4A中。
由图4A可看到,在最高点处,磁力线基本上是水平的。因此,为了得到在初级板与次级板之间可能的最大间隔,有利的是检测该水平磁通。然而,水平磁通仍然相对靠近板(从板延伸板的直径的近似四分之一),并且在电力板的正中心处根本没有水平磁通。因而在其中最大磁通密度理想的点(中心)处,实际可用的水平磁通分量是零。
发明内容
本发明的目的是提供一种用于感应式电力传输的改进设备或方法、或一种改进IPT电力传输板,或者至少提供一种有用的替换方案。
相应地,在一个方面,本发明提供一种磁通板,该磁通板具有前正面和后正面,用来在前正面中或从超出前正面的空间产生磁通或接收磁通,所述板包括:
两个磁极区域,用于发送或接收磁通,
导磁磁芯,
两个线圈,磁性地与磁芯相关联,
由此,磁通在磁极区域中的一个磁极区域处进入板,并且在另一个磁极区域处离开板。
线圈在一个实施例中是扁平线圈,并且每个线圈可以限定磁极区域之一。
线圈可以是螺旋缠绕线圈。
在一个实施例中,线圈布置在磁芯的最靠近板的前正面的一侧上,并且线圈和磁芯一起形成在板中的磁通路径。
磁芯可以包括导磁材料(如铁氧体)的多个节段。
在一个实施例中,线圈的多个匝散布在磁极区域之间。在另一个实施例中,线圈的多个匝集中在磁极区域之间的区以外的区域处,如在板的端部的区域处。线圈中的每一个可以是非对称的,线圈的绕组的组合在磁极区域之间比在板的外周处宽。
在一个实施例中,多个线圈彼此紧密相邻地布置在磁极区域之间的区中。线圈可以在磁极区域之间的区彼此接触。
线圈可以被成形为提供磁极区域和在磁极区域之间的磁通管(fluxpipe)。线圈也可以大体在同一平面中。
在另外的方面,本发明提供一种磁通板,该磁通板具有前正面和后正面,用于在板的超出前正面的空间中产生磁通,所述板包括:
两个磁极区域,用于发送或接收磁通,
导磁磁芯,
两个线圈,与磁芯相关联并且设置在磁芯与板的前正面相邻的一侧上,
由此,板在空间中产生弧形磁通,从而基本上每根磁力线在磁极区域之一上开始,呈弧形,直到(archto)第二磁极区域,并且穿过磁芯与其自己接合,从而在板的后正面处基本上没有磁通存在。
在更进一步的方面,本发明提供一种磁通板,该磁通板具有前正面和后正面,用来从板的超出前正面的空间中接收磁通,该板包括:
两个磁极区域,用于发送或接收磁通,
导磁磁芯,
两个线圈,与磁芯相关联并且设置在磁芯的与板的前正面相邻的一侧上,并且适于接收水平磁通分量,及
另外的线圈,磁性地与磁芯相关联,并且适于接收垂直磁通分量。
在又进一步的方面,本发明提供一种IPT系统,该IPT系统包括根据以上陈述的任一项的磁通板。该系统也可以包括根据以上陈述的发射器板和接收器板。
IPT系统可以将电力供给到电动车辆。
在另外的方面,本发明提供一种IPT电力传输磁通发射器或接收器,该发射器或接收器包括:
磁通携带部件,具有相对高的磁导率,并且具有两个端部;两个绕组,电磁地与磁通携带部件相关联,并且磁通携带部件具有两个磁通发射或接收区,一个区被设置成与每个端部相邻,由此磁通大体仅在发射或接收区处或其邻近存在或者进入磁通携带部件。
本发明的其它方面由如下描述将成为显然的。
附图说明
下面参照附图作为例子将描述一个或多个实施例,在附图中:
图1是已知形式的IPT电力传输板的一部分的立体图;
图2是对于诸如图1的板之类的板,电感测量和磁链(fluxlinkage)效率关于高度位移的曲线图;
图3是图1的板的一部分的横截面的示出了磁力线的视图;
图4是图1的板的横截面的示出了磁力线的平面图和视图;
图4A是图1的板的磁场(由磁力线指示)的计算机产生的仿真的横截面的视图;
图5A是感应式电力传输设备的实施例的平面图,该感应式电力传输设备可以被设置成板的形式;
图5B是图5A的设备的侧视图;
图5C是图5B的视图,但还示出了磁力线;
图5D是穿过根据图5A-5C的板的横截面的计算机仿真,表明在使用中由这样的板产生的磁力线;
图6是用于感应式电力传输设备的另外的实施例的电布线图的图示说明,该感应式电力传输设备包括中心线圈或正交线圈;
图7A是从磁通发射器和磁通接收器(定向在磁通发射器上方)下方看到的等轴测图;
图7B是从图7A的布置的上方看到的等轴测图;
图8A示出了当发射器和接收器按在发射器与接收器之间的200mm间隔对准时基于图7A和7B的布置的仿真的磁力线;
图8B示出了当发射器和接收器在X轴方向上误对准时基于图7A和7B的布置的仿真的磁力线;
图9是关于图7A和7B的布置,功率相对于在X轴方向上的位移的图;
图10是关于图7A和7B的布置,功率相对于在Y轴方向上的位移的图;
图11是用于以上图的板的线圈的绕组布置的示例图;
图12是用于根据以上图的板的构造的线圈架(former)或支撑板的平面图;
图13是图12的线圈架的等轴测图;及
图14是支持板的等轴测图,该支持板适于连结到在图12和13中示出的线圈架的后部。
具体实施方式
现在公开IPT电力传输布置的一种新概念。在本文中描述的实施例涉及磁通传输和接收设备。这些通常(尽管不是必需地)按分离的单元的形式提供,该分离的单元可以方便地称作电力传输板,即可以是便携式的装置,并且典型地相对于第三维在两维方面具有较大的范围,从而它们可以用在诸如电动车辆充电的应用中,在电动车辆充电中,一个板设置在地面(如车库地板)上,并且另一个在车辆中。然而,公开的主题也可以被设置成其它布置,包括像例如道路之类的永久结构,并且不需要采取板的形式。类似附图标记贯穿说明书指示类似特征。
参照图5A的布置,示出了板,该板使用整体被标记为10的新颖的“磁通管”,以连接包括磁极区域11和12的两个分离的磁通发射器/接收器区。磁通管提供高磁通集中度的大致细长区,从该细长区理想地没有磁通逸出。在这个实施例中的磁通管10具有磁芯14,该磁芯14包括导磁材料,如铁氧体,以吸引磁通停留在磁芯中。关于电路,在导体(典型地对于铜导电率是5.6×107)和空气(在10-14的量级上)的电导率之间具有巨大差别,但这种情形不适合磁场,其中,在铁氧体与空气之间的磁导率差别仅为10,000∶1或更小的量级。因而,在磁路中,在空气中的泄漏磁通始终存在,并且这必须被控制以得到最好结果。
扁平线圈或绕组17位于磁芯14的顶部上,以提供磁通管。没有穿过线圈17的、经由磁通管的直路径。相反,线圈17的布置意味着,穿过区域11或12之一进入板的磁通穿过相关线圈17传播到磁芯14中,从该处它沿磁芯传播,然后穿过另一个区域12或11离开板出去,并穿过空气回到第一个区域11或12完成其路径,以形成完整弯曲磁通路径。如此形成的磁通路径基本上完全在板的前表面上方,并且延伸到前表面以外的空间中。线圈17的布置也意味着,基本上没有磁通延伸超出板的后正面。因而,绕组17的取向保证了磁通路径按曲线导向出到在板的前表面前方的空间中,并且线圈17跨磁芯14的上表面的散布或分布性质保证,在板的中心中的磁通主要约束在磁芯内。线圈17也限定间隔开的磁极区域,从而经磁极区域将磁通引导到板中和板外,并且在超出板的前表面的空间中形成弧形环路,以在板的前表面上方的较远距离处提供显著的水平磁通分量。
在优选实施例中,有彼此紧密接近的两个线圈17。线圈17是螺旋缠绕的。在图5A至5C中示例的图示实施例中,线圈17采取阿基米德螺线的形式,并且沿中心线17A接触。包括磁芯14的磁通管10延伸到线圈17的端部。线圈17大体是平面的,并且布置在磁芯14一侧上的大体同一平面中。磁芯14的实际长度不是关键的。在一个实施例中,它应该包括线圈17的中心线,并且应该延伸穿过在每个线圈的中心的孔至少到由A指示的位置。磁芯14可以在线圈17下方延伸到位置B或甚至更远。在线圈17中的孔限定磁极区域11和12,这些磁极区域11和12起用于板的磁通接收器/发射器区的作用。
在一个实施例中,磁芯14由呈带条或节段的铁氧体磁棒制成(未示出在图5A-C中,但示例在图7A和7B中)。气隙在带条之间是可接受的,这简化了制造。理想的磁通路径20示出在图5C中,并且仅在磁芯14的一侧上,这是理想情形。在原理上,理想地没有磁通延伸到板的后面以外(即,在磁芯14的与安装线圈17的一侧相对的一侧上),并因此不需要铝屏或其它磁通排斥部件。然而,在实际中,轻的屏可以用在某些实施例中,因为在包括磁芯14的铁氧体磁棒中的误差和缺陷,可引起应该包含的少量泄漏磁通。
图5D示出了在图5A-5C中的板构造当用于产生磁场时的仿真结果。如可看到的那样,磁通路径穿过超出板的前表面的空间,符合大致弧形形状。
根据上面刚刚描述的布置的感应式电力传输板非常容易使用,因为来自它们的泄漏磁通很小。它们可被放置得很靠近金属物体,而没有性能的损失,并且它们不受连接导线等的巨大影响。
第二实施例
在另外的实施例中,可注意到,在车辆上水平安装的接收器或拾取板中的线圈的布置,例如,使得拾取板对于磁通的第一方向敏感,该第一方向相对于磁通发生器(水平定向的发射器板)纵向取向(即,具有与磁芯14相平行的方向,并且参照附图是在X轴方向上)。为了关于误对准改进接收器的磁耦合,可布置“第二”线圈,该“第二”线圈对于磁通的第二分量敏感,该第二分量优选地相对于静止发射器是垂直的。
图6示出了接收器板的另一个实施例的电气图,该接收器板具有现在定位在中心的“水平”磁通敏感线圈22和异相地连接的在外侧的两个线圈17,以产生对于垂直分量敏感的另一个线圈。
对于图5A-5C的接收板,另外的扁平线圈22也可放置在磁通管上方,在图7A和7B中示出了一种适当布置,线圈22对于磁场的垂直分量敏感。如在原始拾取结构中那样,这个辅助线圈仅在磁芯14的一侧上存在,并因此理想地将全部磁力线保持在接收器的、朝向发射器的一侧上。
如图7A和7B所示,只有接收器被修改成具有中心线圈或正交线圈22。该第二线圈对于在X方向(即,水平纵向方向)上的误对准特别敏感,但对于在Y方向(是与磁芯14相垂直的水平横向方向)上的误对准不敏感。这补充了原始接收器,该原始接收器对于在Y方向上的误对准敏感,但该原始接收器因为其结构,对于在X方向上的运动较不敏感。两个接收器线圈的组合输出增强接收器的灵敏度,使接收器能够在表面上(nominally)定位在理想位置中,并且仍然耦合所要求的功率。图7A和7B也示出了间隔的铁氧体磁杆或磁棒24的布置,这些间隔的铁氧体磁杆或磁棒24包括磁芯24。
作为例子,使用如图7A和7B所示的没有任何形式的补偿的板设计的磁力线示出在图8B和8A中,分别为有和没有一些误对准的情况。这里,发射器板和接收器板是相同的,不同之处在于,在接收器板中添加了第二“垂直磁通”线圈(即,图7A和7B的线圈22)。发射器板和接收器板两者都具有长度588mm和宽度406mm,并且垂直地间隔开200mm。在发射器板的线圈中的电流在20kHz下是23安培。值得注意地,磁通的大部分在发射器板与接收器板之间存在,而非常小的泄漏磁通被示出在这个区域外存在。在图8A中,这些磁力线耦合第一接收器线圈,而在图8B中,磁力线的大部分耦合第二接收线圈(即,图7A和7B的线圈22),由此增强拾取装置的输出功率能力。
在图9和10中,也示出了在有和没有误对准的情况下从接收器板线圈的输出产生的VA。根据在图7A和7B中示出的板的磁仿真,在图9中示出了当接收器板在X方向上误对准时(相对于其在发射器板上方中心处的理想位置),接收器线圈的总的和分别的VA贡献。在图9中,曲线26代表线圈22的VA贡献,曲线28代表线圈17的组合VA贡献,并且剩余的曲线代表来自线圈17和22的总贡献。如提到的那样,第二线圈22显著地增强输出,从而如果在0X-偏移下要求2KW输出,则所需电子调谐必须将VA输出增大约3.2。在140mm的X-偏移下,在没有线圈22的情况下所需的电子增大(boost)(Q)大于17倍(由于所需调谐的灵敏度,这实际上很困难),而在有线圈22的情况下,需要约4.8的有效增大,并且这容易实现。
当接收器被定位成在X-方向上0偏移时,不期望线圈22在Y方向上敏感。这在图10中示出的磁仿真中被证实,其中,被示出成没有来自线圈22对于总功率的贡献。然而,这不是被要求的,因为线圈17的组合输出在这个方向上是自然敏感的。在Y方向上的140mm偏移下,借助约5.5的电子调谐(Q),2KW输出是可能的。
第三实施例
现在转到图11,示意性地示出了线圈17的绕组布置。在这个实施例中,线圈17中的各个匝散布在每个绕组的、相对于板的端部较靠近板的中心的那个端部处。因而,线圈17分别是非对称的,并且线圈的绕组的组合在磁极区域之间比在板的外周处宽。这个实施例允许磁极区域11和12的较大间隔(并因而得到超出板的前正面的较大磁通延伸)。通过在磁极区域的狭窄边缘上缠绕的、和在磁极区域之间的中心磁通管区的扁平边缘上缠绕的椭圆或矩形横截面绞合线(litzwire),可使在磁极区域11和12之间的间距更大。
可选择地,如果线圈用圆形导线缠绕,则利用在磁极区域之间的磁通管部分的绕组之间的间隙可以使磁极区域11和12之间的间距更大。然而,已经发现,在磁通管部分上的各个绕组中的间隙要小心地处理,因为它们可留下孔,磁通可穿过这些孔泄漏,从而损害磁通管的效率。已经发现,优选的是,保持绕组均匀地间隔,并且如果有间隙,则它们应该典型地小于一根导线直径的一半,以将磁通损失保持为最小。在实际中,已经发现,简单圆形导线的方便性使得这成为精选的技术。
在又一个实施例中,绕组17的形状可以帮助得到较大磁极区域间隔。例如,线圈17可以按近似三角形形状缠绕,使每个三角形的顶点面对板的中心。
现在参照图12,按平面图示出线圈架或支撑板30,该线圈架或支撑板30用于提供包括图11的绕组布局的板。线圈架30可以由任何非导磁材料建造,像例如由塑料建造。线圈架30包括第一通用区32和第二区38,该第一通用区32用于形成和支撑线圈17中的一个(未示出),该第二区38用于形成和支撑线圈17中的另一个。凹陷34被设置成定位和支撑铁氧体磁棒或其它导磁部件。凹槽36接收各个导线,这些导线构成线圈17的匝,并且保证匝被正确地间隔。为了清楚,在图13中示出了线圈架30的等轴测图表示。
图14示出了支持板40,该支持板40适于定位在线圈架30的后表面上,即,定位在线圈架的与定位有线圈17的一侧相对的一侧上,并且与板的后表面相邻。支持板40可以由磁通排斥材料建造,例如由铝建造。不一定必须防止磁通在使用中离开板的后正面,因为扁平线圈17的设计和它们在磁芯14上的定位大体将磁通导向到在板的前表面的前面的空间中。然而,板40可为板提供辅助结构支撑。如果板在使用中被安装成与例如导磁材料相邻,则板40也可起防止板的磁性的任何变化(例如,电感的变化)的作用。
线圈架30的尺寸近似地是790mm乘600mm乘25mm,并且由这样的线圈架建造的板将具有非常相似的尺寸。
另外的实际考虑
在实际中,要慎重地确保在板的终端处的电压不达到不安全电平。因此,在某些实施例中,可以与板内的绕组串联地添加电容,以降低在板终端处看到的电感,并因此将在这些终端处的电压控制到在适当极限内(比如300-400V)。如果不这样做,终端电压可能是几个KV,这是不希望的并且潜在地不安全。可将电容与绕组相串联地放置在对于设备的几乎任何方便的地方。因而,在某些实施例中,可将一个或多个电容器与绕组串联地放置在板壳体内的端点处,并且在其它实施例中,通过将绕组断开成具有串联电容器的适当的多个段,可使电容器沿绕组分布,以防单个线圈上的内部电压会太高。
因此,本发明提供低轮廓装置,这里称作板,该装置可用作磁通发生器,该磁通发生器可以在离装置的较远距离处产生可用磁通。装置也可用作磁通的接收器,由此由接收的磁场产生电能。板在较远距离上产生或接收磁通的能力对于充电或励磁式电动车辆特别有用。
以上和下面(如果有的话)引用的全部申请、专利及出版物的全部公开通过参考包括在这里。
在本说明书中对于任何现有技术的参考,不要并且不应该当作如下确认或任何形式的建议:该现有技术形成在世界上任何国家中在努力领域中的普通一般知识的一部分。
其中,对于具有其已知等同物的整体或元件进行了上述描述参考,这些整体包括在这里,就像被分别地叙述一样。
应该注意,对于这里描述的目前优选实施例的各种变更和修改对于本领域的技术人员将是显然的。可以进行这样的变更和修改,而不脱离本发明的精神和范围,并且不减少其附属优点。因此,旨在将这样的变更和修改包括在本发明中。

Claims (14)

1.一种磁通板,具有前正面和后正面,所述磁通板用于在超出前正面的空间中产生磁通或从该空间接收磁通,所述板包括:
两个磁极区域,
导磁磁芯,包括导磁材料,
两个线圈,磁性地与所述导磁材料相关联并限定磁极区域,
其中,所述导磁材料使导磁材料中的磁通集中在磁极区域之间,从而磁通符合这样的路径,在该路径中其穿过磁极区域之一进入所述板、在所述导磁材料中传播并穿过另一磁极退出所述板经由磁极区域被引导进入并离开板,以在超出前正面的空间中形成弧形磁通路径。
2.根据权利要求1所述的磁通板,其中,线圈是扁平线圈。
3.根据权利要求1或2所述的磁通板,其中,线圈是螺旋缠绕线圈。
4.根据权利要求1或2所述的磁通板,其中,线圈定位在磁芯的最靠近板的前正面的一侧上.
5.根据权利要求1或2所述的磁通板,其中,线圈和磁芯一起形成在板中的磁通路径。
6.根据权利要求1或2所述的磁通板,其中,磁芯包括导磁材料的多个节段。
7.根据权利要求6所述的磁通板,其中,导磁材料包括铁氧体。
8.根据权利要求1或2所述的磁通板,其中,线圈分别是非对称的,线圈的绕组的组合在磁极区域之间比在板的外周处宽。
9.根据权利要求1或2所述的磁通板,其中,线圈被定位成在磁极区域之间的区中彼此紧相邻。
10.根据权利要求1或2所述的磁通板,其中,线圈被成形为提供磁极区域和在磁极区域之间的磁通管。
11.一种磁通板,具有前正面和后正面,所述磁通板用于在超出板的前正面的空间中产生磁通,所述板包括:
两个磁极区域,用于发送或接收磁通,
导磁磁芯,
两个线圈,与磁芯相关联,并且被设置在磁芯的与板的前正面相邻的一侧上,
由此,板在所述空间中产生弧形磁通,从而基本上每根磁力线在磁极区域之一上开始,呈弧形直到第二磁极区域,并且穿过磁芯与自己接合,而在板的后正面处基本上没有磁通存在。
12.一种IPT系统,包括根据以上权利要求任一项所述的磁通板。
13.一种IPT系统,包括根据权利要求11所述的磁通板和如下磁通板的组合:
具有前正面和后正面的磁通板,所述磁通板用于从超出板的前正面的空间接收磁通,所述板包括:
两个磁极区域,用于发送或接收磁通,
导磁磁芯,
两个线圈,与磁芯相关联,并且被设置在磁芯的与板的前正面相邻的一侧上,并且适于接收水平磁通分量,及
另一个线圈,磁性地与磁芯相关联并且适于接收垂直磁通分量。
14.根据权利要求12或权利要求13所述的IPT系统,用于将电力供给到电动车辆。
CN201080012846.7A 2009-02-05 2010-02-05 感应式电力传输设备 Active CN102362406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510621373.5A CN105109359B (zh) 2009-02-05 2010-02-05 感应式电力传输设备

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
NZ57467709 2009-02-05
NZ574677 2009-02-05
NZ576137 2009-04-08
NZ57613709 2009-04-08
PCT/NZ2010/000018 WO2010090539A1 (en) 2009-02-05 2010-02-05 Inductive power transfer apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510621373.5A Division CN105109359B (zh) 2009-02-05 2010-02-05 感应式电力传输设备

Publications (2)

Publication Number Publication Date
CN102362406A CN102362406A (zh) 2012-02-22
CN102362406B true CN102362406B (zh) 2016-01-13

Family

ID=42542270

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510621373.5A Active CN105109359B (zh) 2009-02-05 2010-02-05 感应式电力传输设备
CN201080012846.7A Active CN102362406B (zh) 2009-02-05 2010-02-05 感应式电力传输设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510621373.5A Active CN105109359B (zh) 2009-02-05 2010-02-05 感应式电力传输设备

Country Status (7)

Country Link
US (1) US9071061B2 (zh)
EP (1) EP2394346B1 (zh)
JP (4) JP6230776B2 (zh)
KR (2) KR101794901B1 (zh)
CN (2) CN105109359B (zh)
CA (1) CA2751595C (zh)
WO (1) WO2010090539A1 (zh)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
CN102983639B (zh) 2005-07-12 2016-01-27 麻省理工学院 无线非辐射能量传递
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US20100259110A1 (en) * 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US8772973B2 (en) * 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US20110043049A1 (en) * 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer with high-q resonators using field shaping to improve k
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US20110074346A1 (en) * 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
CA2738654C (en) 2008-09-27 2019-02-26 Witricity Corporation Wireless energy transfer systems
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US20100277121A1 (en) * 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8947186B2 (en) * 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US10566838B2 (en) 2009-08-07 2020-02-18 Auckland Uniservices Limited Inductive power transfer system
WO2012018268A1 (en) 2010-08-05 2012-02-09 Auckland Uniservices Limited Inductive power transfer apparatus
EP2601723B1 (en) * 2010-08-06 2020-04-22 Auckland UniServices Limited Inductive power receiver apparatus
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US10146281B2 (en) 2010-08-31 2018-12-04 Delta Electronics Thailand Public Company Limited Method and apparatus for load identification
EP2858205A1 (en) * 2011-04-08 2015-04-08 Access Business Group International LLC Counter wound inductive power supply
WO2013002241A1 (ja) * 2011-06-30 2013-01-03 矢崎総業株式会社 給電システム
US9893566B2 (en) 2011-06-30 2018-02-13 Yazaki Corporation Power supply system
CN103733460B (zh) * 2011-07-08 2019-07-23 奥克兰联合服务有限公司 用于感应功率传输系统的磁结构的互操作性
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
CN103782356B (zh) 2011-07-19 2017-11-14 奥克兰联合服务有限公司 双导体单相感应功率传输轨道
AU2012289855A1 (en) 2011-08-04 2014-03-13 Witricity Corporation Tunable wireless power architectures
DE102011110652A1 (de) 2011-08-19 2013-02-21 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und Vorrichtung zum Herstellen von Flachspulen
EP2751900B1 (en) 2011-09-07 2021-08-04 Auckland UniServices Limited Magnetic field shaping for inductive power transfer
CN103875159B (zh) 2011-09-09 2017-03-08 WiTricity公司 无线能量传送系统中的外部物体检测
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9406436B2 (en) 2011-10-28 2016-08-02 Auckland Uniservices Limited Non-ferrite structures for inductive power transfer
EP2777133A4 (en) 2011-11-04 2015-08-12 Witricity Corp WIRELESS POWER TRANSFER MODELING TOOL
US9236756B2 (en) * 2011-12-05 2016-01-12 Qualcomm Incorporated Apparatus for wireless device charging using radio frequency (RF) energy and device to be wirelessly charged
EP2798730B1 (en) 2011-12-28 2017-11-08 DET International Holding Limited Resonant bi-directional dc-ac converter
WO2013113017A1 (en) 2012-01-26 2013-08-01 Witricity Corporation Wireless energy transfer with reduced fields
JP2015508940A (ja) * 2012-02-16 2015-03-23 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 複数コイル磁束パッド
US9431834B2 (en) 2012-03-20 2016-08-30 Qualcomm Incorporated Wireless power transfer apparatus and method of manufacture
US9653206B2 (en) 2012-03-20 2017-05-16 Qualcomm Incorporated Wireless power charging pad and method of construction
US9160205B2 (en) 2012-03-20 2015-10-13 Qualcomm Incorporated Magnetically permeable structures
US9583259B2 (en) 2012-03-20 2017-02-28 Qualcomm Incorporated Wireless power transfer device and method of manufacture
US20130314188A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Magnetic Structure for Large Air Gap
US9494631B2 (en) 2012-05-04 2016-11-15 Det International Holding Limited Intelligent current analysis for resonant converters
US10553351B2 (en) * 2012-05-04 2020-02-04 Delta Electronics (Thailand) Public Co., Ltd. Multiple cells magnetic structure for wireless power
EP3264564A1 (en) 2012-05-04 2018-01-03 DET International Holding Limited Multiple resonant cells for inductive charging pads
US9196417B2 (en) 2012-05-04 2015-11-24 Det International Holding Limited Magnetic configuration for high efficiency power processing
WO2013168240A1 (ja) * 2012-05-09 2013-11-14 トヨタ自動車株式会社 車両
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
EP2870675A4 (en) * 2012-07-09 2016-04-27 Auckland Uniservices Ltd FLUX COUPLING DEVICE AND MAGNETIC STRUCTURES THEREFOR
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US10158250B2 (en) 2012-08-31 2018-12-18 Auckland Uniservices Limited Efficiency non-self tuning wireless power transfer systems
US9672975B2 (en) 2012-09-11 2017-06-06 Qualcomm Incorporated Wireless power transfer system coil arrangements and method of operation
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
WO2014063159A2 (en) 2012-10-19 2014-04-24 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10014104B2 (en) 2012-11-02 2018-07-03 Qualcomm Incorporated Coil arrangements in wireless power transfer systems for low electromagnetic emissions
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
KR102028059B1 (ko) 2012-12-27 2019-10-04 삼성전자주식회사 무선 전력 전송 시스템의 공진 장치 및 방법
US9142990B2 (en) * 2013-01-18 2015-09-22 Qualcomm Incorporated Method of multi-coil operation and optimization
WO2014119294A1 (ja) * 2013-01-30 2014-08-07 パナソニック株式会社 非接触電力伝送装置用コイル及び非接触電力伝送装置
DE102013101150A1 (de) * 2013-02-05 2014-08-21 Conductix-Wampfler Gmbh Spuleneinheit und Vorrichtung zur induktiven Übertragung elektrischer Energie
DE102013101152A1 (de) * 2013-02-05 2014-08-21 Conductix-Wampfler Gmbh Spuleneinheit und Vorrichtung zur induktiven Übertragung elektrischer Energie
DE102013010695B4 (de) * 2013-02-11 2022-09-29 Sew-Eurodrive Gmbh & Co Kg Vorrichtung mit Wicklungsanordnung und Anordnung, insbesondere Ladestation, zur berührungslosen Energieübertragung an ein Elektro-Fahrzeug, mit einer Wicklungsanordnung
US9716386B2 (en) 2013-03-06 2017-07-25 Heads Co., Ltd. Contactless power supply system
US9472339B2 (en) 2013-05-01 2016-10-18 Delphi Technologies, Inc. Wireless power transfer system transducers having interchangeable source resonator and capture resonator
US9676285B2 (en) * 2013-05-01 2017-06-13 Qualcomm Incorporated Vehicle charging pad having reduced thickness
JP5958423B2 (ja) * 2013-06-10 2016-08-02 株式会社ダイフク 非接触給電用パッドの製造方法、その製造方法により製作される非接触給電用パッド、およびその非接触給電用パッドを用いたフォークリフトの非接触充電システム
WO2015023899A2 (en) 2013-08-14 2015-02-19 Witricity Corporation Impedance tuning
EP3044862B1 (en) 2013-09-12 2017-11-08 Auckland Uniservices Limited Resonant power supply with self tuning
US10186912B2 (en) 2013-09-13 2019-01-22 Qualcomm Incorporated Pickup coil design for tight spaces and asymmetrical coupling
DE102013218471A1 (de) 2013-09-16 2015-03-19 Robert Bosch Gmbh Ladevorrichtung, Empfangsvorrichtung, System und Verfahren zum induktiven Laden eines Akkumulators
KR101531582B1 (ko) * 2013-11-08 2015-06-25 삼성중공업 주식회사 비접촉식 전력 스위블
WO2015072863A1 (en) 2013-11-13 2015-05-21 Powerbyproxi Limited Transmitter for inductive power transfer systems
US9837204B2 (en) 2013-12-17 2017-12-05 Qualcomm Incorporated Coil topologies for inductive power transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
US10003217B2 (en) 2014-03-04 2018-06-19 Qualcomm Incorporated System and method for reducing emissions for polarized coil systems for wireless inductive power transfer
US9583253B2 (en) 2014-03-10 2017-02-28 Qualcomm Incorporated Electric vehicle induction coil housing with interengagement structure for ferrite tile assemblies
US9772401B2 (en) 2014-03-17 2017-09-26 Qualcomm Incorporated Systems, methods, and apparatus for radar-based detection of objects in a predetermined space
JP6107715B2 (ja) * 2014-03-19 2017-04-05 株式会社ダイフク 給電パッドとその給電パッドを用いたフォークリフトの非接触充電システム、および、受電パッドとその受電パッドを用いた非接触給電設備の2次側受電回路
DE102014205952A1 (de) * 2014-03-31 2015-10-01 Siemens Aktiengesellschaft Elektrisch betriebenes Fahrzeug mit Wicklungseinrichtung
WO2015161035A1 (en) 2014-04-17 2015-10-22 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10325719B2 (en) 2014-05-19 2019-06-18 Apple Inc. Magnetically permeable core and an inductive power transfer coil arrangement
EP3146542A4 (en) 2014-05-19 2017-06-14 PowerbyProxi Limited Magnetically permeable core and inductive power transfer coil arrangement
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10673279B2 (en) 2014-07-08 2020-06-02 Auckland Uniservices Limited Inductive power transfer apparatus
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
WO2016007674A1 (en) 2014-07-08 2016-01-14 Witricity Corporation Resonator balancing in wireless power transfer systems
JP2017529036A (ja) 2014-07-09 2017-09-28 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 電動車両に好適な誘導電力システム
CN107148719B (zh) 2014-08-12 2020-11-13 苹果公司 用于功率传输的系统和方法
US9923406B2 (en) * 2015-09-04 2018-03-20 Qualcomm Incorporated System and method for reducing leakage flux in wireless charging systems
US9889754B2 (en) 2014-09-09 2018-02-13 Qualcomm Incorporated System and method for reducing leakage flux in wireless electric vehicle charging systems
JP6841760B2 (ja) 2014-09-11 2021-03-10 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited 制御された磁束キャンセルを伴う磁束結合構造
KR20160037652A (ko) * 2014-09-29 2016-04-06 엘지이노텍 주식회사 무선 전력 송신 장치 및 무선 전력 수신 장치
CA2969435A1 (en) 2014-12-04 2016-06-09 Eddy Current Limited Partnership Eddy current brake configurations
US9960607B2 (en) * 2014-12-29 2018-05-01 Qualcomm Incorporated Systems, methods and apparatus for reducing intra-base array network coupling
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10374459B2 (en) 2015-03-29 2019-08-06 Chargedge, Inc. Wireless power transfer using multiple coil arrays
DE102015206365A1 (de) * 2015-04-09 2016-10-13 Bayerische Motoren Werke Aktiengesellschaft Abdeckung für elektromagnetische Spule
US20160341573A1 (en) * 2015-05-18 2016-11-24 Qualcomm Incorporated Integration of solenoid positioning antennas in wireless inductive charging power applications
US11043846B2 (en) 2015-08-06 2021-06-22 Auckland Uniservices Limited Hybrid inductive power transfer system
US10199885B2 (en) * 2015-09-18 2019-02-05 Qualcomm Incorporated Methods and apparatus utilizing multi-filar alignment assistance in wireless power transfer applications
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
JP2018538517A (ja) 2015-10-14 2018-12-27 ワイトリシティ コーポレーションWitricity Corporation 無線エネルギー伝送システムにおける位相及び振幅の検出
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
WO2017136491A1 (en) 2016-02-02 2017-08-10 Witricity Corporation Controlling wireless power transfer systems
CN114123540A (zh) 2016-02-08 2022-03-01 韦特里西提公司 可变电容装置及高功率无线能量传输系统
US11239027B2 (en) 2016-03-28 2022-02-01 Chargedge, Inc. Bent coil structure for wireless power transfer
US10756572B2 (en) 2016-05-20 2020-08-25 Lear Corporation Wireless charging pad having coolant assembly
WO2017204663A1 (en) 2016-05-25 2017-11-30 Powerbyproxi Limited A coil arrangement
WO2017209630A1 (en) 2016-06-01 2017-12-07 Powerbyproxi Limited A powered joint with wireless transfer
JP6477604B2 (ja) * 2016-06-09 2019-03-06 株式会社ダイフク 誘導加熱装置
US10404100B2 (en) 2016-06-15 2019-09-03 Witricity Corporation Double-D based pad magnetics for reduced emissions in flush mounted and buried wireless power transfer applications
WO2018016976A1 (en) 2016-07-19 2018-01-25 Auckland Uniservices Limited Electric vehicle detection for roadway wireless power transfer
WO2018026288A1 (en) 2016-08-01 2018-02-08 Auckland Uniservices Limited Power transfer and leakage flux control
CN206834025U (zh) 2016-11-18 2018-01-02 鲍尔拜普罗克西有限公司 感应式电力传输线圈组件
US10245963B2 (en) 2016-12-05 2019-04-02 Lear Corporation Air cooled wireless charging pad
US10978911B2 (en) 2016-12-19 2021-04-13 Apple Inc. Inductive power transfer system
KR20180089763A (ko) * 2017-02-01 2018-08-09 삼성전자주식회사 디스플레이 시스템, 무선 전력 송신 장치 및 무선 전력 수신 장치
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11431196B2 (en) 2017-12-01 2022-08-30 Auckland Uniservices Limited Misalignment tolerant hybrid wireless power transfer system
US10875417B2 (en) 2018-02-06 2020-12-29 Witricity Corporation Thermal feedback for power transfer optimization
US10593468B2 (en) 2018-04-05 2020-03-17 Apple Inc. Inductive power transfer assembly
CN109177759B (zh) * 2018-09-14 2022-01-14 哈尔滨工业大学(威海) 自主式水下航行器无线充电的磁耦合结构及自主式水下航行器系统
KR20200106786A (ko) * 2019-03-05 2020-09-15 삼성전자주식회사 무선으로 전력을 송신하는 무선 전력 송신 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203432A (zh) * 1997-05-15 1998-12-30 住友电装株式会社 电动车充电的磁耦合装置
US6906495B2 (en) * 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
US7042196B2 (en) * 2002-05-13 2006-05-09 Splashpower Limited Contact-less power transfer

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0298707B1 (en) 1987-07-10 1994-09-28 Seiko Epson Corporation Charging device for electronic apparatus
JP2641808B2 (ja) 1991-01-31 1997-08-20 株式会社島津製作所 Mri用アンテナコイル
JP2872882B2 (ja) 1992-06-09 1999-03-24 ローム株式会社 ビデオテープレコーダのパワーオンリセット方法及び回路及びビデオテープレコーダ
JPH0666206A (ja) 1992-08-21 1994-03-08 Kubota Corp ガソリン・ガス両用エンジンの燃料ガス混合装置
JP3247186B2 (ja) * 1993-03-29 2002-01-15 江藤電気株式会社 可動体側電動駆動手段への給電装置
JPH0837121A (ja) 1994-07-26 1996-02-06 Matsushita Electric Works Ltd 給電装置
JPH1197263A (ja) 1997-09-22 1999-04-09 Tokin Corp 非接触式電力伝送装置およびそれに使用される渦巻型コイル
DE19746919A1 (de) 1997-10-24 1999-05-06 Daimler Chrysler Ag Elektrische Übertragungsvorrichtung
JP2000200725A (ja) 1998-12-29 2000-07-18 Tokin Corp 非接触電力伝送装置
JP2000269059A (ja) * 1999-03-16 2000-09-29 Nippon Telegr & Teleph Corp <Ntt> 磁性部品およびその製造方法
JP4246331B2 (ja) 1999-10-26 2009-04-02 パイロットインキ株式会社 金属光沢調感温変色性熱収縮性プラスチックフイルム
JP2002343655A (ja) 2001-05-18 2002-11-29 Ishikawajima Harima Heavy Ind Co Ltd 高電圧大電流用磁気結合コネクタ
JP4403285B2 (ja) 2002-05-13 2010-01-27 アムウェイ(ヨーロッパ)リミテッド 非接触式電力伝送に関する改良
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
JP2004047701A (ja) 2002-07-11 2004-02-12 Jfe Steel Kk 非接触充電器用平面磁気素子
GB0320960D0 (en) * 2003-09-08 2003-10-08 Splashpower Ltd Improvements relating to improving flux patterns of inductive charging pads
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
NZ546955A (en) * 2006-05-02 2008-09-26 Auckland Uniservices Ltd Pick-up apparatus for inductive power transfer systems
DE102006048829B4 (de) 2006-10-11 2016-05-25 Thyssenkrupp Transrapid Gmbh Empfangseinheit mit einer Empfängerspule zur berührungslosen Übertragung von elektrischer Energie und Verfahren zu ihrer Herstellung
EP2078330A2 (en) 2006-10-25 2009-07-15 Laszlo Farkas High power wireless resonant energy transfer system transfers energy across an airgap
JP4209437B2 (ja) * 2006-11-10 2009-01-14 三菱重工業株式会社 移動体の非接触給電装置及びその保護装置
AU2008251143B2 (en) 2007-05-10 2011-12-22 Auckland Uniservices Limited Multi power sourced electric vehicle
CA2738654C (en) 2008-09-27 2019-02-26 Witricity Corporation Wireless energy transfer systems
JP6277358B2 (ja) 2015-12-21 2018-02-14 横田エンジニアリング株式会社 ベーパ回収装置、ベーパ回収方法、及び、タンクの洗浄方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203432A (zh) * 1997-05-15 1998-12-30 住友电装株式会社 电动车充电的磁耦合装置
US6906495B2 (en) * 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
US7042196B2 (en) * 2002-05-13 2006-05-09 Splashpower Limited Contact-less power transfer

Also Published As

Publication number Publication date
CN105109359A (zh) 2015-12-02
CN105109359B (zh) 2018-10-16
CA2751595C (en) 2023-08-01
EP2394346A4 (en) 2015-05-06
US9071061B2 (en) 2015-06-30
WO2010090539A1 (en) 2010-08-12
KR20170125409A (ko) 2017-11-14
JP2012517118A (ja) 2012-07-26
JP7194091B2 (ja) 2022-12-21
JP2016006877A (ja) 2016-01-14
CN102362406A (zh) 2012-02-22
EP2394346B1 (en) 2020-10-21
JP2020004990A (ja) 2020-01-09
KR101948276B1 (ko) 2019-02-14
US20120025602A1 (en) 2012-02-02
KR20110121624A (ko) 2011-11-07
JP2018056582A (ja) 2018-04-05
EP2394346A1 (en) 2011-12-14
KR101794901B1 (ko) 2017-11-07
JP6230776B2 (ja) 2017-11-15
CA2751595A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
CN102362406B (zh) 感应式电力传输设备
US20240087806A1 (en) Inductive power transfer apparatus
US11034249B2 (en) Interoperability of magnetic structures for inductive power transfer systems
US9283858B2 (en) Inductive power transfer apparatus
Nguyen et al. Feasibility study on bipolar pads for efficient wireless power chargers
Beh et al. Investigation of magnetic couplers in bicycle kickstands for wireless charging of electric bicycles
CN108461264A (zh) 一种偏移容错范围大的无线电能传输松散磁耦合变压器装置及其电路
US10720277B2 (en) Ferrite arrangement in a wireless power-transfer structure to mitigate dimensional tolerance effects on performance
US10673274B2 (en) Inductive power transfer apparatus
US20200021144A1 (en) Method and system for reducing magnetic field emissions from double-d couplers
Jeong Ferrite-loaded coil for uniform magnetic field distribution
KR20200052034A (ko) 무선 충전 패드 및 무선 충전 장치
CN105594096B (zh) 非接触式供电系统
Dahal Wireless Energy Transfer Using Resonant Magnetic Induction for Electric Vehicle Charging Application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant